ENGR 100-430: Music Signal Processing

Prof. Jeff Fessler (he/him)

W24

1. Team / Course overview
2. Technical part: digital signal processing (DSP) introduction
3. Technical communications part: significance to engineers (More introduction to technical communications next lecture)
4. Julia introduction (your "lab" for this course) (if time permits)

Part 1: Team / Course overview

Team

Jeff Fessler	Professor; EECS Department, ECE Div.
Philip Derbesy	Lecturer; Program in Technical Comm.
Ella Alhudithi	Lecturer; Program in Technical Comm.
Debrini Sarkar	Instructional Assistant (IA); EE
Zak Kerhoulas	Instructional Assistant (IA); CS/Sound Engineering
Amaya Murguia	Graduate Student Instructor (GSI); ECE

Debrini:

Zak:

Amaya:

Course information

- Course management tool: Canvas
- Labs, projects, homework, reading questions, schedule, syllabus, ...
- Many of these stored under Google Drive link on Canvas home page
- Submissions to Canvas or Gradescope
- DSP lectures available online in advance for printing / downloading. (Printing is optional but recommended unless you have a tablet.) In "dsp-lectures" folder on Google Drive
- See syllabus on Google Drive for contact information, office hours, etc.

Course overview

- 50\% technical content (DSP)
- 50% technical communications
- Both are equally important to your grade and to your future career (more later)
- cf. old-school way
- 4 problem sets (homework) + HW0 (Julia tutorial)
- 3 labs, preparation for:
- 3 projects (2 small, 1 large final team project)
- Final musical signal processiong project (synthesizers / transcribers...)
- 1 midterm in class on Mar. 20; no final exam
- Technical comm.: memos, oral and written presentations, ...

Schedule overview

- Lab 1 begins this week (read ahead!)
- Full schedule on Google Drive
- Julia help sess. Tue. Jan 16, 5:30-6:30PM, 1311 EECS (cf. Hwo, Lab1)
- Planning your week
- 3 hours of work / week / credit
$\circ 4$ credits $\Longrightarrow 12$ hours / week
- 6 contact hours: 3 lecture, 1 discussion, 2 lab
- 6 hours of work / week outside class (on average)
- review lecture notes
- read lab materials before lab
- answer lab / project "reading questions" before start of first (!) lab section using Canvas "Quizzes." (learning not assessment)
- prepare lab reports, TC assignments, problem sets, project presentations ...

Schedule specifics: First half of semester

Music Signal Processing							
WEDNESDAY	LAB/	LAB	DISCUSS	DUE**	To	Points	Points
CLASS*	PROJ	TOPIC	TOPIC		**夫	Indiv	Team

Second half of semester

Feb 26-	SPRING BREAK								
Mar 1									
Mar 4-8	Team Decision-	Project 3 Specs	Proj3	Feedback on P3	Team Planning	P2 report/code	C		50
	Making	git / collab. coding	ideas	project ideas	Documents	HW4 (5pm)	G	21	
	Team Writing			(JF and GSI/IA)					
Mar 11-15	PDR Work	Review	Proj3	PDR	PDR	P3 PDR	C		50
				(JF and TC and Lab Instr.)					
Mar 18-22	CSED Case Study	Midterm	Proj 3	P3 work	Midterm	DSP Midterm	prof	100	
		(also 104 EWRE)		subsystems	Reflection	TC Midterm	C	100	
						CSED Pre-work	C	5	
Mar 25-29	Memos	Synthesizer methods	CDR	P3/CDR work	Memo Frontmatter	Practice Memo	C	15	
	Progress Reports	P3 test/validate		alpha demo	Practice	Frontmatter			
Apr 1-5	Formal Reports	Transcriber methods	Proj3	P3 work	Organizing				
	Scoping	P3 help			Final Reports				
Apr 8-12	Exec Summaries	ABR	Proj 3	P3 work	Work	CDR (Report)	C		100
	Revising Organization	P3 help ???							
	Work time								
Apr 15-19	Revising for clarity	P3 help	None	Report Work	Th/Fri Disc. P3	Presentation (Fri)	C		100
	Work time				Presentations				
					(Rehearse/Record)				
Apr 22-26	Wrap-Up	(Study day)				Final Report Due	C		150
	Demos! (Mon)					3:30 Mon Apr 29			
	(classes end Tue Apr 23)								
						iClicker	class	37	
${ }^{\text {* }}$ Topics for class and discussions subject to change.						course evaluations	G	10	
** Lab/project 'reading questions' are due 24 hours before each lab begins.						In-Class TC	D	40	
${ }^{* * *}$ C = Canvas, D = Discussion, G = Gradescope, T = Tandem						Tandem	T	60	
**** See Canvas/Tandem for Tandem due dates (too many little things to list here)						TOTAL		700	450

Office hours (from syllabus on gdrive)

$\left.\begin{array}{|l|l|l|l|l|}\hline \text { Jeff Fessler } & \text { Professor; EECS } & \text { fessler@umich.edu } & 4431 \text { EECS } & \text { Wed 10:30-11:30AM or appt. } \\ \hline \text { Philip Derbesy } & \text { Lecturer; Tech Comm } & \text { philipcd@umich.edu } & 312 \text { GFL } & \begin{array}{l}\text { Tues 3:00-5:00 via Zoom (link); } \\ \text { Weds 11:00-12:00 GFL 312; or } \\ \text { appt }\end{array} \\ \hline \text { Ella Alhudithi } & \text { Lecturer; Tech Comm } & \text { alella@umich.edu } & 324 \text { GFL } & \begin{array}{l}\text { Tue 9-10 am \& by appt via } \\ \text { Zoom (link), }\end{array} \\ & & & \text { Wed 10:40-11:40 am in 324 GFL }\end{array}\right\}$

Room Key: EECS = Electrical Engineering and Computer Science Bldg.; GFL= Gorguze Family Laboratory; BEYST=Bob and Betty Beyster Building; FXB=François-Xavier Bagnoud Building; CSRB=Climate and Space Research Building; NAME=Naval Architecture and Marine Engineering; GGBL=G.G. Brown Laboratory

Lectures: Mon \& Wed, 9-10:20AM, 1200 EECS

Day	Lab Sec.	Lab Time	Lab Instr.	Lab Room	Disc. Sect.	Disc. Time	Disc. Instr.	Disc. Room
Thu	431	$10: 30-12: 30$	DS	2230 CSRB	432	$9: 30-10: 30$	Derbesy	2147 GGBL
Thu	433	$1: 30-3: 30$	AM	2230 CSRB	434	$12: 30-1: 30$	Derbesy	1690 BEYS
Fri	435	$10: 30-12: 30$	ZK	2517 GGBL	436	$9: 30-10: 30$	Alhudithi	1025 GGBL
Fri	437	$1: 30-3: 30$	AM	134 NAME	438	$12: 30-1: 30$	Alhudithi	1045 GGBL

iClickers

- Register and get free iClicker App from https://iclicker .com
- Bring a device (phone, tablet, laptop) with iClicker App to every class.
- Clicker question scoring: 2 points for answering, 3 points for correct answer. (Learning, not assessment.)
Clicker scores in the 1st week of class do not count towards grade. Prorated to about 3% of total score at end of term ($\approx 1 / 3$ letter grade)
- Why? From M Poh, M Swenson, R Picard: "A wearable sensor for unobtrusive, long-term assessment of electrodermal activity." IEEE Tr. on Biomed. Engin., 57(5):1243-52, May 2010. [1]

Research shows that active learning is more effective (than conventional lecturing) even though students may not realize it. Students sometimes feel like they are learning less with active learning because when a Professor simply lectures in class it can "sound easy" and students can think they understand; in contrast, when students must answer questions related to the material, they become more aware that they still do not fully understand.

Q0.1 Have you use something like clickers in a class before?
A: Never
B: A bit
C: A lot

Grading

See schedule/syllabus for details.

- Your total score is sum of your scores on each assignment. (See points listed on the schedule.)
- Final grades are based on your total score / ≈ 1150 points.
- Grade cutoff between $\mathrm{A}-/ \mathrm{B}+$ will be $\leq 90 \%$, for B-/C+ will be $\leq 80 \%$ (or lower), etc.
- For reference, the table below lists the score ranges from F10 in the ENGR 100 section taught by Prof. Fessler/Zahn.

GRADE	$\mathrm{A}+$	A	$\mathrm{A}-$	$\mathrm{B}+$	B	$\mathrm{B}-$	$\mathrm{C}+$	F
\# getting	1	15	9	6	7	2	1	1
maximum	97.6	93.7	89.4	87.9	85.7	82.2	78.6	25.5
minimum	97.6	89.6	88.3	86.6	83.7	80.9	78.6	25.5

- Grade history for ENGR 100 at Atlas
- See syllabus for collaboration and honor code policies.

Labs

Goals:

- Learn technical skills useful in projects
- Learn fundamentals of music signals and DSP

Lab synopsis

- Lab 1: Introduction to Julia and sinusoids
- Lab 2: Measure frequencies of music tones with DSP, and visualize graphically
- Lab 3: Compute spectra of signals, filter noisy signals, visualize using spectrogram

Projects

Goals:

- To work as a team to design, build, test, and refine simple music signal processing systems
- To apply tech. comm. skills to present your design and results
- Project 1: Build a music tone synthesizer and transcriber
- Project 2: Reverse-engineer touch-tone phone signals:
- Determine frequencies
- Build touch-tone synthesizer and transcriber
- Investigate transcriber behavior in noise.
- Project 3: (open ended)

Example: Build simple music synthesizer and transcriber

- Multiple-instrument synthesizer with GUI keys
- Generate musical staff-like notation from signals
- Report results using tech. comm. principles.

Project 1: Synthesizer GUI

Mimics piano keyboard: mouse click on key plays note. Much room for customization!

Project 1: Tone Transcriber

Transcriber (reverse musician):

$$
\text { play music signal } \rightarrow \text { transcriber } \rightarrow \text { music notation }
$$

Computer-based transcription of polyphonic music with arbitrary instruments is an unsolved problem!

P1 simplifications:

- all notes have same duration
- simple stem plot instead of notes, but correct heights

The Victors as a stem plot

Project 2: Touch-Tone Synthesizer

- Used to generate sequence of tones play
- Transcriber must produce correct sequence, i.e., 7631434
- Investigate how transcription accuracy degrades with noise

Part 2: DSP Overview

Plucked guitar demo

Plucked guitar signal

Plucked guitar demo: details

Basic audio recording with Julia:

```
using Sound # record
using Plots # plot
x, S = record(5)
plot((1:length(x))/S, x, xlabel="t [s]", ylabel="x(t)")
```

This records 5 seconds of monaural audio sampled at $S=44100 \frac{\text { Sample }}{\text { Second }}$ and stores the results in vector x that is plotted.
(Requires a microphone.)

Plucked guitar frequency

$$
\text { frequency }=1 \text { / period }
$$

For plucked guitar on previous page: period $=(2.015-2) / 5=0.003$ seconds
frequency $=1 /$ period $=1 / 0.003=333 \mathrm{~Hz}$
What note is that? [wiki]
E4 ("high E" on guitar) is 329.628 Hz

We just did some (manual) music signal processing.

ECE overview

Electrical and Computer Engineering:

1. power/energy
2. information

- control (e.g., anti-lock brake systems, autonomous vehicles...)
- communications and signal processing
- telephones, radios, stereos, televisions
- digital audio and video
- science, medicine (e.g., MRI scans), ...

Major areas of ECE

- Physical devices / hardware (Phys. 240): electricity, electromagnetics, optics, semiconductors, ...
- Computers and computing (Eng. 101, EECS 270, 280, ...)
- Systems (signals / algorithms): EECS 216, 351, 452, 455, 460

DSP is everywhere

Signals: create, record, store, transmit, receive, process
Each can be done by analog or digital means
Digital usually provides numerous advantages (cost, reliability, programmability, fidelity, ...)

Storing audio signals (e.g.)

- Analog storage: wax, wires, vinyl records, cassette tapes, ...
- Digital storage: magnetic (floppy disks, hard drive), optical (CD, DVD), semiconductor (flash, etc.), ...
Allows compression and lossless storage / transmission
Some audio applications of Digital Signal Processing (DSP)
- Analysis of signals: What is frequency or pitch of a note? What is its spectrum? What type of instrument? Speech recognition.
- Filtering of signals: Removing noise; removing interference
- Enhancing signals: bass boost, reverb, auto-tune...

Sound waves

DSP basics: Notation

In calculus: $f(x)=\mathrm{e}^{-a x}$
Here: x is a variable and a is a parameter that defines the shape of the function $f(x)$ when graphed versus x.

In DSP: $x(t)=\mathrm{e}^{-a t}$
Here: t is the variable (time) and a is a parameter that defines the shape of the function $x(t)$ e.g., current through a resistor

Q0. 2 What value of a was used to make these plots?
A: 1
B: 2
C: 3
Note that x is on the vertical axis here.

D: 4
E: 5

We often use $v(t), x(t), y(t), z(t)$ to denote signals.

DSP basics: Sampling

DSP systems start with a A/D converter (analog to digital)

Plot of analog signal

Analog $=$ continuous time $x(t)$

Stem plot of digital signal

Digital $=$ discrete time $x[n]$

The sampled signal $x[n]$ can be processed by digital computers.

DSP basics: Interpolation

Does sampling an analog signal lose information?
Can we recover the original analog signal $x(t)$ from the sampled digital signal $x[n]$?

Digital-to-analog (D/A) converters use interpolation (electrical version of "connect the dots")

In audio this conversion is essential for our analog ears.

Basic D/A conversion

Oth-order sample-and-hold method:

Amazing Fact that is the foundation of our digital world: we can reconstruct $x(t)$ from $x[n]$ perfectly if the sampling rate exceeds twice the maximum frequency of the original signal.
play "An analog girl in a digital world," Judy Gorman, One Sky Music, 2000

Part 3: Technical Communications Its engineering significance

Heads up...

- How you report results is as important as the technical results
- Technically good transcriber \& poorly presented \Longrightarrow poor grade.
- Technically so-so transcriber \& well presented \Longrightarrow good grade.
- Technically good transcriber \& well presented \Longrightarrow very good grade.

Why is presentation so important?

- This is absolutely how the real world works
- True in both industry and academia
- Replace grades in college with salary, jobs and careers in the real world
- Instead of taking our word for it, listen to UM engineering alumni:

UM EE alumni survey says:

Ranked most important in their professional experience:

1. Ability to function on a team
2. Oral communication skills
3. Written communication skills
4. Engineering problem-solving ability
5. Math, science, and engineering skills (yes, 5th)
6. Professional and ethical responsibility

Example: Amazon uses 6-page memos (not PowerPoint) https://www.linkedin.com/pulse/beauty-amazons-6-pager-brad-porter

Example: before giving an elevator pitch, write a full thought-out plan.

Communication skills:

Poll: Few Firms Looking For Liberal Arts Grads, More Seeking Engineering, Business Majors.

The Los Angeles Times (2014-05-22, Hamilton) reports that according to a new survey by research and consulting firm Millennial Branding, only " 2% of companies are actively recruiting college graduates with liberal-arts degrees," noting that "many more corporate hiring managers are on the lookout for engineering or business majors." The survey found that 27\% of firms are seeking engineering and computer science grads, while 18\% are seeking business majors. However, the survey found that over 80% of hiring managers "cited communication skills as a top trait they're looking for in job candidates, a skill typically in abundance among liberal-arts majors.
(http://www.latimes.com/business)

What UM EE alumni do:

- 62.5\% Engineer
- 14.6\% Manager
- 6.3\% Marketing
- 16.7\% Other

Source: UM College of Engineering Alumni Surveys for graduating classes 00-01, 01-02, 02-03, 03-04

Conclusions

- Team and communication skills are more important on the job than technical competence.
- Hollywood has it all wrong.

Part 4: Julia introduction / demo

Coding background?

Q0. 3 Prior coding course? (choose highest)
A: ENGR 101
B: ENGR 183
C: ENGR 280
Q0. 4 Prior Julia experience?
A: Never heard of it before ENGR 100-430
B: Heard of it but never used it
C: Tried it a couple times
D: Used it in a class (Rob 101?)
E: Did something useful with it outside a class

Scalar variables and arithmetic

(cf. calculator)
diary file
$2+3$
$x=3$

7 * x
$y=2+x$
$x+y$
$x^{\wedge} 2$

Scalar variables and functions

$$
\begin{aligned}
& \cos (0), \sin (\mathrm{pi} / 4) \\
& \mathrm{x}=\mathrm{pi} / 4 ; \mathrm{z}=\cos (\mathrm{x}) \\
& \exp (-\mathrm{x}) \\
& 10 * \exp (-\mathrm{x}) \\
& \mathrm{z}=4 ; a=\sin (\mathrm{z}) * \sin (\mathrm{z})+\cos (\mathrm{z}) * \cos (\mathrm{z})
\end{aligned}
$$

Variables and arrays

$x=[2,3,4,5]$
or more concisely (this colon syntax is very convenient and frequent):
$x=2: 5$
skip by 3's:
$x=0: 3: 18$
collect (x)

Arrays and arithmetic operations

In linear algebra, the only two vector operations are addition and scalar multiplication, and Julia supports those directly, working element-wise as expected:
$\mathrm{x}=2: 5$
$\mathrm{y}=10 * \mathrm{x}$
$\mathrm{y}+\mathrm{x}$
Other vector/scalar and vector/vector operations require broadcast using . to tell Julia to work element-wise:
x .+ 2
x . ~ 2
y .* x
Trying it without the . produces an error.

Arrays and functions

Similarly, broadcast is needed for functions to act element-wise (key difference from Matlab):
$x=2: 5$
exp. (-x)
$5 * \sin .(x)$
Many special functions have other purposes:
sum(x)
extrema(x)
To learn more about a function, e.g., the sum function: @doc sum
or:
? sum

Plotting

using Plots; $x=0: 0.01: 2 p i ; y=\cos (x) ; p l o t(x, y)$

Sound

```
using Sound
S = 8192; t = 0:1/S:0.5
x = 0.9 * cos.(2pi*400*t)
plot(t,x)
sound(x, S)
```

play

Array manipulation

$$
\begin{aligned}
& \mathrm{a}=[10,20] \\
& \mathrm{b}=3: 7
\end{aligned}
$$

Vertical concatenation:
$c=[a ; b]$
$c=[a ; b ;(a .+1)]$

Music?

$$
\begin{aligned}
& S=8192 ; \mathrm{t}=0: 1 / \mathrm{S}: 0.5 \\
& \mathrm{x}=0.9 * \cos .(2 \mathrm{pi} * 400 * \mathrm{t}) \\
& \mathrm{y}=0.8 * \cos .(2 \mathrm{pi} * 300 * \mathrm{t}) \\
& \mathrm{z}=[\mathrm{x} ; \mathrm{y} ; 0.4 * \mathrm{x}] \\
& \text { sound }(\mathrm{z}, \mathrm{~S}) \\
& \text { play } \\
& \mathrm{w}=[\mathrm{x} ; \mathrm{y} ;(\mathrm{x}+\mathrm{y})] \\
& \text { soundsc }(\mathrm{w}, \mathrm{~S}) \\
& \text { play }
\end{aligned}
$$

Mini Laptop Concert

(need conductor)
Launch Julia
At Julia REPL (read-eval-print loop) prompt:
using Sound
S = 8192; t = 0:1/S:3
$\mathrm{x}=0.9 * \cos .(2 \mathrm{pi} * 400 * \mathrm{t})$
$\mathrm{x}=0.9 * \cos .(2 \mathrm{pi} * 600 * \mathrm{t})$
$\mathrm{x}=0.9 * \cos .(2 \mathrm{pi} * 800 * \mathrm{t})$
sound (x, S)

Finale

Read Lab 1 before lab this week!
Lab reading questions due 24 hours before Lab section!
(Normally, but Lab 1 deadline is different in W22 due to Wed. start.)
It has more details about how to use Julia...

References

[1] M-Z. Poh, N. C. Swenson, and R. W. Picard. A wearable sensor for unobtrusive, long-term assessment of electrodermal activity. IEEE Trans. Biomed. Engin., 57(5):1243-52, May 2010.

