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The 1D Fourier Transform 
 
Definition.  The Fourier Transform (FT) relates a function to its frequency domain equivalent.  
The FT of a function g(x) is defined by the Fourier integral: 

dxexgxgFsG xsi∫
∞
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for ., ℜ∈sx   There are a variety of existence criteria and the FT doesn’t exist for all functions.  
For example, the function g(x) = cos(1/x) has an infinite number of oscillations as 0→x and the 
FT integral can’t be evaluated.  If the FT exists, then there is an inverse FT relationship: 
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Uniqueness:  Given the existence of the inverse FT, it follows that if the FT exists, it must be 
unique.  That is, for a function forms a unique pair with its FT: 

)()( sGxg ↔  
 
Caveat.  An exception to the uniqueness property is a class of functions called “massless” or 

“null” functions.  An example is the continuous function 
0,0
0,1

{)(
≠
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=
x
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xf .  This function and others 

like it have the same Fourier transform as f(x) = 0: F(s) = 0.  Thus, the uniqueness exists only for 
a function plus or minus arbitrary null functions.  In practice, these functions are not realizable 
and thus, for the purposes of this class we will assume that the FT is unique. 
 
Symmetry Definitions.  We first decompose some function g(x) in to even and odd components, 
e(x) and o(x), respectively, as follows: 
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A function, g(x), is Hermitian Symmetric (Conjugate Symmetric) if: 
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Symmetry Properties of the FT.  There are several related properties: 
1. If g(x) is real, then G(s) is Hermitian symmetric (e.g. G(s) = G*(-s) ). 
2. If g(x) is real and even, G(s) is real and even. 
3. If g(x) is real and odd, G(s) is imaginary and odd. 
4. If g(x) is real, G(s) can be specified entirely by non-negative frequencies ( 0≥s ).  That is, 

only ½ of the Fourier information is necessary to specify a real function. 
5. If g(x) is imaginary, then G(s) is Anti-Hermitian symmetric (e.g. G(s) = -G*(-s) ). 
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Proof of 1. 
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Comment on negative frequencies.  Consider a real-valued signal – imagine a voltage on a wire 
or the sound pressure against your eardrum – the Fourier transform of these is completely 
specified by the positive frequencies (e.g. G(-s) = G*(s)).  We can argue that we have the 
concept of a frequency (oscillations/second), but it doesn’t really make physical sense to talk 
about positive or negative frequencies.  In this case, we could argue that the having positive and 
negative frequencies is merely a mathematical convenience.  Are there cases where negative 
frequencies have meaning?  Consider the bit in a drill – it can turn clockwise or counter 
clockwise and different rotational rates.  Here positive and negative frequencies have physical 
meaning (the direction of rotation).  As we shall see, the magnetic moment in MRI is a case 
where the sign indicates the direction of precession. 
 
Convolution Definition.  The convolution operator is defined as: 
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The convolution operator commutes: 
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The delta function, ).(xδ   The Dirac delta or impluse function is a mathematical construct that 
is infinitely high in amplitude, infinitely short in duration and has unity area: 

∫ === 1)(  and   0except  everywhere   0)( dxxxx δδ  

Most properties of )(xδ  can exist only in a limiting case (e.g. as a sequence of functions 
)()( xxgn δ→ ) or under an integral.  Some important properties of )(xδ : 
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Delta function properties.  First two are technically only defined under the integral, but we’ll 
still talk about them. 
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Fourier Transform Theorems.  There are many Fourier transform properties and theorems.  
This is a partial list.  Assume that )()}({ sGxgF = , )()}({ sHxhF = and that a and b are constants: 
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Rayleigh’s Power  ∫∫ = dssGdxxg 22 )()(  

Cross Power ∫∫ = dssHsGdxxhxg )(*)()(*)(  
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Axis Reversal )()}({ sGxgF −=−  
Complex Conjugation )(*)}(*{ sGxgF −=  
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Some common FT pairs: 
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comb(x) comb(s) 
 
The comb function, comb(x).  The sampling or “comb” function is a train of delta functions:  

∑
∞
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n
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The Fourier transform of comb(x) is: 
{ } )(comb)(comb sxF =  

Proof. 
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The RHS of the above expression can be viewed as the exponential Fourier series representation 
of a periodic function F(s) with period 1 and αn = 1 for all n.  The Fourier series expressions are: 
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Now, let G(s) = rect(s)F(s) (one period of F(s)) and thus ∑
∞
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One function that satisfies this relationship is G(s) = δ(s).  Thus, one possible Fourier transform 
of comb(x) is: 

)(comb)()( smssF
m

=−= ∑
∞

−∞=
δ  

By uniqueness of the Fourier transform, this is the unique Fourier transform of comb(x). 
 
Sampling and replication by comb(x).  The comb function can be used to sample or extract 
values of a continuous function g(x).  Sampling with period X can be done as: 
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By the stretching and sifting properties of the delta function.  A function g(x) can be replicated 
with period X by convolving with a comb function: 
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By the stretching and convolution properties of the delta function. 
 
Sampling Theory.  When manipulating real objects in a computer, we must first sample the 
continuous domain object into a discretized version that the computer can handle.  As described 
above, we can sample a function g(x) at frequency fs = 1/X using the comb function: 
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The Fourier transform is: 
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Thus, sampling in one domain leads to replication of the spectrum in the other domain.  The 
spectrum is periodic with period fs.  Typically, only frequencies less than fs/2 can be represented 
in the discrete domain signal.  Any components that lie outside of this spectral region 
( 2/2/ ss fsf ≤≤− ) results in “aliasing” – the mis-assignment of spectral information. 
 

G(s)

s

G(s)

s
-fs/2 fs/2

Original
Spectrum

Replicated
Spectra

Aliasing  
The Whittaker-Shannon sampling theorem states that a band limited function with maximum 
frequency smax can be fully represented by a discrete time equivalent provided the sampling 
frequency satisfies the Nyquist sampling criterion:  

max2
1

s
X

fs ≥=  

If this is the case, then the original spectrum can be extracted (by filtering) and by uniqueness of 
the FT, the original signal can be reconstructed. To reconstruct the original signal, we apply a 
reconstruction filter )(rect)/(rect)( XsfssH s == : 
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In the x domain, this results in “sinc” interpolation: 
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If the Nyquist criterion is met, then )()(ˆ xgxg = . 
 

g(x), gs(n)

x

g(x)

x

Info from all
samples contribute
to this point

 
 
Units.  If x has units of Q, then s will have units of “cycles/Q” or Q-1.  Please note that under our 
definition of the FT, this is not an angular frequency with units of radians/Q, but just plain Q-1.  
Please also keep in mind that x is the index of variation – for example, we can have g(x) 
represent a velocity that varies as a function of spatial location x.  The function g(x) has units 
cm/s, but x has units cm and G(s) has units of cm/s, but s has units of cm-1.   
 
Examples: 

x s 
Time 

s (seconds) 
Temporal Frequency 

s-1, Hz, cycles/s 
Distance 

cm 
Spatial Frequency 

cm-1, cycles/cm 
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The 2D Fourier Transform 
 
Definition.  The 2D Fourier Transform (FT) relates a function to its frequency domain 
equivalent.  The FT of a function g(x,y) is defined by the 2D Fourier integral: 

∫ ∫
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There is also an inverse FT relationship: 
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Uniqueness:  Given the existence of the inverse FT, it follows that if the FT exists, it must be 
unique.  That is, for a function forms a unique pair with its FT: 

),(),( vuGyxg ↔  
 
2D FT in Polar Coordinates.  We consider a special case where the functional form of g(x,y) is 
separable in polar coordinates, that is, g(r,θ) = gR(r)gΘ(θ).  Since gΘ(θ) is periodic in θ, it has a 
Fourier series representation: 
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where the part under the integral in known as the Hankel transform of order n, and )(⋅nJ , is the 
nth order Bessel function of the first kind: 
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(Derivation of the Hankel transform relationship relies on )cos(2)(2 φθρππ −−+− = riyvxui ee .)  Thus, the 
2D FT in polar form is: 
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For the special case of circular symmetry of g, that is, g(r,θ) = gR(r), then: 

∫
∞

==
0 0 )2()(2)(),( rdrrJrgGG R ρππρφρ  

which is also a circularly symmetric function.  The inverse relationship is the same: 

∫
∞

=
0 0 )2()(2)( ρρρπρπ drJGrgR  

 
Some Symmetry Properties of the FT.   

1. If g(x,y) is real, then G(u,v) is Hermitian Symmetric, that is, G(u,v) = G*(-u,-v).   
2. If G(u,v) is real, then g(x,y) is Hermitian Symmetric, that is, g(x,y)= g*(-x,-y). 
3. If g(x,y) is real and even, then G(u,v) is also real and even.   
4. If g(r,θ) = gR(r) (circularly symmetric), then G(ρ,φ) = G(ρ) (circularly symmetric). 
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The delta function, ).,( yxδ   The delta function in two is equal the to product of two 1D delta 
functions )()(),( yxyx δδδ = .  In a manner similar to the 1D delta function, the 2D delta 
function has the following definition: 

∫ ∫ === 1),(  and  )0,0(),(except  everywhere   0),( dxdyyxyxyx δδ  

Most properties of ),( yxδ  can be derived from the 1D delta function.  There is also a polar 
coordinate version of the 2D delta function: ./)(),( rryx πδδ =  
 
Fourier Transform Theorems.  Let a and b are non-zero constants and F{g(x,y)} = G(u,v) and 
F{h(x,y)} = H(u,v). 
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Some common 2D FT pairs: 
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comb(x,y) = comb(x)comb(y) comb(u,v) = comb(u)comb(v) 
 
The comb function in 2D, comb(x,y).  The 2D sampling or comb function is defined as 
comb(x,y)=comb(x)comb(y) and has the 2D FT F{comb(x,y)}= comb(u,v).  Formally, the 2D 
comb function is defined as: 

∑
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In a manner similar to the 1D case, we can prove that Fourier transform of the 2D comb function 
is also a 2D comb function as given in the above table. 
 
Sampling Theory in 2D.  In a manner similar to sampling in 1D, sampling in 2D can be 
modeled as multiplying a function times the 2D comb function.  With sample spacing of X and Y, 
in the x and y directions, the sampled function is: 
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The discrete domain equivalent is gd(n,m) = g(nX, mY) = gs(nX, mY).  In the Fourier domain, the 
result is: 
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Thus, sampling in one domain leads to replication of the spectrum in the other domain.  Spacing 
of the replicated spectra is (1/X,1/Y).  The Whittaker-Shannon sampling theorem in 2D states that 
a band limited function with maximum frequencies smax,x and smax,y can be fully represented by a 
discrete time equivalent provided the sampling frequency satisfies the Nyquist sampling 
criterion:  

yx s
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Under these circumstances, there is no spectral overlap (or aliasing) the original spectrum and by 
uniqueness of the FT, the original signal can be reconstructed. 
 
To reconstruct the original signal, we apply a reconstruction filter ).(rect)(rect),( YvXuvuH =  
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In the (x,y) domain, this corresponds to “sinc” interpolation in 2D (sinc(x) = 
x

x
π
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The last line demonstrates how the original continuous signal can be retrieved from the discrete 
sampled version of g(x,y). 
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Relatives of the FT and Other FT Relationships 
 

2D Discrete Space FT.  Above, we saw that a sampled signal resulted in a periodic extensions in 
k-space.  Accordingly, the signal is defined by a single period of that space, e.g. 

)(rect)(rect),( YvXuvuGs .  The 2D discrete space Fourier transform is a normalized version of 
the 2D continuous domain Fourier transform of a sampled object. 
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where is gd(n,m) = g(nX, mY).  The inverse FT relationship is: 
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we now recognize that  
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One can consider ),( YXdG ωω  either to be space limited to (-π, π) or periodic with period 2π in 
both directions. 
 
2D FT of Period Signals.  Suppose we define a periodic signal ),(~ yxg  that is period in x with 
period X and periodic in y with period Y as: 
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where ),( yxg XY  is zero outside of the domain ):0[):0[ YX × .  The Fourier transform of this 
function is: 
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2D Fourier Series.  The above expression makes the relationship between the 2D Fourier 
transform and the 2D Fourier series obvious.  Taking the inverse 2D FT of the above we get: 
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which is the 2D Fourier series representation of a 2D periodic signal, where the Fourier series 
coefficients lkc ,  are: 
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Thus, a periodic signal can be represented by a discrete set of coefficients. 
 
2D FT of Discrete and Periodic Signals.  A discrete signal leads to period Fourier domain and 
the periodic signal leads to a discrete Fourier domain.  So, the 2D FT of a discrete and periodic 
signal should be discrete and periodic.  Let ),(~ mngd  be period with periods N, M.  To find its 

2D FT we take ),( YXdG ωω  and evaluate it at 
M
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FT: 
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for 2, Zlk ∈ .  ),(
~

lkGd  is also periodic with periods N, M.  The inverse FT is: 
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2D Discrete FT of a finite series.  In the above case, since both ),(~ mngd  and ),(
~

lkGd  are 
periodic with periods N, M.  Each can be complete described by a finite 2D series (of sizes 
NxM).  Thus, we can define the 2D DFT of a finite discrete series, ),( mngd , using an 
assumption of a periodic extension – that is, in determining its spectrum we assume that we are 
just looking at a single period of the function.  Thus, the 2D DFT is: 
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for )1:0()1:0(, −×−∈ MNmn  and )1:0()1:0(, −×−∈ MNlk .  The inverse FT is: 







 +−

=

−

=
∑∑= M

ml
N
nk

i

d

M

l

N

k
d elkG

NM
mng

π21

0

1

0

),(
1

),(  

These functions are implemented by Matlab’s fft2 and ifft2 function. 
 
These related to the continuous FT by the following relationshis: 
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(and recall the GGs =  for a bandlimited g). 
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Examples of Fourier Transforms: 
 

 
 2D data in Low spatial freq High spatial freq 
 image domain data (image domain) data (image domain) 
 

 
 2D data in Low spatial freq High spatial freq 
 Fourier domain data (Fourier domain) data (Fourier domain) 
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g(x,y) = rect(x)rec(y) 
G(u,v) = sinc(u)sinc(v) 
 
 
 
 
 
 
scaling (magnification) 
property 
 
 
 
 
 
scaling (magnification) 
property 
 
 
 
 
 
shifting property 
 
 
 
 
 
 
modulation 

  Image Abs(Fourier) Real(Fourier) Imag(Fourier) 
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g(x,y) = sinc(x)sinc(y) 
G(u,v) = rect(u)rect(v) 
 
 
 
 
sampling pattern with ∆x = ∆y 
In the Fourier transform we have the  
replication pattern with spacing 
1/∆x = 1/∆y 
 
 
 
 
sampling pattern with ∆x < ∆y 
In the Fourier transform we have the  
replication pattern with spacing 
1/∆x > 1/∆y 
 
 
 
sampling pattern with ∆x << ∆y 
This has aliasing in the y (v) direction 
 

 
  Image Data Fourier Data 

 
 

 


