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1. Overview

This semester (Fall 2012), I spent time reading and implementing the
paper by Grass et al. titled “3D cone-beam CT reconstruction for circu-
lar trajectories”. This paper presented a new reconstruction algorithm that
modifies the well-known Feldkamp algorithm. Their new method can be bro-
ken into two major steps. The first step rebins the standard 3D cone beam
geometry into a parallel-beam geometry along the source trajectory. It is
possible to perform a filtered backprojection of the data at this step, and
this method is known as P-FDK (parallel-FDK). Despite the algorithmic dif-
ferences with FDK, this method does not differ in image quality/artifacts.
The second step interpolates the projections onto a rectangular virtual detec-
tor plane and then proceeds with the filtered backprojection. This method
is known as T-FDK (tent-FDK) and shows improved image quality.

In this paper I will provide a mathematical formalism of the algorithm,
which is not found in the Grass et al. paper, along with directions on how
to use the corresponding code. The formulas will be consistent with the
variables used in the book chapters written by Fessler, and will reference
sections out of these chapters, code found in the irt toolbox, as well as new
code. The P-FDK and T-FDK methods have been completely implemented,
but both should be tested on additional phantoms and real datasets.

2. P-FDK

Assume that we are given cone-beam projection data pf (s, t, β), where f
denotes the cone/fan-beam geometry, s is the column position on the detec-
tor, t is the row position on the detector, and β is the angular position of
the x-ray source. Rebinning to parallel fixes t, and rebins in the s direction.
For each fixed t, we are in the geometry presented in Section 3.9.
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2.1. Fan to Parallel Rebinning

In Section 3.9.1, fan to parallel rebinning is defined assuming roff = 0.
We will also assume that we are using third-generation X-ray CT systems
(Dfs = 0). This simplifies expression (3.9.11) to

pp(r, φ) = pf (Dsd arcsin(r/Ds0), φ− arcsin(r/Ds0)),

where φ denotes the angle between the ray and the y-axis, r is the distance
from the center of rotation to the ray, Ds0 is the distance from the source to
the center of rotation, and Dsd is the distance from the source to the detector.
This geometry can be seen in Figure 1. Extending this to our 3D case yields,

pp(r, t, φ) = pf (Dsd arcsin(r/Ds0), t, φ− arcsin(r/Ds0)).

The code implementing this step simply loops over the t-coordinate and
makes repeated calls to the function rebin fan2par. It should be noted that
this function requires a 2D projection matrix and a 2D CT geometry. Both
of these can be created using the 3D CT geometry and 3D projection matrix
provided. The user has control over the resulting parallel beam geometry
(can change orbit, ds, etc.). These changes may offer a slight improvement in
image quality. When decreasing ds to make a finer grid, the only requirement
is that ds·ns remains constant.

After rebinning, one must define a new 3D CT geometry, and make any
necessary changes (new ds, etc.). When doing so, the user should use the
function ct geom par. This is essentially the same as ct geom, but allows for
one additional variable, called ‘rebinned’, which should now be set to 1. In
the future, the ct geom code should be rewritten to allow for a new type,
called par rebinned, but for now, the modified code checks if cg.rebinned ==
1. This small change allows for our 3D CT geometry to use variables such
as Dsd, which can only be set to ‘inf’ for the parallel type currently.

2.2. New Geometry

In order to complete the reconstruction algorithm, the new geometry must
be understood. Figure 1 offers an above view of the rebinnned projection
data while Figure 2 offers a side view. The distances in these figures will be
referenced in the following sections.

It is important to note that the total distance from the source to the
detector (Dsd) is kept constant. As a result, the ‘new’ detector has an inverted
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Figure 1: New geometry after rebinning. View is from above, and the x-y axis is provided.
Note that the total distance Dsd is preserved for the rebinned data, which causes the new
detector to curve outwards. Point of interest is the black dot.
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Figure 2: The side view of the projection ray through the point of interest for the new
geometry. The v-z axis is provided. The total horizontal distance from the source to the
detector is Dsd.
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arc. Figure 2 is given relative to the v-z axis, where v(x, y, φ) = yφ, which
can be found in Equation (3.9.16), and is reproduced below:

v(x, y, φ) = (−x sin(φ) + y cos(φ)).

2.3. Filtered Backprojection

The pre-weighting and filtering step proceed as normal with

wp(t) =
Dsd√
D2

sd + t2

p̂p(r, t, φ) =
(
wp(t)pp(r, t, φ)

)
∗ gp(r).

The cosine weighting function can be derived from Figure 2, and gp(r) is the
usual ramp filter used in the parallel-beam case (Equation (3.4.14)).

The backprojection now follows with

fp(x, y, z) =

∫ 2π

0

p̂p(r(x, y, φ), t(x, y, z), φ)dφ,

where

r(x, y, φ) = x cos(φ) + y sin(φ)

t(x, y, z, φ) =
Dsdz√

D2
s0 − r(x, y, φ)2 + v(x, y, φ)

.

The formula for r(x, y, φ) follows directly from the parallel beam geometry.
In order to derive t(x, y, z, φ), note that by the similar triangles seen in Figure
2, we have

t

Dsd

=
z

d′ + v
,

where

d′ =
√
D2

s0 − r2,

can be derived from Figure 1. It is interesting to note that additional weight-
ing is not required during the backprojection step. Figure 3 shows the re-
construction results using the P-FDK and FDK algorithms.
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Figure 3: True and reconstruct images of a phantom for the first and middle slices, along
with a side view of the phantom.

3. T-FDK

Instead of filtering and backprojecting after rebinning to the parallel ge-
ometry, the T-FDK method interpolates the projection data to form a Carte-
sian grid for the projection data on a virtual detector found at the axis of
rotation. Before interpolation, the grid at this virtual detector can be seen
in Figure 4. Instead of simply interpolating (in the vertical direction) a
rectangle that is contained within this curved grid, we are interested in ex-
trapolating in order to create a rectangle that contains the curved grid.

The function gridding.m performs this interpolation/extrapolation. It
takes in the CT geometry and the projection matrix, and returns the new
projection matrix, along with coordinates for the new grid. This function uses
interp1 and currently performs linear interpolation, but this method can be
changed. We will refer to the new projection after interpolation/extrapolation
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Figure 4: The left figure represents the projection grid on the detector, while the right
figure represents the same grid on the virtual detector located at the center of rotation.

in the t-direction as ppr(r, t′, φ).
After performing the interpolation/extrapolation, the algorithm contin-

ues with pre-weighting and filtering, according to the equations

wpr(r, t′) =

√
D2

s0 − r2√
D2

s0 − r2 + t′2

p̂pr(r, t′, φ) =
(
wpr(r, t′)ppr(r, t′, φ)

)
∗ gp(r).

The new cosine weighting function, wpr(r, t′), can be derived directly from
Figure 2. Finally, the backprojection occurs with

fpr(x, y, z) =

∫ 2π

0

p̂pr(r(x, y, φ), t′(x, y, z), φ)dφ,

where r(x, y, φ) is the same as before, and

t′(x, y, z, φ) =
z
√
D2

s0 − r(x, y, φ)2√
D2

s0 − r(x, y, φ)2 + v(x, y, φ)
.

Again, this follows from the similar triangle identity

t′

d′
=

z

d′ + v
.
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4. Conclusion/Future Work

Preliminary results show similar images for all three algorithms (FDK,
T-FDK, and P-FDK). Future work should be done testing the methods on
additional phantoms and real CT datasets. Additional work can be done
on the interpolation/extrapolation step. Specifically, examining the effects
of different interpolation methods, and adjusting the dt and nt values of
the new grid. Currently, the new grid keeps nt constant. Similar to how
our rebinning steps can be used to decrease ds, the interpolation step can
be used to decrease dt. Lastly, parallel feldkamp example.m provides an
example that runs the code found in the folder rebinnedFunctions, which
can be placed in the folder irt/fbp.
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