Eng. 100: Music Signal Processing DSP Lecture 4
 Lab 3: Signal Spectra

Curiosity

- https://www. youtube.com/watch?v=rtR63-ecUNo (Oscilloscope art)
- http://musicmachinery.com/2010/05/21/the-swinger (musical style modulation)

Announcements:

- Lab2 due Friday
- HW1 due Friday
- HW2 due next Friday
- Finish Project1 in Lab this week (at latest)
- Project 1 presentations in discussion sections next week.
- Start reading Lab 3 for next week - it is longer!

Part 0: Lab 2 summary

Lab 2 summary

What you learned (hopefully)

- Frequencies of musical tones in "The Victors": 392, 440, 494, 523, $587,659 \mathrm{~Hz}$
- Semi-log plot revealed missing frequencies:
$415,466,554,622,698,740 \mathrm{~Hz}$ (mostly accidentals).
- 12 frequencies with common ratio about 1.06

The exact ratio is $2^{1 / 12} \approx 1.059463094359295$
Twelve such "half steps" in an "octave" leads to a frequency ratio of 2, i.e., the frequency doubles each octave. More later...

Q0.1 What model relates piano key number to frequency? $\begin{array}{lll}\text { A: exponential } & \text { B: power } & \text { C: None of these }\end{array}$

Outline

- What: The spectrum of a signal
- Part 1. Why we need spectra
- Part 2. Periodic signals $x(t)=c_{0}+\sum_{k=1}^{K} c_{k} \cos \left(2 \pi \frac{k}{T} t-\theta_{k}\right)$
- Part 3. Band-limited signals, $K=\lfloor B T\rfloor$
- How: Methods for computing spectra
- Part 4. Sampling rate $S>2 B$
- Part 5. By hand by solving systems of equations
- Part 6. Using general Fourier series solution
- Part 7. Using fast Fourier transform (FFT), e.g., in Julia
- Why: Using a signal's spectrum
- to determine note frequencies: $f=\frac{k}{N} S$
o to remove unwanted noise
- to visualize frequency content (spectrogram)
- Lab 3

Learning objectives

- Understand concepts of spectra and Fourier series for periodic signals
- Convert between spectra plot and equation form
- Understand band limited signal spectra
- Determine band limit given spectra plot or Fourier series equation
- Understand Nyquist-Shannon sampling requirement $S>2 B$

Part 1. Why we need spectra

Project 1 Transcriber for ideal sinusoid (works!)

Sinusoidal signal:

Method:

$$
f=\frac{S}{2 \pi} \arccos \left(\frac{x[n+1]+x[n-1]}{2 x[n]}\right) .
$$

Project 1: Transcriber limitations

What are limitations of transcribers implemented in Project 1?
$? ?$
We need more sophisticated method(s) for finding the (fundamental) frequency of a music signal.

Project 1 Transcriber for noisy sinusoid (stinks!)

Sinusoidal signal with noise (e.g., in any audio recording):

Method:

$$
f=\frac{S}{2 \pi} \arccos \left(\frac{x[n+1]+x[n-1]}{2 x[n]}\right) .
$$

Project 1 Transcriber for clarinet (stinks!)

Clarinet signal (roughly G below middle C):

Method:

$$
f=\frac{S}{2 \pi} \arccos \left(\frac{x[n+1]+x[n-1]}{2 x[n]}\right) .
$$

Project 1 Transcriber for polyphony (stinks!)

Clarinet and guitar duet (even more challenging case):

- Methods that use the "time domain" are very unlikely to work when two instruments play simultaneously.
- We need to use the "frequency domain" aka the spectrum of a signal. (Human ears work this way!)
- The concept of spectra is used widely in engineering.

Engineering strategy: Divide and conquer

This signal $x(t)$ looks complicated.
(Bamboo reed vibrations are approximately a square wave.)
Engineering strategy:

- Make complicated things by combining simpler things.
- Use tools from mathematics (and physics) as needed.

Mathematics provides us with a perfect tool in this case:
Fourier series.

Part 2. Spectra of periodic signals

Joseph Fourier laid the foundation for DSP

Joseph Fourier, 1768-1830

He died after falling down the stairs at his home.

- Fourier series theory developed circa 1807 (Modern compared to our trigonometry method.)
- Motivating application: heat propagation in metal plates.

Periodic signals are the key to music DSP

Key property of musical signals (over short time intervals): periodicity.

A periodic signal (aka repeating signal) with period $=T$ satisfies

$$
x(t)=x(t+T)=x(t+2 T)=\cdots \text { for all } t .
$$

Example: $x(t)=\cos (2 \pi 9 t)$ is periodic with period $T=1 / 9 \mathrm{sec}$.
It is also periodic with period $T=1 / 3 \mathrm{sec}$.
The smallest period ($T=1 / 9 \mathrm{sec}$ here) is the fundamental period.

Exercise

Q0. 2 What is the (approximate) period of the clarinet signal shown on the previous slide (in sec)? A: $0.001 \quad$ B: $0.005 \quad$ C: 0.010

D: $0.015 \quad$ E: 0.5

Fourier series of periodic signals

Amazing fact \#1 (discovered by Joseph Fourier 200+ years ago):
Any real-world periodic signal with period $=T$ can be expanded (i.e., expressed mathematically as a sum) as follows:

$$
x(t)=c_{0}+\sum_{k=1}^{\infty} c_{k} \cos \left(2 \pi \frac{k}{T} t-\theta_{k}\right)
$$

$$
=\underbrace{c_{0}}_{\begin{array}{c}
\text { DC term } \\
\text { DC value }
\end{array}}+\underbrace{c_{1} \cos \left(2 \pi \frac{1}{T} t-\theta_{1}\right)}_{\begin{array}{r}
\text { fundamental } \\
\text { DC constant }
\end{array}}+\underbrace{\text { frequency }=2 / T^{c}=2 / 2 \cos \left(2 \pi \frac{2}{T} t-\theta_{2}\right)}_{\begin{array}{r}
\text { (first) harmonic } \\
\text { period }=T / 2 \\
\text { frequency }=1 / T
\end{array}}+\cdots
$$

- $\left\{c_{k}\right\}$ called amplitudes
- $\{k / T\}$ called frequencies
$\circ\left\{\theta_{k}\right\}$ called phases

We can write even a "complicated" clarinet or guitar signal using such a "simple" sum of sinusoidal signals.

Example: Triangle wave

$\cos (t)$

$\cos (t)+\cos (3 t) / 3^{2}+\cos (5 t) / 5^{2}$

$$
\cos (t)+\ldots+\cos (19 t) / 19^{2}
$$

$$
\cos (t)+\cos (3 t) / 3^{2}
$$

$$
\cos (t)+\ldots+\cos (9 t) / 9^{2}
$$

More terms in sum \Longrightarrow closer approximation to triangle wave.
(Nice audio demo on wikipedia.)

Example: Square wave

$\sin (t)+\sin (3 t) / 3+\sin (5 t) / 5$
$\sin (t)+\ldots+\sin (15 t) / 15$

Sums of sinusoids can make "interesting" signals, like a square wave. What is T in this example? ??

Example: Sawtooth wave

play
play
play
play
play

As we build this sawtooth wave, does the sound pitch sound change?
Fundamental frequency (in Hz)? [7]

The spectrum of a periodic signal

Every periodic signal can be written in the same form!

$$
x(t)=c_{0}+c_{1} \cos \left(2 \pi \frac{1}{T} t-\theta_{1}\right)+c_{2} \cos \left(2 \pi \frac{2}{T} t-\theta_{2}\right)+\cdots
$$

So how do electric guitar and clarinet signals differ?

The spectrum of a periodic signal

Every periodic signal can be written in the same form!

$$
x(t)=c_{0}+c_{1} \cos \left(2 \pi \frac{1}{T} t-\theta_{1}\right)+c_{2} \cos \left(2 \pi \frac{2}{T} t-\theta_{2}\right)+\cdots
$$

\qquad

So how do electric guitar and clarinet signals differ?

Definition. The spectrum of a signal $x(t)$ is just a stem plot of the amplitudes $\left\{c_{k}\right\}$ versus the frequencies $\{k / T\}$ in Hertz.

- The phases θ_{k} are unimportant for monophonic music.
- The DC term c_{0} cannot be produced or heard either.
- Coefficients $\left\{c_{k}\right\}$ define timbre (TAM-ber) of sound aka "tone color"

Spectra of periodic signals

In ENGR 100, we define spectra only of periodic signals. Why?

- Musical instruments produce approximately periodic signals.
- Definition and computation are much easier.
- Real-world non-periodic signals can be viewed as part of a periodic signal with a very long period.

Example: AM Radio Signal

Two Michigan AM Radio stations are:

- WSDS, 1480 kHz, 3800W, Salem Township
- WABJ, 1490 kHz, 1000W, Adrian, MI

If WSDS broadcasts a 3000 Hz sinusoidal test tone and WABJ broadcasts a 2000 Hz sinusoidal test tone, then (you can learn in EECS 216) that an antenna in Saline that can pick up both stations would receive this signal:

$$
\begin{aligned}
x(t)= & 40 \cos (2 \pi 1480000 t)+20 \cos (2 \pi 1483000 t)+20 \cos (2 \pi 1477000 t) \\
& +10 \cos (2 \pi 1490000 t)+5 \cos (2 \pi 1492000 t)+5 \cos (2 \pi 1488000 t)
\end{aligned}
$$

What is the spectrum of this signal?

Example: AM Radio Signal Spectrum

AM radio signal (expressed as mathematical formula):

$$
\begin{aligned}
x(t)= & 40 \cos (2 \pi 1480000 t)+20 \cos (2 \pi 1483000 t)+20 \cos (2 \pi 1477000 t) \\
& +10 \cos (2 \pi 1490000 t)+5 \cos (2 \pi 1492000 t)+5 \cos (2 \pi 1488000 t) .
\end{aligned}
$$

Spectrum of this signal $x(t)$:

So the spectrum of a signal is a graphical representation.
Graphical representations are often beneficial.
Converting between these representations is a learning objective.

Exercise

Find a formula for the signal that has the following spectrum.

Could an audio signal (music) have this spectrum?
play
$? ?$
(Working forwards and backwards...)

Spectrum of a general periodic signal

A periodic signal with period T has a spectrum that looks like:

- The frequency components are $0,1 / T, 2 / T, \ldots$
- The height of each line in the spectrum is an amplitude c_{k}

Ignoring phase: $x(t)=c_{0}+c_{1} \cos \left(2 \pi \frac{1}{T} t\right)+c_{2} \cos \left(2 \pi \frac{2}{T} t\right)+\cdots$
What units are along the horizontal axis for a spectrum?

Example: Clarinet spectrum

Clarinet spectrum

First significant peak: fundamental frequency $=1 / T \approx 195 \mathrm{~Hz}$ (Perfectly) periodic signals have (perfect) line spectra.

Example: Clarinet synthesized

Synthesized using 8 largest peaks in spectrum.
Sounds more interesting than Project 1 synthesizer? Why?

Example: Clarinet Fourier series

Expressing a complicated signal in terms of simple signals:

$$
\begin{aligned}
x(t) \approx & 0.382 \cos (2 \pi \quad 195.0 t+1.35)+0.237 \cos (2 \pi 584.9 t+0.48)+ \\
& 0.169 \cos (2 \pi \quad 974.8 t+0.30)+0.151 \cos (2 \pi 1754.6 t-1.35)+ \\
& 0.066 \cos (2 \pi 2534.5 t-1.41)+0.061 \cos (2 \pi 2144.6 t+2.40)+ \\
& 0.057 \cos (2 \pi 2339.5 t+0.40)+0.041 \cos (2 \pi 1364.7 t+1.32)
\end{aligned}
$$

- Guitar signal would have different amplitudes and phases, even if playing the same note.
- MP3 audio coding exploits the "line" nature of music spectra.
- How did I make the spectrum plot on previous slide?
- How did I get all the numbers above?

Part 3: Band-limited signals: towards computing a signal's spectrum

Fourier Series: Trigonometric form

Fourier Series: Sinusoidal form:

$$
x(t)=c_{0}+c_{1} \cos \left(2 \pi \frac{1}{T} t-\theta_{1}\right)+c_{2} \cos \left(2 \pi \frac{2}{T} t-\theta_{2}\right)+\cdots
$$

Fourier Series: Trigonometric form:

$$
\begin{aligned}
x(t)=a_{0} & +a_{1} \cos \left(2 \pi \frac{1}{T} t\right)+a_{2} \cos \left(2 \pi \frac{2}{T} t\right)+\cdots \\
& +b_{1} \sin \left(2 \pi \frac{1}{T} t\right)+b_{2} \sin \left(2 \pi \frac{2}{T} t\right)+\cdots
\end{aligned}
$$

Coefficients in these two forms are related by:

$$
\begin{aligned}
a_{0} & =c_{0} \\
a_{k} & =c_{k} \cos \theta_{k} \\
b_{k} & =c_{k} \sin \theta_{k} \\
c_{k} & =\sqrt{a_{k}^{2}+b_{k}^{2}} \quad \text { (need this to plot spectra) } \\
\tan \theta_{k} & =b_{k} / a_{k}
\end{aligned}
$$

because (Lab 1): $\cos (t-\theta)=\cos (\theta) \cos (t)+\sin (\theta) \sin (t)$
We will focus on finding the a_{k} and b_{k} values for music signals.

About those dots: ...

Example.
If $x(t)$ has period $=T=0.01$ seconds then $x(t)$ has expansion:

$$
\begin{aligned}
& x(t)=\begin{array}{ll}
a_{0} & +a_{1} \cos (2 \pi 100 t) \\
+ & b_{1} \sin (2 \pi 100 t)
\end{array} \quad+a_{2} \cos (2 \pi 200 t)+a_{3} \cos (2 \pi 300 t)+\cdots \\
& \text { fundamental =1st harmonic } \\
&+b_{2} \sin (2 \pi 200 t)+b_{3} \sin (2 \pi 300 t)+\cdots \\
& \text { 2nd harmonic } \text { 3rd harmonic } \\
&(\mathrm{DC})(100 \mathrm{~Hz})
\end{aligned}
$$

- Mathematical perspective: What does "..." mean?
- Engineering perspective:

Practical signals are, or can be made to be, band limited.

- Physical limits
- Perception limits
- Anti-alias filters in A/D converters

Band-limited signals have a maximum frequency

Definition. A signal is band limited to $B \mathrm{~Hz}$ if it has no frequency components higher than $B \mathrm{~Hz}$.

Example.
If $x(t)$ has period $=T=0.01$ seconds and is band-limited to 800 Hz then $x(t)$ has (finite!) Fourier series expansion:

$$
\begin{align*}
& x(t)=a_{0}+a_{1} \cos (2 \pi 100 t) \quad+a_{2} \cos (2 \pi 200 t)+\cdots+a_{8} \cos (2 \pi 800 t) \\
& +b_{1} \sin (2 \pi 100 t) \quad+b_{2} \sin (2 \pi 200 t)+\cdots+b_{8} \sin (2 \pi 800 t) \\
& \text { fundamental }=1 \text { st harmonic } \quad \text { 2nd harmonic highest harmonic } \\
& \text { (DC) } \quad(100 \mathrm{~Hz}) \quad(200 \mathrm{~Hz}) \tag{800~Hz}
\end{align*}
$$

Finite sum: $x(t)=a_{0}+\sum_{k=1}^{8}\left(a_{k} \cos (2 \pi 100 k t)+b_{k} \sin (2 \pi 100 k t)\right)$
This periodic, band-limited signal is "characterized completely" by the frequency $(100 \mathrm{~Hz})$ and just 17 other numbers:

$$
\left\{a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, b_{7}, b_{8}\right\}
$$

How do we find those values, called coefficients?

Exercise

A periodic signal $x(t)$ has period $T=0.02$ seconds and is known to be band-limited to 200 Hz .

How many (possibly nonzero) Fourier series coefficients does it have (in trigonometric form), including the DC coefficient?
??

Recall:

$$
\begin{aligned}
x(t)=a_{0} & +a_{1} \cos \left(2 \pi \frac{1}{T} t\right)+a_{2} \cos \left(2 \pi \frac{2}{T} t\right)+\cdots \\
& +b_{1} \sin \left(2 \pi \frac{1}{T} t\right)+b_{2} \sin \left(2 \pi \frac{2}{T} t\right)+\cdots
\end{aligned}
$$

How many coefficients?

In general, if a signal has period T and is band-limited to $B \mathrm{~Hz}$, how many Fourier series coefficients $\left\{a_{0}, a_{1}, b_{1}, a_{2}, b_{2}, \ldots\right\}$ are needed?

Spectrum of a band-limited periodic signal

A periodic signal with period T, that is band-limited to $B \mathrm{~Hz}$, has a spectrum that looks like:

- No frequency components above $B \mathrm{~Hz}$
- No lines in spectrum past $B \mathrm{~Hz}$
- $K=B T$ if it is an integer (\# of sinusoids)
(units of $B T$?)
- $K=\lfloor B T\rfloor$ more generally, $\lfloor x\rfloor=$ largest integer that is $\leq x$
$\lfloor x\rfloor$ called floor function (below)
- Example: $T=0.01 \mathrm{~s}$ and $B=360 \mathrm{~Hz} \Longrightarrow K=\lfloor 3.6\rfloor=3$

Spectrum review: A non-music example

The following figure / demo illustrates a hypocycloid that is one special case of a spirograph.
demo: fig_spirograph1.jl

Formula:
$x(t)=(R-r) \cos (2 \pi t)+r \cos \left(2 \pi \frac{R-r}{r} t\right)$
$y(t)=(R-r) \sin (2 \pi t)-r \sin \left(2 \pi \frac{R-r}{r} t\right)$ Here, $R=5$ (outer circle) and $r=1$ (inner circle).

Recall: a signal is any time-varying quantity...

Exercise.
Sketch spectrum of $x(t)$ (or $y(t)$). ??
Is $x(t)$ band-limited? ??
What is the band-limit B ? ??

Computing a signal's spectrum

Signal sampling

Idea. To determine $2 B T+1$ Fourier coefficients of a signal with period T that is band-limited to $B \mathrm{~Hz}$, we try taking at least $N \geq 2 B T+1$ samples of the signal over one period, e.g., the interval $[0, T)$.

In other words, take $N>2 B T$ samples: $x[0], x[1], \ldots, x[N-1]$.

What will be the sampling interval? $\Delta=\frac{T}{N}<\frac{T}{2 B T}=\frac{1}{2 B}$.
The sampling rate is: $S=\frac{\# \text { of samples }}{\text { time interval }}=\frac{N}{T}>\frac{2 B T}{T}=2 B$.
Sample faster than twice the maximum frequency: $S>2 B$.

2 B or not 2 B

The formula $S>2 B$ is one of the most important in DSP! It is the foundation for all digital audio and video and more. CD players use a sampling rate of 44.1 kHz . Why? [?]

Where did T go?
The period T need not affect the sampling rate! We can choose T arbitrarily large.

Amazing fact \#2 (discovered by Claude Shannon 60+ years ago):
Nyquist-Shannon sampling theorem:
If we sample a band-limited signal $x(t)$ at a rate $S>2 B$, then we can recover the signal from its samples $x[n]=x(n / S)$.

Conversely:
sampling too slowly can cause bad effects called aliasing.
Example: wagon wheels in Western movies.

Claude Shannon: Father of information theory

> 1916-2001
> Born in Petosky, raised in Gaylord, MI. UM EE Class of 1936. Claude Shannon's statue is outside EECS.

cf. finite element models used by, e.g., mechanical and aero engineers

