
ASPIRE 3.0 USER’S GUIDE:
A SPARSE ITERATIVE RECONSTRUCTION LIBRARY

Jeffrey A. Fessler

COMMUNICATIONS & SIGNAL PROCESSING LABORATORY
Department of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, Michigan 48109-2122

July 1995
Revised April 26, 2009

Technical Report No. 293
Approved for public release; distribution unlimited.

ASPIRE 3.0 User’s Guide:
A Sparse Iterative Reconstruction Library

Jeffrey A. Fessler
4240 EECS University of Michigan, Ann Arbor, MI 48109-2122

email: fessler@umich.edu, phone: 734-763-1434

April 26, 2009

Technical Report # 293
Communications and Signal Processing Laboratory

Dept. of Electrical Engineering and Computer Science
The University of Michigan

Abstract

ASPIRE 3.0 is a collection of ANSI C language programs for performing tomographic image reconstruction and
image restoration using statistical methods. This user’s guide describes how to compile and use the software.

Contents

1 Introduction 4

2 Notation 4

3 Installation 4
3.1 Getting software 4
3.2 Version information 4
3.3 Source code 5
3.4 Compiling 5

4 Weight generation 5
4.1 Converting to a custom sparse format 7
4.2 Converting custom system matrix to ASPIRE 3.0 7
4.3 Interface with MATLAB . 7

5 Data format 8

This work was supported in part by DOE grant DE-FG02-87ER60561 and NIH grants CA-60711 and CA-54362.

1

6 Tabulating β 8
6.1 Simulations 9
6.2 Real systems 10

7 SPECT attenuation (2d) 11

8 Initial image 11
8.1 Transmission FBP Reconstruction 11
8.2 Emission FBP reconstruction 12

9 Image reconstruction 13
9.1 Penalized Weighted Least Squares 13
9.2 Penalized Likelihood: Transmission Case 15
9.3 Ordered-subsets transmission reconstruction (OSTR) 16
9.4 Penalized Likelihood: Emission Case 16

9.4.1 ML-EM 16
9.4.2 SAGE 17

9.5 OSEM 17
9.6 OSDP: ordered subsets regularized modified EM algorithm of De Pierro. 17
9.7 Preprocessing for PWLS: Emission Case 17
9.8 Shifted Poisson statistical model 18

10 Examples 18

11 General options 20
11.1 Verbosity 20
11.2 Threads 20

A Geometry descriptions 20
A.1 Common properties 21
A.2 Spatially-invariant image restoration 21
A.3 Parallel strip-integral geometry 22
A.4 Fan-beam geometry 23
A.5 Depth-Dependent Gaussian Blur for 2D SPECT 24

B AVS data format 25

C Information for developers 26

D Acknowledgement 27

2

Notice
ASPIRE 3.0 is copyright 1990-present Jeff Fessler and The University of Michigan

ASPIRE 3.0 is availableonly to individuals who have made arrangements with Jeff Fesslerfor its use in
academic research.

Do not distribute this software to anyone else.

• This code is provided as is, with absolutely no warranty.

• Neither Jeff Fessler nor The University of Michigan assumeany liability for the use or misuse of this software.
There are no guarantees of its correctness, nor its efficacy for diagnostic imaging.

• The copyright and disclaimer headers must remain in the source code, if provided.

• Feedback, suggestions, and bug reports are very much welcomed. I willdo my best to promptly debug any
documented features with problems, and will consider reasonable requests for adding new features.

The condition for using this code is as follows. If, by using it, you get anything published or presented at a conference,
etc., we want you to cite our publications, including this technical report. Also, please let me know when you cite this
document and the associated papers. I will need this information to help obtain funding for further development of
ASPIRE 3.0. Which paper(s) you should cite depends on which algorithm you run.

For PWLS:

J A Fessler. Penalized weighted least-squares image reconstruction for positron emission tomography.
IEEE Tr. Med. Im., 13(2):290–300, June 1994.

For EM-type algorithms for applications like emission tomography:

J A Fessler and A O Hero. Space-alternating generalized expectation-maximization algorithm. IEEE Tr.
Sig. Proc., 42(10):2664–2677, Oct. 1994.

J. A. Fessler and A. O. Hero, “Penalized maximum-likelihood image reconstruction using space-alternating
generalized EM algorithms,”IEEE Tr. Im. Proc., 4(10), pp. 1417–29, Oct. 1995.

For transmission reconstruction:

J. A. Fessler, E. P. Ficaro, N. H. Clinthorne, and K. Lange, “Grouped-coordinate ascent algorithms for
penalized-likelihood transmission image reconstruction,”IEEE Tr. Med. Im., 16(2):166-75, Apr. 1997.

H. Erdŏgan and J. A. Fessler, “Monotonic algorithms for transmission tomography,” IEEE Tr. Med. Im.,
vol. 18, no. 9, pp. 801–14, Sep. 1999.

H. Erdŏgan and J. A. Fessler, “Ordered subsets algorithms for transmission tomography,”Phys. Med. Biol.,
vol. 44, no. 11, pp. 2835–51, Nov. 1999.

Hopefully you will use some form of the modified penalty:

J A Fessler and W. L. Rogers, Spatial resolution properties of penalizedmaximum-likelihood image recon-
struction methods.IEEE Tr. Im. Proc., 5(9):1346–58, Sep. 1996.

J. W. Stayman and J. A. Fessler, “Regularization for uniform spatial resolution properties in penalized-
likelihood image reconstruction,”IEEE Tr. Med. Im., vol. 19, no. 6, pp. 601–15, June 2000.

This documentation will evolve over time in response to user questions and software updates. Please check the web
site to verify you have the most recent version of the documentation beforesending questions.

This document emphasizes 2D image reconstruction. See [1] for the 3D users manual.

3

1 Introduction

A wide variety of inverse problems can be expressed roughly in the following form: find an approximate solution to the
equationy = Gx whereG is a sparse matrix,y is related to the measurements, andx is the unknown image. This
user’s guide2 describes how to install and use the ASPIRE 3.0 software to solve this type ofproblem using statistical
methods.

The steps outlined below include:

• Downloading and compiling ASPIRE 3.0.

• Generating a “system matrix”G and storing it in a sparse binary format “weight file.”

• Converting your data to the AVS.fld format.

• Tabulating the relationship between the smoothing parameterβ and image resolution (e.g., FWHM) for your
system [2,3].

• Running regularized iterative algorithms, using the value ofβ from the table that yields the desired resolution.
(The user must choose the desired resolution, keeping in mind the resolution/noise tradeoff.)

By using anunregularizedmethod such as the ordinary ML-EM algorithm, one could avoid the (easily performed)
step of determining howβ relates to resolution. However, unregularized methods give poorer quality images than
regularized methods. You would also then need to decide “how many iterations?”

I have tested ASPIRE 3.0 extensively using the Insight software development package from ParaSoft Corp., so it
should be relatively free of memory leaks, segmentation violations, etc. Therefore, most of the error messages will be
due to problems with the input data or parameters.

2 Notation

This document adopts the conventional typography of using thetypewriter font for things you will actually type
literally, anditalics for arguments that you will need to supply.

3 Installation

3.1 Getting software

Hopefully you have obtained the already compiled programs,wt , op , andi , by following the instructions on my web
page. If so, you can skip the compiling instructions below, obviously.

3.2 Version information

Executing any of the three programs with no arguments (e.g., just typingop at a unix prompt) will print the date and time
the program was compiled, and a helpful list of the top-level arguments of that program. You will find many features in
those list that are not documented here. If the compile date was a long time ago,then bug me to update your version!

2This is not a software developer’s guide. Although you may have access to some form of source code for ASPIRE 3.0, you should consider it
a “black box,” except of course that the internal workings are described in publications. I would gladly document the key elements of the source
code if contracted to do so, or as part of a commercial agreement. Appendix C has some brief information for developers.

4

3.3 Source code

In the event that you actually have the source code, (e.g., if you are my student compiling a modified version), then you
should have the following 9 files.
• def.h contains all the declarations that tend to be system-dependent, with the particularly variable ones defined

as macros that you can redefine if necessary. ASPIRE 3.0 has been compiled on DEC Alphas running OSF, SUNs
running SUNOS and Solaris, PC Linux boxes, and Mac OS X (my favorite).For other configurations you may need
to modifydef.h .

• wt.c with wt.h has the code for generating weight files.
• io.c has the input/output subroutines.
• op.c with op.h has a collection of utility operations.
• i.c with i.h has the collection of iterative reconstruction methods.
• You probably also have aMakefile with a huge number of options (ask me).
• You should also get the scriptj from ∼fessler/l/src/script/j (or ask me) which is a “jiffy” little display

script that invokesxv based on Section 5 below.

3.4 Compiling

You must use a C compiler that supports C99 extensions to ANSI C.To compile, put the files listed above in the same
directory, and type something like the following.

gcc -std=c99 -o wt wt.c -lm
gcc -std=c99 -o op op.c io.c -lm
gcc -std=c99 -o i -Dnomainwt -Dnomainop i.c wt.c op.c io.c -l m

You probably want to add optimization flags. This creates three programs:wt , op , andi .
For thegcc compiler, I use the following flags:

-O3 -ffast-math -fexpensive-optimizations -Wall -Wshado w -Wpointer-arith
-Wcast-qual -Wwrite-strings -Wstrict-prototypes -Wmiss ing-prototypes

-Wmissing-declarations -Werror

4 Weight generation

To generate a system matrix3 G, you must first create a small ASCII file, called thedescription filethat describes the
imaging system geometry. The filename must have suffix.dsc . Several types of system geometries are implemented,
as described in Appendix A. For historical reasons4, we call the file containing the system matrixG a “weight file,” and
its suffix is usually.wtf .

To generate the weight file from a description file namedtomo.dsc , type:

wt gen tomo

which will create a binary file namedtomo.wtf . The top few lines are ASCII, followed by two form-feeds, followed
by the binary data, so you can probably safely typemore tomo.wtf if you are curious.

You can see the header of this file with the command
3G is mnemonic forgeometry, because the tomograph geometry principally determinesG. In contrast, the matrixA (see below) includes both

geometrical effects as well as attenuation, detector efficiency, etc.
4Note that the term “weights” is used in at least three different contexts in image reconstruction: for the elements of the matrixG, for the

diagonal elements of the inverse of the measurement covariance matrix, and for thewjk ’s that penalize neighboring pixelsj andk.

5

wt head < tomo.wtf

which will also show a chunky picture of the support map.
For example, suppose the filetoy.dsc contains the following lines (see Appendix A).

system 0
nx 6
ny 4
support all
scale 1
psf 5 3
1 2 3 2 1
5 7 9 7 5
1 2 3 2 1

We generate the weight file by typingwt gen toy at the command line. This may produce a few warning messages
about “0 weights,” which can be disregarded. (It is a bit inefficient, but generally harmless, to store a few 0’s in a sparse
matrix.) The output ofwt printfull toy.wtf is the following.

0: 9 7 5 0 0 0 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1: 7 9 7 5 0 0 2 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2: 5 7 9 7 5 0 1 2 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0
3: 0 5 7 9 7 5 0 1 2 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0
4: 0 0 5 7 9 7 0 0 1 2 3 2 0 0 0 0 0 0 0 0 0 0 0 0
5: 0 0 0 5 7 9 0 0 0 1 2 3 0 0 0 0 0 0 0 0 0 0 0 0
6: 3 2 1 0 0 0 9 7 5 0 0 0 3 2 1 0 0 0 0 0 0 0 0 0
7: 2 3 2 1 0 0 7 9 7 5 0 0 2 3 2 1 0 0 0 0 0 0 0 0
8: 1 2 3 2 1 0 5 7 9 7 5 0 1 2 3 2 1 0 0 0 0 0 0 0
9: 0 1 2 3 2 1 0 5 7 9 7 5 0 1 2 3 2 1 0 0 0 0 0 0

10: 0 0 1 2 3 2 0 0 5 7 9 7 0 0 1 2 3 2 0 0 0 0 0 0
11: 0 0 0 1 2 3 0 0 0 5 7 9 0 0 0 1 2 3 0 0 0 0 0 0
12: 0 0 0 0 0 0 3 2 1 0 0 0 9 7 5 0 0 0 3 2 1 0 0 0
13: 0 0 0 0 0 0 2 3 2 1 0 0 7 9 7 5 0 0 2 3 2 1 0 0
14: 0 0 0 0 0 0 1 2 3 2 1 0 5 7 9 7 5 0 1 2 3 2 1 0
15: 0 0 0 0 0 0 0 1 2 3 2 1 0 5 7 9 7 5 0 1 2 3 2 1
16: 0 0 0 0 0 0 0 0 1 2 3 2 0 0 5 7 9 7 0 0 1 2 3 2
17: 0 0 0 0 0 0 0 0 0 1 2 3 0 0 0 5 7 9 0 0 0 1 2 3
18: 0 0 0 0 0 0 0 0 0 0 0 0 3 2 1 0 0 0 9 7 5 0 0 0
19: 0 0 0 0 0 0 0 0 0 0 0 0 2 3 2 1 0 0 7 9 7 5 0 0
20: 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 2 1 0 5 7 9 7 5 0
21: 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 2 1 0 5 7 9 7 5
22: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 2 0 0 5 7 9 7
23: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 0 0 0 5 7 9

Note that there are6 · 4 = 24 rows and 24 columns, since thisG matrix is24 × 24.
I recommend you try the above now to verify your installation.

The output ofwt printsparse toy.wtf is the following.

0 0 9
0 1 7

6

0 2 5
0 6 3
0 7 2
0 8 1
1 0 7
1 1 9
1 2 7
1 3 5

...
22 20 5
22 21 7
22 22 9
22 23 7
23 15 1
23 16 2
23 17 3
23 21 5
23 22 7
23 23 9

The first column is the column indexj in G, the second column is the row indexi, and the third column isgij . (Columns,
rows, image slices, etc. are all numbered starting from 0, as usual for C programs.) (Note that in fact the zero entries
have been removed, so there is no storage inefficiency. Software can assume the (stored)gij ’s are nonzero.)

4.1 Converting to a custom sparse format

For realistic sizes of tomographic systems, there will be millions of nonzero entries inG, so printing them will usually
be impractical. Nevertheless, if you need to extract an ASPIRE 3.0 system matrix and convert it into your own custom
format, usingwt printsparse is the simplest way.

4.2 Converting custom system matrix to ASPIRE 3.0

If you want to make your own.wtf but you do not have MATLAB , then you can create an ASCII file, sayfile.dat ,
containing the same number of lines as there are nonzero entries inG, where each line is of the form

j i gij

(which is equivalent to the output ofwt printsparse). Then type

wt load file.wtf file.dat nx ny nb na

where the image and sinogram sizes are the last 4 arguments (see Appendix). This will create an ASPIRE 3.0 format
.wtf file.

4.3 Interface with M ATLAB

If you need it, I have a MATLAB mex file that can be used as follows:

[G nx ny nb na] = wtfmex(’asp:load’, ’ file.wtf’)

for reading a.wtf format file into a MATLAB sparse matrix, as well as

7

wtfmex(’asp:save’, ’ file.wtf’, G, nx, ny, nb, na, int32(0), int32(0))

for writing a MATLAB sparse matrixG=G to a .wtf file. Typewtfmex at the MATLAB prompt to see many more
options.

5 Data format

ASPIRE 3.0 automatically determines the file format from the (required) three letter extension. Currently, the primary
input/output data format supported by the released version of ASPIRE 3.0is the .fld format of AVS (Application
Visualization System). This format is particularly simple to describe and use (see Appendix B). For example, it is very
easy to write an M-file for reading.fld files into Matlab.

In the past, ASPIRE 3.0 could also read and write Matlab.mat files if compiled appropriately. However, Mathworks
made their file I/O interface a ridiculous moving target, so this option is no longer available. However, my Matlab
Tomography Toolbox has routinesfld_read.m andfld_write.m that can read and write.fld files from Matlab,
so there is no longer any real need for ASPIRE 3.0 to read Matlab’s format.

If you have X windows and the shareware programxv , you can display 2D.fld files by typing:

op conv tmp.pgm file.fld byte - 1
xv tmp.pgm &

For 3D.fld files, something like

op vol2mat tmp.fld file.fld
op conv tmp.pgm tmp.fld byte - 1

xv tmp.pgm &

will arrange the stack of slices as a grid and then display them. Thepgm format is a simple binary 8-bit 2d format that
is supported byxv . You will probably want aliases or scripts to simplify performing the above frequently.

Alternatively, if you typeop display file, then ASPIRE 3.0 will callxv for you. Typeop disp to see the many
(and evolving) display features .

There is another format partially supported. If you name an output file with the extension.raw , then ASPIRE 3.0
will write out raw binary data with no header. You cannot use the extension.raw for input files though, since ASPIRE
3.0 needs to know the image dimensions etc. However, you can provide an AVS “external” header for such raw files so
that ASPIRE 3.0 can read them: see Appendix B.

Finally, your version may be able to read files in the pre-7.0 CTI “matrix” format ending in.scn .nrm .atn
.img , and may be able to write CTI.img files, albeit with very limited header information entered. Post-7.0 CTI
format files ending in.s etc. are also supported to various degrees, thanks to considerable pain(and help from Christian
Michel).

6 Tabulating β

Penalized-likelihood methods for image reconstruction maximize objective functions of the form

Φ(x) = L(y; x) − βR(x),

whereL(y; x) is the log-likelihood of the measurements given a hypothetical imagex,R(x) is a measure of the rough-
ness of the imagex, andβ controls the tradeoff between resolution and noise. You have to chooseβ, which some
people consider to be a big disadvantage of penalized-likelihood methods. This is a little unfair, sinceall reconstruction
methods have some fiddle-factor that controls the resolution/noise tradeoff, including filtered backprojection. But the

8

problem withβ historically has been that it is effectively unitless, so it is not obvious even where to begin (good values
are probably somewhere between2−20 and220, depending on your units, etc.). If you are going to be experimenting
with many different system geometries for only a short amount of time with each, then choosingβ by trial-and-error
might be expedient enough. But if you are going to consistently use a particular system geometry for several data sets,
then the tabulation method described in this section will be helpful in the long run.

The basic idea is that the local impulse response of penalized likelihood methods is approximately

[G′G + βR]−1G′p

wherep is the (noiseless) projection of a point source at some location [2–4]. What you need to do is compute the
local impulse response given above (using ASPIRE 3.0) for several values ofβ. Each computation gives an “image”
which looks like a small “bump” [3]. You calculate your favorite measure of resolution of these bumps (e.g., FWHM),
thereby producing a table relatingβ to FWHM. In subsequent studies then, you simply decide what resolution appeals
to you, and then look upβ from the table. This only works with my modified penalty [2, 3], by the way,not with the
conventional penalties in the literature.

6.1 Simulations

This tabulation process is particularly easy for simulations since one can simplycompute projections of a point source:

p = Gej .

At least for spatially-invariant systems and for a pixelj not too close to the image edge, we can compute

[G′G + βR]−1G′Gej (1)

to within a very close approximation using FFT’s [3]. ASPIRE 3.0 includes programs that do most of the work for you.
After creating your description file, saytomo.dsc , type

i gtg2 gtgraw.fld - tomo.dsc

This will create anx by ny image in the filegtgraw.fld of G′Gej for a pixel at the “center” of the image. You
can look at this image using the display method described in Section 5. It shouldlook something like the well-known
1/r response. To ensure real results, the FFT approximation to (1) must usea symmetric kernel (PSF). The following
command makes a symmetric version:

op psfsym gtgsym.fld gtgraw.fld

Then type

op psfpls psf.fld - gtgsym.fld -6 1

which will compute a Fourier-based approximation to (1) forβ = 2−6 and forR corresponding to a quadratic penalty
with a 1st-order neighborhood (horizontal and diagonal neighbors only) [3]. You can change the1 to a2 for a 2nd-order
neighborhood, but you probably will not see much difference (in the final reconstructed image), for quadratic penalties.
The op psfpls program above will print out the FWHM for the PSF saved inpsf.fld . The output will look
something like:

N Right Left Up Down Horiz Vert Avg
16 16 16.13 17.50 14.13 15.50 16.82 15.82 16.32 psfpls

which means that the FWHM is 16.82 pixels horizontally and 15.82 pixels vertically. If you prefer some other measure
of resolution than FWHM, just analyzepsf.fld using your favorite method. Now if you repeat this for several values
of log2 β, you can generate a table like Table 1, which corresponds to the following.dsc file:

9

log2 β FWHM of
[G′G + βR]−1G′Gej

-13 1.20
-12 1.21
-11 1.26
-10 1.33
-9 1.44
-7 1.81
-5 2.52
-3 3.40
-1 4.80
0 5.74
1 7.00

Table 1: Relationship betweenβ and resolution for the system matrix described in the text, for a 1st order quadratic
penalty.

system 2
nx 64
ny 64
nb 64
na 60
support ellipse 0 0 30 30
orbit 180
orbit_start 0
pixel_size 1
ray_spacing 1
strip_width 1
scale 1

I recommend you regenerate Table 1 to test your installation. Note that asβ → 0, the FWHM goes to 1 pixel, which is
the lower limit. As a rough guess, I suggest first using the value ofβ that corresponds to a spatial resolution of about 3
pixels FWHM, and then adjust up or down depending on the noise.

6.2 Real systems

For a real tomographic system, the projections of a point source would be something like:

p = Gtrueδ(xp,yp)

whereGtrue is the true (imperfectly known) system, andδ(xp,yp) is a point source at spatial location(xp, yp). If you
think you have specified a system matrixG that is very close toGtrue, then you can probably proceed with the recipe
given above for simulations. Or you could use high-countmeasuredprojections of a “point” source. Or you can use the
trial-and-error method to chooseβ. Or contact me to discuss further. This has been an ongoing research area in my
group [4–7] because simplifying the process of choosingβ is probably essential to achieving wider use of regularized
methods.

10

7 SPECT attenuation (2d)

For SPECT, the effects of attenuation must be built into the system matrix by an element-by-element multiplication.
ASPIRE 3.0 includes routines for performing this multiplication for certain system geometries. You must first create a
2D attenuation map, saymu.fld , whose pixel values have units inverse length. (If you have a transmission scan, then
you can use the reconstruction methods described below to estimate this attenuation map.) Then running

i atten out.wtf in.wtf mu.fld pixel size

performs the element-by-element multiplication and creates a new system matrix that includes the affect of attenuation.
The fourth argument should scalemu.fld to make it unitless. So if your attenuation map has units inverse centimeters,
thenpixel sizeshould be in centimeters. The algorithm for computing the necessary line lengths is fairly crude, but
should be adequate for attenuation maps that are fairly smooth.

The above approach means that it will be somewhat inconvenient to use thisversion of ASPIRE 3.0 for routine
processing of multiple SPECT slices. (PET is no problem since the attenuation affects the matrixA differently.) The
3D users manual [1] describes software for reconstructing multiple SPECT slices with attenuation correction and 3D
depth-dependent detector response compensation.

8 Initial image

Any iterative reconstruction method needs an initial guess. For penalized-likelihood methods, an FBP image with
the appropriate spatial resolution [2, 3, 8] is an ideal choice. (For unregularized methods, a uniform image is used
conventionally.)

8.1 Transmission FBP Reconstruction

For FBP reconstruction from raw transmission scan data (i.e., intensity measurements to which no logarithm has been
applied), the following command does it all

i fbp2t dsc image.out sino.out yi bi bifactor ri ri factor tomo.dsc window

The assumed measurement model here is:

yi = bi e
−li + ri + noise, where li = [Gµ]i =

∑

j

gijµj ,

and thebi values denote the blank-scan (or air-scan) factors.
• The argumentyi is the filename containing thenb × na × nz transmission datayi.
• If the argumentbi is just the default dash- , thenbi is taken to be the (positive) value given bybi factor. Otherwise
bi is taken to be the values in the filebi multiplied bybi factor.

• If the argumentri is just the default dash- , thenri is taken to be the (nonnegative) value given byri factor. Otherwise
ri is taken to be the values in the fileri multiplied by ri factor. Usually one will use the default dash- for ri and0
for ri factor. Exceptions include PET transmission scans with prompts/delays acquired separately, or X-ray CT scans
for which scatter estimates are available.

• If sino.outis not the default dash- , then this file is written with the values

l̂i = − log(1 + fix negatives(smooth((yi − ri)/bi)) − 1)).

• The “fix negatives” operation (enabled by default) checks for any residual non-positive sinogram values after the
smoothing, and tries to interpolate neighboring positive values (if any) to “fillin” a positive value, so that the logarithm
will work. For any remaining non-positive values (i.e., if all 4 neighbors in the sinogram are non-positive), the log-
value is set to zero, which will make streaks. Those streaks indicate the need for more smoothing! This option can be
disabled (to make even more streaks). Typei fbp2t to see all the arguments.

11

• tomo.dscis the name of the geometry description file.
• Thewindowargument specifies the type of smoothing, and takes just the same arguments as the FBP window. Type

op fbp to see all of the options. A reasonable choice ofwindowfor PET transmission scans would be something
like 3d@gauss,7,3,6@gauss,1,8,1 which does z-smoothing using a Gaussian kernel with7mm FWHM on
3mm slice spacing discretized using13 = 2 × 6 + 1 samples, along with a ramp filter apodized by a Gaussian filter
corresponding to an8“mm” transaxial FHWM, assuming that the.dsc file used “mm” units.

8.2 Emission FBP reconstruction

For FBP emission reconstruction, use

i fbp2e dsc image.out sino.out yi ci cifactor ri ri factor tomo.dsc window

This method is based on the measurement model

yi = ci[Gx]i + ri,

whereyi is the raw sinogram measurements,ri is an estimate of randoms and scatter contribution, andci is a calibration
sinogram that includes survival probabilities (inverse of attenuation correction factors), deadtime etc. Typically in PET
the randoms are precorrected, in which case one should use the defaulthyphen- for ri and0 for ri factor. In typical
cases where attenuation etc. has also already been corrected (or ignored), then use a hyphen forci and a1 for ci factor.

If an attenuation map is available, then one can compute theci values by reprojecting that attenuation map and then
exponentiating its negative as follows:

i proj2 line_integrals.fld attenuation_map.fld tomo.dsc
op nonlin exp ci.fld line_integrals.fld -1 1

If in addition the sinogram normalization factors are available, then those canbe incorporated intoci.fld usingop
mul or op div .

If sino.outis not the default hyphen, then it will write

sino = smooth((yi-ri)/ci)

to thesino.outfile. The output image will be the ramp-filtered reconstruction of thesmoothedsinogramsino.
If everything is precorrected, one can use the following simpler command:

i fbp dsc imageout.fld sinoin.fld tomo.dsc window

This will apply FBP to the input sinogram. Typeop fbp for a list of window options. To match to penalized-
likelihoood, try the following window:cls3sinc, log2beta,1,1 wherelog2betais replaced by the numerical value
of log2 β, e.g., -6, that you plan to use for iterative reconstruction.

12

9 Image reconstruction

You have converted your data to.fld format, generated an appropriate weight file, and read some papers on image
reconstruction. Now you are ready to reconstruct images. You must makeseveral decisions, namely, whether to use a
penalized weighted least squares or a penalized-likelihood objective function, what type of penalty to use, and which
optimization algorithm to use. In my WWW site (address at end of bibliography) Ihave a page of opinions and recom-
mendations about cost functions and algorithms.

9.1 Penalized Weighted Least Squares

The simplest regularized method uses the penalized least-squares cost function:

Φ(x) =
1

2
‖y − Gx‖2 + βR(x), ,

where the roughness penaltyR(x) has a form like

R(x) =
1

2

∑

j

∑

k

wjk ψ(xj − xk),

whereψ is a convex function. For a “1st-order neighborhood”wjk is 1 for horizontal and diagonal neighbors and zero
otherwise, and for a “2nd-order neighborhood”wjk is also1/

√
2 for diagonal neighbors. Note each pair of pixels is

counted twice by the double sum, hence the1
2 out front.

In PET and SPECT imaging, the measurements have different variances, so a PWLS cost function is preferable:

Ψ(x) =
1

2
(y − Gx)′ diag{ui} (y − Gx) + βR(x),

where theui are “weights” (inverse of the variance ofYi, see [9]).
If you type i pwls2 you will get the syntax of how to minimize thisΨ. The output should include something like:

Usage: pwls2 out init- yi nder1- nder2-
wtf mask- method
[saver- flag_obj(0) flag_nonneg(1) pix_max scale_init(0) slices-]

(The argument order is fixed.) The arguments followed by a dash “- ” are optional; using the dash will give sensible
defaults. Here is what each argument means.

• out is the name of the output image file.

• init is the name of the initial image file. The default is a uniform image, but I highly recommend FBP (corrected
by Chang for SPECT), for convergence rate reasons detailed in [9,10].

• yi is the input sinogramy, typically corrected for attenuation, scatter, randoms, etc. (The statisticaleffects are
accounted for in the weightsui [9].)

• nder1should always just be the default hyphen.

• nder2is the sinogram-sized set ofui values. Default isui = 1, which is uniform weighting. (Not recommended:
see figures in [9]!) See appendix of [9] for details on computingui.

• wtf is the name of the weight file containing the system matrixG (or in the SPECT case, the modifiedG that
includes attenuation).

13

• maskis a 2D binary file that can override thesupport in the .wtf . I recommend using the default dash unless
you are feeling brave.

• methodspecifies how many iterations of what algorithms using which penalties. See below.

• savershould usually be- . There are additional options that allow saving the intermediate iterations. Seeoutput
when you typei pwls2 .

• flag obj: if 1, will computeΦ every iteration and print. Use0 except for debugging.

• flag nonneg: if 1, enforce nonnegativity constraintx ≥ 0. If 0, unconstrained.

• pix max: maximum allowable pixel value, which can be useful for transmission images if you know the maximum
attenuation coefficient. Use a big number like1e9 otherwise.

• scaleinit: If you have usedi fbp2e then the initial FBP imageshouldbe properly scaled, in which case use
0. If you arenot sure that the initial image is properly scaled, then use1, and ASPIRE 3.0 will scale your initial
image to best fit the date before iterating. This requires an extra projection operation, so it is best to match scaling
of FBP with theG matrix by careful bookkeeping (i.e., preserving counts in the emission case). ASPIRE 3.0 will
print out the scale factor it applied to the initial image. If your initial image is scaled correctly, it should print a
value within a few percent of 1.

• slices: Use, say,7,12 to only reconstruct slices 7 through 12 (numbered from 0). The default(dash) is to do all
slices. This is 2D reconstruction, but it can work slice-by-slide with all or part of a stack of sinograms stored in a
“3D” input file.

The generic syntax of themethodargument looks like

@niter1@algorithm1@penalty1@niter2@algorithm2@penalty2... (2)

This allows you to runniter1 iterations ofalgorithm1for an cost function that includespenalty1, followed byniter2
iterations ofalgorithm2 for a cost function that includespenalty2, etc. Usually you will just have one algorithm. For
example,

@2@cg,diag@-6,quad,2,-@10@ca,0.6,raster1,@-6,quad,1 ,-

means 2 iterations of conjugate gradient with a diagonal preconditioner [11] (other preconditioners may be documented
later), followed by 10 iterations of coordinate ascent using the conventional raster scan ordering, and the under-relaxation
parameter of successive over-relaxation5 [9] is ω = 0.6. In this example, thepenaltyis

-6,quad,1,-

which would be a quadratic penalty (ψ(t) = t2/2), with a 1st-order neighborhood, withβ = 2−6, and with the conven-
tional choice forwjk.

4,quad,2,b2info

would be the quadratic penalty with a 2nd-order neighborhood, withβ = 24, and with thewjk modified as in [2, 3] to
yield nearly uniform resolution. I recommend using that modified penalty (andyou must if you want theβ tabulation
method described in Section 6 to work).

There are more complicatedψ functions implemented and partially implemented. See the output ofi pwls2 for
all of the options. Please discuss with me if interested in anything particular.

Here is a complete example of how you would run 10 coordinate ascent iterations (say, starting from an FBP image
init.fld) to minimizeΦ:

5I used to recommend 0.6, but I may not have been using the best initial image in the experiments used to draw that conclusion. Values between
0.6 and 1.0 all seem to yield pretty fast convergence. Please let me know what your experience is if you experiment with this.

14

i pwls2 out.fld init.fld sino.fld - invvar.fld tomo.wtf - \
@10@ca,0.6,raster1@-6,quad,1,b2info 0 1 1e9 1

(The backslash is a Unix way of splitting long lines.) Obviously you will want to create scripts rather than typing all that
on the command line!

9.2 Penalized Likelihood: Transmission Case

The statistical model for transmission tomography is:

Yi ∼ Poisson
{

bi e
−

P

j gijxj + ri

}

,

wherebi is the blank scan or air scan rate (properly scaled for scan-time differences between blank scan and transmission
scan),ri is the background events (e.g., random coincidences, scatter, or crosstalk),Yi is the transmission measurement,
xj is the linear attenuation coefficient (units inverse length) of thejth pixel, andgij has units of length. I recommend
estimatingx by maximizing a penalized-likelihood objective. The differences between a reconstructed FBP attenuation
map and a penalized-likelihood reconstruction can be very dramatic!

Typing i trpl2 will show the arguments for 2D penalized-likelihood transmission reconstruction.

Usage: trpl2 out {init|-|0} yi bi- bi_scale ri- ri_scale wtf mask- method
[saver- flag_obj(0) flag_nonneg(1) pix_max scale_init(0) slices-]

Many of these arguments are identical to those for PWLS, so below I only describe the new ones.

• yi is the transmission scan sinogramy.

• bi is the blank scan sinogrambi.

• bi scaleis for scaling the blank scan by a constant, usually the ratio of the transmissionscan time over the blank
scan time. You could also include (relative) dead time effects here. Use1 if the bi’s are already scaled by the
relative scan times.

• ri is the sinogram of background eventsri. Default (if hyphen is used) is the scalar valueri scale.

• ri scalescalesri by a constant.

• flag nonnegshould usually be1 to enforce the nonnegativity constraint.

Themethodargument has the same syntax as for PWLS (see (2)). Since penalized-likelihood image reconstruction
has been one of my favorite research topics, there are several differentalgorithms that are supported. Typingi trpl2
shows the whole set. For 2D PET and SPECT transmission scans, my current favorite (in terms of speed of convergence
and monotonicity) is the paraboloidal-surrogates coordinate-ascent (PSCA) methd developed by Erdoğan [12]. This
algorithm has several variations depending how one chooses the parabola curvatures.

Here are the possible choices foralgorithm in themethodstring.
• psca,od,1,raster1 uses the “optimal” curvature of [12] which ensures monotonicity. This algorithm cannot

diverge!
• psca,fd,1,raster1 uses the “fast precomputed” curvature of [12], which doesnot ensure monotonicity, but is

usuallymonotonic anyway. I recommend you start with this approach, and then revert to the optimal curvatures if
problems arise. (And tell me if they do!) This is what I use 99% of the time.

The1 indicates a single subiteration of CA before updating the surrogates, whichseems the most efficient approach.
Theraster1 specifies that CA visits the pixels in conventional lexicographic ordering.

My favorite penalty function for transmission scans is the Huber penalty, because we know what the range of values
is in transmission scans, so we can choose the breakpointδ in the Huber function intelligently. Thepenalty string for
a Huber function penalty withδ = 0.001/mm with a 2nd-order neighborhood looks like the following.

15

log2beta,huber,2,-,0.001,ih,3

Type i trpl2 to see more details.

9.3 Ordered-subsets transmission reconstruction (OSTR)

If you have a large sinogram and image, like in X-ray CT, or a slow computer(or just limited patience, like me), then
even PSCA may seem to slow to you and you will want to try theordered-subsets transmission reconstruction(OSTR)
algorithm of Erdŏgan [13]. Please please do not apply the emission OSEM algorithm to transmission scans! It works
poorly, as shown in [13].To use the OSTR algorithm with 4 subsets, use the followingalgorithmstringosc,4,1.0 .

Unlike the OSEM world, which seems to be dominated by unregularized work, Ihighly recommend including good
regularization with OSTR to get the best results. Here is an example of a complete methodstring for 5 iterations of
OSTR with 4 subsets with the Huber penalty withβ = 2−6.

@5@osc,4,1.0@-6,huber,2,-,0.001,ih,3

9.4 Penalized Likelihood: Emission Case

The statistical model for emission tomography is:

Yi ∼ Poisson

∑

j

aijxj + ri

, (3)

whereri is the background events (e.g., random coincidences, scatter, or crosstalk),Yi is the emission measurement,xj

is the emission density of thejth pixel, andaij = cigij whereci are ray-dependent calibration factors (such as detector
efficiency and PET photon absorption survival probabilities) andgij represents the geometric portion of the system
matrix. I recommend estimatingx by maximizing a penalized-likelihood objective. The fastest monotonic algorithmI
know for performing this maximization is the PML-SAGE-3 algorithm [14], whichI will document here along with the
hideously slow ML-EM algorithm for comparison.

Typing i empl2 will show the arguments for this method:

Usage: empl2 out init- yi ci- ri- ri_scale wtf mask- method
[saver- flag_obj(0) pix_max scale_init(0) slices-]

Again, most of these are identical to those for PWLS andtrpl2 , so below I only describe the new ones.

• yi is the “prompt” emission coincidencesy.

• ci is the factorsci. Default isci = 1.

• ri is the background eventsri. Default (if dash is used) isri scale.

• ri scalescalesri by a constant.

Themethodargument has the usual syntax in (2). There are several choices forthealgorithmargument. Typei empl2
to see all the choices, since only some are described below.

9.4.1 ML-EM

em,1 is the standard ML-EM-1 algorithm (which is unregularized, so just use a “- ” for the penalty, i.e.,

@30@ml,1@-

would be the method argument for the ubiquitous 30 iterations of ML-EM.

16

9.4.2 SAGE

sage,3,raster1 applies the PML-SAGE-3 algorithm [14], with a large collection of penalty functions available.
For now, I recommend the penalty choicequad,1,b2info since it gives more uniform resolution than conventional
regularization methods [3], and works with theβ tabulation described in Section 6. In the near future I hope to document
other choices due to the work of Stayman [4–6]; ask me if interested. I havereservations about applying nonquadratic
penalty functions to emission data, but please go ahead and try for yourself; i empl2 will list the many choices.

This implementation of SAGE assumes thatri > 0. If you do not provide ari file with positive elements, or if your
ri_scale argument is 0, then ASPIRE 3.0 will print a warning and you will probably get a floating point exception
due to division by zero. I cannot think ofany real data that has a zero background: there is always randoms, scatter,
or just room background. If you are using simulated data with no randoms or scatter, then just use a small number like
1e-5 for ri_scale and the effect should be negligible.

9.5 OSEM

Useosemc,8 for OSEM with 8 subsets (with subsets chosen as far apart as possible, as recommended in the literature).
As much as it pains me, you are probably going to try OSEM on your data. Andquite possibly you are going

to “correct” your data for everything before so doing. Here is an example of how to use ASPIRE 3.0 for OSEM on
precorrected data:

i empl2 out.fld - sino.fld - -shift 0.01 tomo.wtf - @10@osema ,8@- - 1 1e9 0 -
This will run 10 full iterations of unregularized OSEM with 8 subsets on thesino.fld sinogram, starting from

a uniform image. The-shift 0.01 implements a very simple version of theshifted Poissonmethod described
in [15–18]. Basically we add 0.01 to theYi’s and also set theri’s to 0.01 in (3). (If you have a better estimate of the
mean random events per sinogram bin, you should use that instead.)

Since the OSEM method uses blocks of rays, it requires arow grouped system matrix. After generating the
col.wtf usingwt gen , call wt row2col row.wtf col.wtf to form a row-grouped system matrixrow.wtf
which should be passed toi empl2 for OSEM.

9.6 OSDP: ordered subsets regularized modified EM algorithm of De Pierro

In 1995, De Pierro published a clever modified EM algorithm [19] for handling the regularized case. It seems not to have
earned the attention by practitioners that it deserves. It inherits the slow convergence of ML-EM, but this can be largely
overcome by applying the ordered-subsets principle.

Usingosdpc,8 invokes the regularized, ordered-subsets version of De Pierro’s modified EM algorithm, aka OSDP
for lack of a better acronym.This is the method-of-choiceif you want both regularizationand the fast “convergence” of
OS algorithms. Like OSEM, OSDP will not converge in general, but we’re working on fixing that [20].

9.7 Preprocessing for PWLS: Emission Case

As explained in [9], the PWLS cost function is for pre-processed data.To pre-process sinogram data from a CTI scanner,
type:

op pre emis corr yicorr.fld nder2.fld yiraw.fld nrm.fld atn .fld 2 10 0

where the inputs are:prompt.fld is the measured coincidences,nrm.fld is the detector normalization factors, and
atn.fld is the attenuation correction factors. The outputs:pivot.fld andnder2.fld are the corresponding
inputs to i pwls2 . Or better yet, use combination ofop mul , op sub , andop div , to apply the corrections
yourself so that you know exactly what is going on.However, thanks to the shifted-Poisson developments [15–18], I
virtually never use the PWLS approach of [9] anymore.

17

9.8 Shifted Poisson statistical model

PET measurements are usually precorrected for accidental coincidences, destroying the Poisson statistics. Yavuz [15–
18], showed that such precorrected measurements can be well approximated by Poisson statisticsif they are appropriately
“shifted” so that the mean matches the variance.

In practice, the ideal shift(2ri) for each sinogram bin is unknown. Remarkably, however, Yavuz showed that even
a uniform constant shift works well in practice [18]. A principled approach would be to look up the total number of
delayed coincidences in the PET sinogram file header, and then divide thisby the number of sinogram bins, and then
multiply by 2 and use that as the shift factor. In practice I am usually lazier than that. I just shift by a small value like 3
or 4 counts. This will usually eliminate 90% of the negative values in a typical PET body scan.

To apply such a shift ini empl2 or i trpl2 , simply replace theri argument with-shift and theri scale
argument with the scalar value to be used for the shift (e.g., 4).

Since precorrection for accidental coincidences is one of the biggest discrepancies between the “theory” of PET
reconstruction (which usually is based on the Poisson model) and the routinepractice of PET, I highly recommend that
you at least skim the papers by Yavuz to see how the shifted Poisson modelbridges this gap.

10 Examples

Here is a complete and tested example of usingop , wt , andi to generate simulated transmission measurements and
reconstruct via FBP and penalized likelihood. The very last line of the script converts the output images to postscript,
and these very postscript figures are shown in Fig. 1. You should be able to cut-and-paste these lines from the PDF
file in Acrobat reader (or ask me to email them to you) so that you can replicate this “test.” By exploring the built-in
documentation in these programs you will discover the wealth of features available. This script is only about 60 lines
long, including blank lines and comments, and goes from synthesizing the phantom and scans through reconstruction
and display.

Happy reconstructing!

Figure 1: Results of a low-count transmission simulation. The left image is FBP,the right image is penalized-likelihood.

#!/bin/csh
demo,tran
demonstrate simulated-PET transmission reconstruction s using ASPIRE

generate system description file and system matrix files
(xrad and yrad set the support ellipse radii)
if !(-e tomo.dsc) then

wt -chat 0 dsc 2 nx 128 ny 64 nb 160 na 192 \
pixel_size 4.2 ray_spacing 3.4 strip_width 3.4 \
scale 0 xrad 62 yrad 30 tiny 0 >! tomo.dsc

endif

18

if !(-e tomo.wtf) wt gen tomo.dsc
if !(-e tomo.wtr) wt col2row tomo.wtr tomo.wtf

make "true" thorax-like attenuation map out of ellipses
if !(-e mumap.fld) then

op ellipse mumap.fld 128 64 \
0 0 50 25 0 0.01 3 \
20 0 10 15 0 -0.008 3 \
-20 0 10 15 0 -0.008 3 \
0 -15 5 5 0 0.003 3

endif

transmission noiseless sinogram
if !(-e proj.fld) i -nthread 2 proj2 proj.fld mumap.fld tomo .wtf

create blank scan with artificial nonuniform detector eff iciencies
if !(-e bi.fld) \

op sim blank trues.fld bi.fld proj.fld 0.3 5e5 0

noisy transmission scan with 5% precorrected accidental c oincidences
if !(-e yi.fld) \

op sim pet yi.fld - trues.fld 1 0 - 5 -1 1

FBP reconstruction, followed by setting negatives to zero
set fbpwin = gauss,1,10,1
if !(-e tfb.fld) then

i fbp2t dsc tfb.fld - yi.fld bi.fld 1 - 0 tomo.dsc $fbpwin -
echo y | op nonlin max tfb.fld tfb.fld 0 0

j --red -a tfb.fld mumap.fld # compare fbp to true
endif

determine support mask from fbp image
if !(-e mask.fld) then

op pre attn mask mask.fld tfb.fld 0.001 1 "f e1-+3,3 d2-+3,3"
make sure within .wtf support
i support t0 tomo.wtf
echo y | op mul mask.fld mask.fld t0

j -s -m2 t0 mask.fld mumap.fld
endif

#set alg = psca,fd,1,raster1
set alg = osc,24,1.0 # OSTR algorithm
set penal = 18,huber,2,-,0.0002,ih,3 # Huber penalty
set method = @8@$alg@$penal

penalized-likelihood transmission reconstruction
if !(-e tpl.fld) then

set flag_obj = 1
i -chat 5 trpl2 tpl.fld tfb.fld yi.fld bi.fld 1 -shift 3 tomo. wtr mask.fld \

$method - $flag_obj 1 1e9 0 -
j --red -a tpl.fld tfb.fld mumap.fld
endif

make eps files from final figures

19

op -chat 0 eps tfb.eps tfb.fld 72 72 144 1 0
op -chat 0 eps tpl.eps tpl.fld 72 72 144 1 0

11 General options

11.1 Verbosity

All three programs produce a fair amount of “chatter.” To eliminate the chatter, use

op -chat 0 arguments

You will want to do this when piping the output into a file, such as withop ascii filename.
Before reporting any bugs, it is helpful for you toincreasethe chatter and email meall of the output

i -chat 999 arguments

Obviously, bigger numbers means more chatter.

11.2 Threads

I am starting to support POSIX threads for the more computationally intense routines such as forward and backprojection.
If you have a multi-core computer, then the invocation

i -nthread 2 arguments

will tell ASPIRE 3.0 to try to run 2 threads, which should nearly halve your execution time in many cases. The option
is harmless when applied to routines that are not thread-enabled, so it cannot hurt if you have a dual-processor machine.
(Of course, if you aresharinga dual-processor machine with others, then you will now be using both processors, which
may affect your popularity.)

If you have a one-processor machine, then invoking 2 threads will incura slight operating system overhead, because
one processor will have to serve both threads.

A Geometry descriptions

ASPIRE 3.0 supports several system geometries, including the following.

• Spatially-invariant image domain blur (for image restoration).

• Parallel tomographic geometry with uniformly spaced strip- or line-integrals and uniformly spaced angles.

• Fan-beam tomographic geometry with equi-detector spacing (for fan-beam collimated SPECT systems and flat-
panel X-ray CT systems).

• Depth-dependent blur (2D) for SPECT.

Complications like the circular geometry in PET are partially implemented, but not documented because they have not
been adequately tested.

20

A.1 Common properties

The user specifies the relevant properties of the system geometry of interest in an ASCII description file that, by conven-
tion, has the suffix.dsc . There are some properties that are common to all.dsc files.
• Each.dsc file must include a line of the form

system systemnumber
wheresystemnumbercould be one of several integers, indicating which type of system geometryis described in the
file. To see a list of all the system geometry types, enterwt gen . (The integers reflect the historical order in which
the system types were implemented.)

• Comment lines are allowed, and must begin with a# sign.
• Each characteristic must be on a separate line.
• There will always be lines of the form

system 0
nx 6
ny 4
support all
scale 1

• nx andny are the number of image columns and rows.

• scale is an optional scaling factor applied to all elements

If the abovesupport all line is used (not recommended!) then weights are generated forall pixels, even though
some of the pixels at the corners of the FOV may have partly truncated projections in the sinogram. Instead, I
recommend something like the following:
support ellipse 0 0 62 57
In this case, weights are generatedonly for pixels lying wholly within an ellipse centered (in this example) at (0,0)
(dead center of the pixel matrix) having horizontal,vertical radii 62,57 pixels (in this example). This saves lots of
memory, but you must make sure the ellipse is big enough! The default (if nosupport line) is a centered ellipse
with radii (nx /2-2), (ny /2-2).
There is also a “support file file” option if you want an irregular support specified in some binary file.

A.2 Spatially-invariant image restoration

In this case, theG matrix represents a discrete 2D convolution with some space-invariant pointspread function. A
typical .dsc file for this case looks like:

system 0
nx 6
ny 4
support all
scale 1
psf 5 3
0 0 1 0 0
2 3 4 3 2
0 0 1 0 0

Here,

• system 0 indicates the image restoration geometry.

• nx andny are the number of image columns and rows. These should be even integers.

• The two digits followingpsf give the size of the support of the PSF. These must be odd integers.

21

• The next15 = 5 · 3 entries are real numbers representing the PSF.

A.3 Parallel strip-integral geometry

The measurements from many tomographic instruments can be approximated by line-integrals or strip-integrals. In this
case, elementgij of G is proportional to the area of intersection between thejth pixel and theith strip (Fig. 2). I very
strongly recommend strip-integrals over line-integrals.

The absolutely most minimal.dsc file you could use looks like the following:

system 2
nx 64
nb 80
na 60
support all

This generates weights for a64 × 64 image projected onto a sinogram withnb=80 radial samples whose spacing (and
width) is the same as the pixel size, andna=60 angular samples distributed over 180◦. The “system 2 ” line indicates
the parallel strip/line integral geometry.

An example of a.dsc file that uses virtually all of the options of system 2 is the following.

931,thorax,emis,2.dsc
system 2
nx 128
ny 128
nb 192
na 256
support ellipse 0 0 62 57
orbit 180
orbit_start 0
bin_min 18
bin_max 174

offset_even 0.5
offset_odd 0.5
center_x -0.5
center_y 0.5
flip_y -1

pixel_size 4.69398
ray_spacing 3.12932
strip_width 3.12932
scale 0

(I use this one for reconstructing PET thorax images from a CTI 931 scanner). Here is an explanation of the arguments.

• The image dimensions arenx by ny . If not specified,ny defaults tonx .

• The sinogram dimensions arenb (radial bins) byna (angles).

• The uniformly-spaced projection angles are computed in degrees as:

orbit_start + orbit · i/na ,

for i = 0, . . . , (na − 1). I use0◦ as straight up along they axis, andorbit_start adds a counter-clockwise
angular offset. Defaults are 0 and 180.

22

• Weights are generatedonly for pixels lying wholly within an ellipse centered (in this example) at (0,0) (deadcenter
of the pixel matrix) having horizontal,vertical radii 62,57 pixels (in this example). This saves lots of memory, but
you must make sure the ellipse is big enough! The default (if nosupport line) is a centered ellipse with radii
(nx /2-2), (ny /2-2).

• Only sinogram bins in the range [bin_min, bin_max) = [18,174) are used (they are 0 outside of this on our
CTI 931 due to our normalization method). You probably should not include this option; the defaults arebin_min
= 0 andbin_max = nb .

• Normally the pixel matrix dead center would be the center of rotation, but I have found that CTI images are off
by half a pixel, so for consistency I usecenter_x -0.5 andcenter_y 0.5 . These have units of pixels,
and you can use other values, but you will have to experiment to determine ifyou need positive or negative shifts.
Defaults are 0.

• In many tomographs (such as SPECT with proper center-of-rotation correction), dead-center of the image will
project dead-center on the sinogram. Due to the interleaving of the projections by CTI, there are half-bin offsets,
hence theoffset_... lines. Again, whether it is left or right is too painful to document. Defaults are 0.

• CTI images also seem to be upside down relative to my coordinate system, so I useflip_y = -1. The default
is 1, which does no flipping. You could also use other values if you wanted to stretch or shrink the vertical
direction, but you probably do not want to do that.

• Thepixel_size is the width of each pixel (in any units, but the units ofray_spacing andstrip_width
must match). Default is 1.

• ray_spacing is the center-to-center spacing of the radial samples. Defaults topixel_size .

• strip_width is the width of the strip, which should usually not be smaller thanray_spacing , or you will
have gaps between your strips. For a 931, it might be more realistic to use set strip_width to about 6mm,
which is approximately the detector width. If you setstrip_width to 0, then you will get line integrals, and
probably lousy images. Defaults toray_spacing .

• Using the argumentscale 0 causes strip-integral areas to be normalized by the strip width, so thegij ’s will
have the sameunitsas line-integrals, and the reconstructed pixel values will have units of inverse length, which is
exactly what is needed for transmission tomography. These days I use thesame choice for emission tomography,
even though there the natural units are something like counts per unit area,because to get absolute quantification
in emission tomography one must apply some type of global scale factor basedon a well counter measurement,
and this usually done after reconstruction. In principle, you could usescale to include scalar effects such as
deadtime, decay, etc., although personally I would include those somewhereelse. The defaultscale value is1
for historical reasons, so I strongly recommend over-riding this defaultby explicitly choosingscale 0 . That
way you can use the same.wtf for both transmission and emission reconstruction.

A.4 Fan-beam geometry

Several groups now have line sources opposing fan-beam collimators for SPECT transmission scans. Because of how
the Anger camera works, this geometry corresponds to the “equally spaced detectors” version of fan-beam data. Here is
an example of a complete.dsc file for this geometry:

system 8
nx 64
ny 64
nb 110

23

na 60
support ellipse 0 0 30 30
orbit 360
orbit_start 0
pixel_size 7.12
ray_spacing 3.56
strip_width 3.56
src_det_dis 650
obj2det_x 219
obj2det_y 219

Most of the arguments have the same meaning as above. The idea of a “strip”here is an approximation, since if you
think of the source as a point, and the detector as having a certain width, thenthe beam is more of a very thin triangle
than a rectangular strip. However, the obliqueness of the beam over the size of a pixel is usually negligible, so we simply
approximate the triangle locally by a rectangle. Anyway, the final units will be inverse length, since this geometry is
only for transmission imaging.

• obj2det_x, obj2det_y denotes the distance from the center of rotation to the detector plane inx andy
directions (for elliptical orbit).

• src_det_dis denotes the distance from source to the detector (e.g., 650 mm focal length, give or take the
thickness of the collimator).

Note that these last two are changed from an earlier version!
I have concerns about the accuracy of this approximation. I recommend usingsystem 13 instead which

has the same options (plus more, seewt dsc 13). Thesystem 13 version does anexact analytical calculation
of the area of intersection between the wedge and the pixel.

If you have an “arc” detector geometry, like 3rd generation CT systems, then usesystem 14 which has similar
arguments. (Bug me for more documentation).

A.5 Depth-Dependent Gaussian Blur for 2D SPECT

This system matrix assumes the PSF for SPECT has a Gaussian shape with the following model for FWHM:

FWHM =
√

(zFWHMs + FWHM0)2 + FWHM2
d,

wherez is the distance from a pixel’s center to the detector,FWHMd is the intrinsic spatial resolution of the detector
(often about 3mm),FWHM0 is a constant that partially determines the FWHM for a point source adjacentto the
collimator, andFWHMs is the “slope” of the FWHM versus depth.

An example of a.dsc file that uses all of the options of system 12 is the following.

system 12
nx 64
ny 64
nb 68
na 60
support ellipse 0 0 30 30
orbit 180
orbit_start 0
bin_min 0
bin_max 64

24

pixel_size 7.2
ray_spacing 7.2
scale 7.2

obj2det_x 219
obj2det_y 219

fwhm_detector 3.2
fwhm_collimator0 1.76
fwhm_slope 0.0568
fwhm_factor 1

Many of the arguments are the same as for system 2. I only explain those thatdiffer.

• scale must be nonzero (no “transmission” scaling). Default is 1.

• obj2det_x , obj2det_y denote the distance from the center of rotation to the detector plane inx andy direc-
tions (for elliptical orbit).

• fwhm_detector specifies the FWHM of the intrinsic detector response, in the same units aspixel_size
andray_spacing .

• fwhm_collimator0 specifiesFWHM0 in the above equation, also in the same units aspixel_size .

• fwhm_slope specifies theFWHMs term in the above equation, which must be unitless.

• fwhm_factor specifies how far out to sample the Gaussian on each side of the peak. If you use the default,
which isfwhm_factor 1 , then it will be sampled 1 FHWM on each side, which covers 0.98% of the area. The
software automatically corrects scales up thegij ’s for each pixel for each angle so that no counts are lost.

If you are serious about SPECT reconstruction with compensationfor depth-dependent blur, then you prob-
ably really want the full restoration provided in the 3D reconstruction method i empl3 . See [1].

B AVS data format

The AVS .fld data format comes in two flavors. In the “internal” format, the ASCII headeris at the top of the file,
the header is followed by two “form-feed” characters, which are then followed by the data in binary format. Form feed
characters often appear as(ˆL) in Unix, and are created using the’\f’ character in C.

In the “external” format, the header and the data are in separate files, andthe ASCII header file includes a pointer to
the data file. The data file can contain either ASCII or binary data.

Suppose you have a128 × 64 (first dimension (radial samples) varies fastest) sinogram consisting of short integers.
Then the format of the “internal” header would be:

AVS field file
ndim=2
dim1=128
dim2=64
nspace=2
veclen=1
data=short
field=uniform

25

followed by the two form feeds and then the128 × 64 short integers in binary format. If you have a 3D stack of, say, 20
sinograms (or images), then you would use

AVS field file
ndim=3
dim1=128
dim2=64
dim3=20
nspace=3
veclen=1
data=short
field=uniform

ASPIRE 3.0 supports up to 4 dimensions.
All output data from ASPIRE 3.0 is stored in the “internal” format.AVS filenames must end with the extension.fld .
Now suppose you have stored the above sinogram data in a binary file named, say,sino.dat with some home-

brew header in it that consists of, say, 1999 bytes. And suppose you do not want to convert from home-brew format to
“internal” format. Then you can use the “external” format by creating an ASCII file named, say,sino.fld containing:

AVS field file
ndim=2
dim1=128
dim2=64
nspace=2
veclen=1
data=short
field=uniform
variable 1 file=sino.dat filetype=binary skip=1999

You can add additional comments to these headers using lines that begin with\# . Theskip=1999 indicates that there
is a 1999 byte header to be skipped before reading the binary data.This format does not allow for additional headers
buried within the data, so you cannot usually read Siemens/CTI format datawithout doing some file conversion, since
their format includes embedded directories.(Complain to CTI.) If there is no binary header, then you can omit the
skip=0 altogether. If your data is in ASCII format (I hope not), then you can changefiletype=binary to (you
guessed it)filetype=ascii . However, for ASCII data, theskip= option refers to ASCII entries, not bytes.

The allowed types in thedata=... line include: byte , short , int , float , double . Thebyte format is
unsigned 8 bits. The output from ASPIRE 3.0 is virtually always of thefloat variety. Your input data can be any of
the above; ASPIRE 3.0 will convert to whatever type it needs internally.

More information about the AVS program is available fromhttp://www.avs.com/ . Personally, I do not use
AVS much anymore because it does not support “batch” processing very well, but it was useful in the early stages of
my software development, when interactive use was more important. The complete AVS .fld format includes other
features which almost certainly are not supported by ASPIRE 3.0.

Actually, I have added other features to ASPIRE 3.0 that are nonstandard AVS but very handy, like a single 3D
header file that points to multiple 2D files that get treated as a single entity. Ask me ifinterested!

C Information for developers

To access the internal subroutines of ASPIRE 3.0, compile using

cc -c -Dnomainwt wt.c

which will createwt.o , which you then combine with your ownmain routine:

26

cc -o myprog mymain.c wt.o -lm

Here is a fragment of code that illustrates how to use ASPIRE 3.0 to read in a weight file and calculateG′Gx for an
image.

void example_function(float * proj, float * image, char * file_wtf)
{

void * sp;

/ *
* Read weight file

* /
if (!(sp = sp_read_file(file_wtf, NULL, 0)))

Fail("error reading file")

/ *
* forward projection

* /
sp_project(proj, image, sp, 0);

/ *
* back projection

* /
sp_back_project(image, proj, sp);

/ *
* Free

* /
sp_free(sp);

}

The above fragment is enough information to implement most of the popular reconstruction algorithms (ML-EM,
WLS-CG, etc.). To implement the coordinate-ascent algorithms efficiently youneed several more routines which are
present in ASPIRE 3.0 but are not documented here. You could figure some of them out by examining the subroutines
sp_project andsp_back_project in wt.c .

D Acknowledgement

The author gratefully acknowledges support of grants from DOE, NIH, and the Whitaker foundation. He also is very
grateful to Christian Michel for help decoding the CTI file formats. Portionsof the I/O code used for CTI scan files are
based on software from Michel’s ftp site. The author also thanks numerous colleagues and students for their feedback
and bug reports etc.

27

References

[1] J. A. Fessler. Users guide for ASPIRE 3D image reconstruction software. Technical Report 310, Comm. and
Sign. Proc. Lab., Dept. of EECS, Univ. of Michigan, Ann Arbor, MI, 48109-2122, July 1997. Available from
http://www.eecs.umich.edu/ ∼fessler .

[2] J. A. Fessler and W. L. Rogers. Uniform quadratic penalties causenonuniform image resolution (and sometimes
vice versa). InProc. IEEE Nuc. Sci. Symp. Med. Im. Conf., volume 4, pages 1915–9, 1994.

[3] J. A. Fessler and W. L. Rogers. Spatial resolution properties of penalized-likelihood image reconstruction methods:
Space-invariant tomographs.IEEE Trans. Im. Proc., 5(9):1346–58, September 1996.

[4] J. W. Stayman and J. A. Fessler. Regularization for uniform spatial resolution properties in penalized-likelihood
image reconstruction.IEEE Trans. Med. Imag., 19(6):601–15, June 2000.

[5] J. W. Stayman and J. A. Fessler. Penalty design for uniform spatial resolution in 3d penalized-likelihood image
reconstruction. InProc. Intl. Mtg. on Fully 3D Image Recon. in Rad. and Nuc. Med, pages 361–4, 1999.

[6] J. W. Stayman and J. A. Fessler. Nonnegative definite quadratic penalty design for penalized-likelihood reconstruc-
tion. In Proc. IEEE Nuc. Sci. Symp. Med. Im. Conf., volume 2, pages 1060–3, 2001.

[7] H. R. Shi and J. A. Fessler. Quadratic regularization design for 2DCT. IEEE Trans. Med. Imag., 2009. To appear
as TMI-2008-0455.

[8] J. A. Fessler. Resolution properties of regularized image reconstruction methods. Technical Report 297, Comm.
and Sign. Proc. Lab., Dept. of EECS, Univ. of Michigan, Ann Arbor, MI, 48109-2122, August 1995.

[9] J. A. Fessler. Penalized weighted least-squares image reconstruction for positron emission tomography.IEEE
Trans. Med. Imag., 13(2):290–300, June 1994.

[10] K. Sauer and C. Bouman. A local update strategy for iterative reconstruction from projections.IEEE Trans. Sig.
Proc., 41(2):534–48, February 1993.

[11] S. D. Booth and J. A. Fessler. Combined diagonal/Fourier preconditioning methods for image reconstruction in
emission tomography. InProc. IEEE Intl. Conf. on Image Processing, volume 2, pages 441–4, 1995.

[12] H. Erdŏgan and J. A. Fessler. Monotonic algorithms for transmission tomography.IEEE Trans. Med. Imag.,
18(9):801–14, September 1999.

[13] H. Erdŏgan and J. A. Fessler. Ordered subsets algorithms for transmission tomography. Phys. Med. Biol.,
44(11):2835–51, November 1999.

[14] J. A. Fessler and A. O. Hero. Penalized maximum-likelihood image reconstruction using space-alternating gener-
alized EM algorithms.IEEE Trans. Im. Proc., 4(10):1417–29, October 1995.

[15] M. Yavuz and J. A. Fessler. Objective functions for tomographic reconstruction from randoms-precorrected PET
scans. InProc. IEEE Nuc. Sci. Symp. Med. Im. Conf., volume 2, pages 1067–71, 1996.

[16] M. Yavuz and J. A. Fessler. New statistical models for randoms-precorrected PET scans. In J Duncan and G Gindi,
editors,Information Processing in Medical Im., volume 1230 ofLecture Notes in Computer Science, pages 190–
203. Springer-Verlag, Berlin, 1997.

[17] M. Yavuz and J. A. Fessler. Statistical image reconstruction methods for randoms-precorrected PET scans.Med.
Im. Anal., 2(4):369–78, December 1998.

28

[18] M. Yavuz and J. A. Fessler. Penalized-likelihood estimators and noise analysis for randoms-precorrected PET
transmission scans.IEEE Trans. Med. Imag., 18(8):665–74, August 1999.

[19] A. R. De Pierro. A modified expectation maximization algorithm for penalized likelihood estimation in emission
tomography.IEEE Trans. Med. Imag., 14(1):132–7, March 1995.

[20] S. Ahn and J. A. Fessler. Globally convergent ordered subsetsalgorithms: Application to tomography. InProc.
IEEE Nuc. Sci. Symp. Med. Im. Conf., volume 2, pages 1064–8, 2001.

Most of my papers are available on WWW:http://www.eecs.umich.edu/ ∼fessler

g
ij

strip_width

pixel_size

Figure 2: Strip integral.

29

