
© J. Fessler, March 17, 2024, 22:33 (class version) 1

Eng. 100: Music Signal Processing

DSP Lecture 9

Music synthesis techniques

Curiosity:
• Let a thousand analog oscillators sing
https://doi.org/10.1109/MSPEC.2020.9205540
https://www.youtube.com/watch?v=c3wk9WWTfNs
https://www.youtube.com/watch?v=M12kjjmD02E

• http://www.image-line.com/plugins/Synths/Harmor

Announcements:
• https://web.eecs.umich.edu/~fessler/course/100/p/synthesis.pdf

https://doi.org/10.1109/MSPEC.2020.9205540
https://www.youtube.com/watch?v=c3wk9WWTfNs
https://www.youtube.com/watch?v=M12kjjmD02E
http://www.image-line.com/plugins/Synths/Harmor
https://web.eecs.umich.edu/~fessler/course/100/p/synthesis.pdf

© J. Fessler, March 17, 2024, 22:33 (class version) 2

Outline

• Part 1: Julia functions and loops
• Part 2: Additive synthesis via Fourier series
• Part 3: FM synthesis
• Part 4: Nonlinearities
• Part 5: Envelope: analysis and synthesis
• Part 6: P3 Q/A

© J. Fessler, March 17, 2024, 22:33 (class version) 3

Learning objectives

• Understand effective coding principles
◦ use functions and loops (don’t repeat yourself)
◦ separate data from code

• Understand additive synthesis and efficient implementation
• Awareness of FM synthesis
• Awareness of nonlinear effects
• Understand envelope

© J. Fessler, March 17, 2024, 22:33 (class version) 4

Part 1: Julia functions and loops

© J. Fessler, March 17, 2024, 22:33 (class version) 5

Julia functions (1)

Tedious way to write a 4-note song in Julia (violates DRY principle):

using Sound: sound
S = 8192
sound(0.9cos.(2π*660*(0:1/S:0.5)), S); sleep(0.5)
sound(0.9cos.(2π*880*(0:1/S:0.5)), S)
sound(0.9cos.(2π*660*(0:1/S:0.5)), S)
sound(0.9cos.(2π*440*(0:1/S:1.0)), S)

Q0.1 What is the duration of this song (in seconds)?
??

Q0.2 Why the sleep call?
??

Can we streamline this code (e.g., for longer songs)? ??

http://en.wikipedia.org/wiki/Don't_repeat_yourself

© J. Fessler, March 17, 2024, 22:33 (class version) 6

Julia functions (2)

Using a function can simplify and clarify:

using Sound: sound
S = 8192
playnote = (f,d) -> sound(0.9cos.(2π*f*(0:1/S:d)), S)
playnote(660, 0.5); sleep(0.5)
playnote(880, 0.5)
playnote(660, 0.5)
playnote(440, 1.0)

Caution: if we change S , then how playnote works will change.
• Functions defined dynamically and function closure s are very useful (in languages

that support them).
• Simpler (less typing for coder)
• Easier to see the key elements of the song (notes and duration).
• Easier to make global changes (such as amplitude 0.9).
• But still tedious if the song is longer than 4 notes...

http://en.wikipedia.org/wiki/Closure_(computer_programming)

© J. Fessler, March 17, 2024, 22:33 (class version) 7

Julia loops (1)

Using a for loop is the most concise and elegant:

using Sound: sound
S = 8192 # data
fs = [660, 880, 660, 440] # frequencies
ds = [0.5, 0.5, 0.5, 1.0] # note durations
rs = [0.5, 0.0, 0.0, 0.0] # rest durations
code (separated from data):
playnote = (f,d) -> sound(0.9cos.(2π*f*(0:1/S:d)), S)
for index in 1:length(fs)

playnote(fs[index], ds[index])
sleep(rs[index])

end

Another principle illustrated here: separate code and data.
Complete separation? ??

https://livebook.manning.com/book/data-oriented-programming/chapter-2

© J. Fessler, March 17, 2024, 22:33 (class version) 8

Julia loops (2)

Here is another loop version that sounds better: play

using Sound: sound
S = 8192 # "data"
fs = [660, 880, 660, 440] # frequencies
ds = [0.5, 0.5, 0.5, 1.0] # note durations
rs = [0.5, 0.0, 0.0, 0.0] # rest durations
x = Float32[] # "code"
for (f,d,r) in zip(fs, ds, rs)

append!(x, 0.9cos.(2π*f*(0:1/S:d)), S) # note
append!(x, zeros(round(Int, r/S))) # rest

end
sound(x, S)

Loops (and functions) are ubiquitous in software.

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}

1.6555916

© J. Fessler, March 17, 2024, 22:33 (class version) 9

Julia functions

Exercise. Create a function playsong that has two inputs, an array of
frequencies and an array of durations, and plays the corresponding song.

edit playsong.jl

Then test it:
playsong(220 * [3, 4, 3, 2, 3, 4, 3], [1, 1, 1, 1, 1, 1, 2]/3)

© J. Fessler, March 17, 2024, 22:33 (class version) 10

Part 2: Additive synthesis via Fourier series

© J. Fessler, March 17, 2024, 22:33 (class version) 11

Additive Synthesis: Mathematical formula

Simplified version of Fourier series for monophonic audio:

x(t) =
K

∑
k=1

ck cos
(

2π
k
T

t
)

• No DC term for audio: c0 = 0.
• Phase unimportant for monophonic audio, so θk = 0.
• Which version is this? ??

(Sinusoidal form? trigonometric form? complex exponential form?)

Example:

x(t) = 0.5cos(2π400t)+0.2cos(2π800t)+0.1cos(2π2000t)

© J. Fessler, March 17, 2024, 22:33 (class version) 12

Example: Why we might want harmonics

play play

Same pitch,
different timbre.

y(t) = 0.5cos(2π400t)
x(t) = 0.5cos(2π400t)+0.2cos(2π800t)+0.1cos(2π2000t)

fig_why1.jl example of additive synthesis
using Measures: mm
using Plots
default(linewidth=2, size = (600,200), left_margin = 2mm, bottom_margin = 4mm)
S = 44100
N = Int(0.5 * S) # 0.5 sec
t = (0:N-1)/S # time samples: t = n/S
y = 0.5 * cos.(2π * 400 * t)
x = y + 0.2 * cos.(2π * 800 * t) + 0.1 * cos.(2π * 2000 * t)
plot(1000t, x, label="x(t)", xlabel="t [ms]", xlims=(0,10), xticks=1000*(0:4)/400)
plot!(1000t, y, label="y(t)", ylabel="x(t), y(t)", ylims = (-1, 1), yticks=-1:1)
#savefig("fig_why1.pdf")

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}

0.57469374

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}

0.57469374

© J. Fessler, March 17, 2024, 22:33 (class version) 13

Julia implementation: “Simple”

Example: x(t) = 0.5cos(2π400t)+0.2cos(2π800t)+0.1cos(2π2000t)

• A simple Julia version looks a lot like the mathematical formula:

S = 44100
N = Int(0.5 * S) # 0.5 sec
t = (0:N-1)/S # time samples: t = n/S
x = 0.5 * cos.(2π * 400 * t) +

0.2 * cos.(2π * 800 * t) +
0.1 * cos.(2π * 2000 * t)

• There are many “hidden” for loops above. Where? ??

• Julia saves us from the tedium of writing out those loops,
thereby making the syntax look more like the math.

• In “traditional” programming languages like C,
one would have to code all those loops.

• This “simple” implementation is still somewhat tedious,
particularly for signals having many harmonics.

© J. Fessler, March 17, 2024, 22:33 (class version) 14

C99 implementation
#include <math.h>
void my_signal(void)
{

float S = 44100;
int N = 0.5 * S; // 0.5 sec
float x[N]; // signal samples
for (int n=0; n < N; ++n)
{

float t = n / S;
x[n] = 0.5 * cos(2 * M_PI * 400 * t)

+ 0.2 * cos(2 * M_PI * 800 * t)
+ 0.1 * cos(2 * M_PI * 2000 * t);

}
}

© J. Fessler, March 17, 2024, 22:33 (class version) 15

Example revisited: Square wave

Many dozens of harmonics needed to get a “good” square wave approximation.

© J. Fessler, March 17, 2024, 22:33 (class version) 16

Julia implementation: Loop over harmonics

Example: x(t) = 0.5cos(2π400t)+0.2cos(2π800t)+0.1cos(2π2000t)

S = 44100
N = Int(0.5 * S) # 0.5 sec
t = (0:N-1)/S # time samples: t = n/S
c = [0.5, 0.2, 0.1] # amplitudes
f = [1, 2, 5] * 400 # frequencies
x = zeros(N)
for k in 1:length(c)

global x += c[k] * cos.(2π * f[k] * t)
end

Q0.3 How many loops over N in this version?
??

• This version is the easiest to read and debug.
• It looks the most like the Fourier series formula: x(t) = ∑

K
k=1 ck cos

(
2π

k
T t
)
.

• In fact it is a slight generalization.
◦ In Fourier series, the frequencies are multiples: k/T .
◦ In this code, the frequencies can be any values we put in the f array.

(We would not need global if we put this in a function.)

© J. Fessler, March 17, 2024, 22:33 (class version) 17

Example: Square wave via loop, with sin
S = 44100
N = Int(0.5 * S) # 0.5 sec
t = (0:N-1)/S # time samples: t = n/S
c = 1 ./ (1:2:15) # amplitudes
f = (1:2:15) * 494 # frequencies
x = zeros(N)
for k in 1:length(c)

global x += c[k] * sin.(2π * f[k] * t)
end

Q0.4 How many (non-fundamental) harmonics in this example?
??

t [sec]
0 0.0081

x
(t
)

-1

0

1

play

Music example, circa 1978: play

2011 example? Nyan cat

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton3'){ocgs[i].state=false;}}

0.57469374

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton4'){ocgs[i].state=false;}}

16.35256

https://www.nyan.cat

© J. Fessler, March 17, 2024, 22:33 (class version) 18

Example: Square wave via loop, with cos
S = 44100
N = Int(0.5 * S) # 0.5 sec
t = (0:N-1)/S # time samples: t = n/S
c = 1 ./ (1:2:15) # amplitudes
f = (1:2:15) * 494 # frequencies
x = zeros(N)
for k in 1:length(c)

global x += c[k] * cos.(2π * f[k] * t)
end

t [sec]
0 0.0081

x
(t
)

-2

0

2

play

Does it sound different? ??

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton5'){ocgs[i].state=false;}}

0.57469374

© J. Fessler, March 17, 2024, 22:33 (class version) 19

Julia implementation: Concise

We can avoid writing any explicit for loops (and reduce typing)
by using the following more concise (i.e., tricky) Julia version:

S = 44100
N = Int(0.5 * S) # 0.5 sec
t = (0:N-1)/S # time samples: t = n/S
c = [0.5, 0.2, 0.1] # amplitudes
f = [1, 2, 5] * 400 # frequencies
z = cos.(2π * t * f')
x = z * c

c is 3(×1) f’ is 1×3 t is N(×1)
z is ??

x is ??

Q0.5 Where are the (hidden) loops in this version?
??

Use this approach or the previous slide for Project 3 additive synthesis.

© J. Fessler, March 17, 2024, 22:33 (class version) 20

Example: Square wave via sign
S = 44100
N = Int(0.5 * S) # 0.5 sec
t = (0:N-1)/S # time samples: t = n/S
f = 494 # (fundamental) frequency
x = sign.(cos.(2π * f * t))

play

Simplest code, but least customizable.

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton6'){ocgs[i].state=false;}}

0.57469374

© J. Fessler, March 17, 2024, 22:33 (class version) 21

Wavetable synthesis

See synthesis.pdf document.

https://web.eecs.umich.edu/~fessler/course/100/p/synthesis.pdf

© J. Fessler, March 17, 2024, 22:33 (class version) 22

Part 3: FM synthesis

© J. Fessler, March 17, 2024, 22:33 (class version) 23

Additive synthesis review

Mathematical formula (Fourier series) for additive synthesis [wiki]:

x(t) =
K

∑
k=1

ck cos
(

2π
k
T

t
)
=

K

∑
k=1

ck cos(2π k f t)

• Parameters that control timbre: c1, . . . ,cK

• Parameter that controls pitch: ??

play play

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton7'){ocgs[i].state=false;}}

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton8'){ocgs[i].state=false;}}

http://en.wikipedia.org/wiki/Additive_synthesis

© J. Fessler, March 17, 2024, 22:33 (class version) 24

Frequency Modulation (FM) synthesis

In 1973, John Chowning of Stanford invented the use of frequency modulation (FM)
as a technique for musical sound synthesis [1, 2].

The mathematical formula for FM synthesis is [wiki]:

x(t) = Asin(2π f t + I sin(2πgt)),

where I is the modulation index and f and g are both frequencies.
(Yamaha licensed the patent for synthesizers and Stanford made out well.)

This is a simple way to generate periodic signals that are rich in harmonics.
However, finding the value of I that gives a desired effect requires experimentation.

http://en.wikipedia.org/wiki/Frequency_modulation_synthesis

© J. Fessler, March 17, 2024, 22:33 (class version) 25

FM example 1: Traditional

S = 44100
N = Int(1.0 * S)
t = (0:N-1)/S # time samples: t = n/S
I = 7 # adjustable
x = sin.(2π*400*t + I * sin.(2π*400*t))

Very simple implementation (both in analog and digital hardware),
yet can produce harmonically very rich spectra:

frequency [Hz]
0 400 1200 2000 4000 6000

am
p
li
tu
d
e

0

0.6

Spectrum of FM signal with I=7

play

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton9'){ocgs[i].state=false;}}

1.07102

© J. Fessler, March 17, 2024, 22:33 (class version) 26

FM example 2: Time-varying

Time-varying modulation index: x(t) = Asin
(

2π f t + I(t)︸︷︷︸sin(2πgt)
)
.

Simple formula / implementation can make intriguing sounds. play

S = 44100
N = Int(1.0 * S)
t = (0:N-1)/S # time samples: t = n/S
I = 0 .+ 9*t/maximum(t) # slowly increase modulation index
x = sin.(2π*400*t + I .* sin.(2π*400*t))

Besides making the modulation index I a vector, how else did the code change? ??

Previous code for reference:

S = 44100
N = Int(1.0 * S)
t = (0:N-1)/S # time samples: t = n/S
I = 7 # adjustable
x = sin.(2π*400*t + I * sin.(2π*400*t))

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton10'){ocgs[i].state=false;}}

1.07102

© J. Fessler, March 17, 2024, 22:33 (class version) 27

Q0.6 What is the most informative graphical representation?
A: Time plot B: FFT spectrum C: Line spectrum D: Spectrogram E: None of these ??

© J. Fessler, March 17, 2024, 22:33 (class version) 28

Illustrations of previous FM signal

Q0.7 What is the approximate fundamental frequency of the final 0.02
seconds?
??

© J. Fessler, March 17, 2024, 22:33 (class version) 29

Part 4: Nonlinearities

© J. Fessler, March 17, 2024, 22:33 (class version) 30

Nonlinearities

Another way to make signals that are rich in harmonics is to use a nonlinear function
such as y(t) = x9(t).

S = 44100
N = Int(1.0 * S)
t = (0:N-1)/S # time samples: t = n/S
x = cos.(2π*400*t)
y = x.^9

play

t [sec]
0 0.0025 0.01

x
(t

)

-1

0

1

t [sec]
0 0.0025 0.01

y
(t

)

-1

0

1

frequency [Hz]
0 400 1200 2000 3600 8000

sp
ec
tr
u
m

o
f
y

0

0.6

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton11'){ocgs[i].state=false;}}

1.07102

© J. Fessler, March 17, 2024, 22:33 (class version) 31

Nonlinearities in amplifiers

• High quality audio amplifiers are designed to be very close to linear
because any nonlinearity will introduce undesired harmonics (see previous slide).

• Quality amplifiers have a specified maximum total harmonic distortion (THD) that
quantifies the relative power in the output harmonics for a pure sinusoidal input.

cos(2π f t)︸ ︷︷ ︸
input

→ Amplifier → c1 cos(2π f t)+c2 cos(2π2 f t)+c3 cos(2π3 f t)+ · · ·

• A formula for THD is: [wiki]

THD =
c2

2+ c2
3+ c2

4+ · · ·
c2

1
·100%

• What is the best possible value for THD? ??

• On the other hand, electric guitarists often deliberately operate their amplifiers
nonlinearly to induce distortion, thereby introducing more harmonics than produced
by a simple vibrating string.
◦ pure: play
◦ distorted: play

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton12'){ocgs[i].state=false;}}

3.78

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton13'){ocgs[i].state=false;}}

5.9115376

http://en.wikipedia.org/wiki/Total_harmonic_distortion

© J. Fessler, March 17, 2024, 22:33 (class version) 32

Part 5: Envelope of musical signals

© J. Fessler, March 17, 2024, 22:33 (class version) 33

Envelope has two applications

• Analyzing (processing) musical signals
(e.g., to find note start/stop/duration, rhythms)

• Synthesizing (interesting or more realistic) musical signals

© J. Fessler, March 17, 2024, 22:33 (class version) 34

Envelope example: Train whistle

t [sec]
0 1.6

x
(t
)

-1

0

1

train whistle signal

t [sec]
0 1.6

en
ve
lo
p
e(
t)

0

1

train whistle envelope

attack release

play

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton14'){ocgs[i].state=false;}}

1.3583672

© J. Fessler, March 17, 2024, 22:33 (class version) 35

Envelope example: Plucked guitar

t [sec]
0 4.5

x
(t
)

-1

0

1

plucked guitar signal

t [sec]
0 4.5

en
ve
lo
p
e(
t)

0

1

plucked guitar envelope

play

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton15'){ocgs[i].state=false;}}

© J. Fessler, March 17, 2024, 22:33 (class version) 36

Compute envelope with moving average

Find envelope using moving average, aka “sliding window”

function envelope(x; w::Int = 201) # uses moving average
h = (w-1) ÷ 2 # sliding window half-width (default 100)
x = abs.(x) # absolute value is crucial!
avg(v) = sum(v) / length(v) # function for (moving) average
return [avg(x[max(n-h,1):min(n+h,end)]) for n in 1:length(x)]

end

using WAV: wavread
using Plots
x, S = wavread("train-whistle.wav")
env = envelope(x) # call moving-average function
plot((1:length(x))/S, env, label="envelope", xlabel="t [sec]")

The preceding two figures used this code.

http://en.wikipedia.org/wiki/Moving_average

© J. Fessler, March 17, 2024, 22:33 (class version) 37

Moving average

y[10] = 1
3 (y[9]+ y[10]+ y[11])

z[n] = 1
9 ∑

4
k=−4 x[n+ k], for 5 < n < N −5

© J. Fessler, March 17, 2024, 22:33 (class version) 38

Find note durations using envelope

play

w = 501
env = envelope(x; w)
env /= maximum(env)
threshold = 0.1
playing = env .> threshold

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton16'){ocgs[i].state=false;}}

4.806529

© J. Fessler, March 17, 2024, 22:33 (class version) 39

play

Simple threshold sufficed for separated notes;
legato notes need more effort

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton17'){ocgs[i].state=false;}}

3.3347201

© J. Fessler, March 17, 2024, 22:33 (class version) 40

Envelope synthesis in Julia

S = 44100
N = Int(1 * S)
t = (0:N-1)/S
c = 1 ./ (1:2:15) # amplitudes
f = (1:2:15) * 494 # frequencies
x = +([c[k] * sin.(2π * f[k] * t) for k in 1:length(c)]...) # !!
env = (1 .- exp.(-80*t)) .* exp.(-3*t) # fast attack; slow decay
y = env .* x

-1

0

1

0 1

x
(
t
)

t

0

0 1

y
(
t
)

t x: play y: play

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton18'){ocgs[i].state=false;}}

1.07102

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton19'){ocgs[i].state=false;}}

1.07102

© J. Fessler, March 17, 2024, 22:33 (class version) 41

Attack, Decay, Sustain, Release (ADSR)

Programmable music synthesizers usually allow the user to control separately the time
durations of these 4 components of the envelope.

[wiki]

• For synthesizers with a keyboard, the “sustain” portion lasts as long as the key is pressed.
• The “release” portion occurs after the key is released.
• In synthesizers with “touch control” the properties of the “attack” and “decay” portions may depend

on how hard/fast one presses the key.
• Does duration of release portion depend on how quickly one releases the key? ??

• For a pipe organ, how long is the attack and decay?
??

http://en.wikipedia.org/wiki/Synthesizer#ADSR_envelope

© J. Fessler, March 17, 2024, 22:33 (class version) 42

Music synthesis summary

• There are numerous methods for musical sound synthesis
• Additive synthesis provides complete control of spectrum
• Other synthesis methods provide rich spectra with simple operations

(FM, nonlinearities)
• Time-varying spectra can be particularly intriguing
• Signal envelope (time varying amplitude) also affects sound character-

istics
• Other advanced synthesis methods:

◦ sound reversal
◦ physical modeling
◦ sampling
◦ ...

• Ample room for creativity and originality!

© J. Fessler, March 17, 2024, 22:33 (class version) 43

Part 6: P3 Q/A?

© J. Fessler, March 17, 2024, 22:33 (class version) 44

References

[1] J. M. Chowning. The synthesis of complex audio spectra by means of
frequency modulation. J. of the Audio Engineering Soc., 21(7):526–
34, September 1973.

[2] J. M. Chowning. The synthesis of complex audio spectra by means of
frequency modulation. Computer Music J., 1(2):46–54, April 1977.

	Outline
	Learning
	1: Functions and loops
	2: Additive synthesis / Fourier series
	3: FM synthesis
	4: Nonlinearities
	5: Envelope
	6: P3 Q/A?

	fd@rm@19:
	fd@rm@18:
	fd@rm@17:
	fd@rm@16:
	fd@rm@15:
	fd@rm@14:
	fd@rm@13:
	fd@rm@12:
	fd@rm@11:
	fd@rm@10:
	fd@rm@9:
	fd@rm@8:
	fd@rm@7:
	fd@rm@6:
	fd@rm@5:
	fd@rm@4:
	fd@rm@3:
	fd@rm@2:
	fd@rm@1:
	fd@rm@0:

