Spectroscopic Ellipsometry and Reflectometry from Gratings (Scatterometry) for Critical Dimension Measurement and in situ, Real-Time Process Monitoring

Fred L. Terry, Jr.

Dept of EECS / University of Michigan
$+1-734-763-9764$
$+1-734-763-9324$ (fax)
fredty@umich.edu
http://www.eecs.umich.edul~fredty

Outline

- Goals, Background, Theory
- Ex Situ Measurements for Topography Extraction
- In Situ Movies of Topography Evolution in Reactive Ion Etcher
- Limitations
- Conclusions, Challenges, Future Work

Goals \& Background

- Nondestructive, High Speed Extraction of Information from Patterned Structures
- Critical Dimensions
- Wall Shapes
- Film Thicknesses
- Ideally Also Usable in situ for Real-Time Monitoring and Control of Fabrication Processes
- Exciting Work Present by H. Maynard at ICSE-2
- Limited Applicability Due to Diffraction Effects
\Rightarrow Use Structures for which the Diffraction Problem Can Be Accurately Solved

Background I

- Basic Concept: Scattering (Diffraction) of Light from Features Produces Strong Structure in Reflected Optical Field
- Analyze Unique Data to Obtain Topography Information
- Periodic Structures (Gratings) Can Be Numerically Modeled "Exactly"
- Feature Resolutions Much Better than Rayleigh Limit Are Possible Since This Is Not A General Image Formation Problem
- Periodicity of Structure Is Known
- Dielectric Functions of Materials Are Known

Background II

Single Wavelength Scatterometry

- Examine Structure in Specular and/or Diffracted Modes vs. Angle of Incidence at a Single Wavelength
- Naqvi, McNeil, and Co-workers (UNM)
- Elta, Terry, and Co-workers (U. Michigan)
- Texas Instruments, Sandia Systems \Rightarrow Biorad \Rightarrow Accent

Spectroscopic Ellipsometry and Reflectometry

- Examine Structure vs. Wavelength at Fixed AOI
- Terry and Co-workers (U. Michigan)
- Spanos and Co-workers (UCB) \Rightarrow Timbre Technologies
- IBM \Rightarrow Nanometrics
- KLA-Tencor, ThermaWave/Sensys, Nova

Spectroscopic Ellipsometry

Light Source

Sample with Grating

$$
\begin{aligned}
& \rho=\frac{R_{p}}{R_{s}}=\frac{E_{r p} / E_{i p}}{E_{r s} / E_{i s}}=\tan (\Psi) \cdot \exp (i \Delta) \\
& \alpha=\cos (2 \Psi), \quad \beta=\sin (2 \Psi) \cdot \cos (\Delta)
\end{aligned}
$$

- Tan(Ψ) And Cos(Δ) Are Measured by Ellipsometry -Functions of wavelength and incident angle

Rigorous Coupled-Wave Analysis Method of Moharam and Gaylord

- The Line is Sliced into a Number of Thin Layers
- Numerical Eigen-Matrix Solution for Maxwell's Equations
- Amplitudes \& Phases of Different Diffraction Orders Are Obtained by Matching the EM Boundary Conditions

RCWA Computation Issues

- Let N be the number of spatial harmonics retained for approximating the solution,
- s be the number of slices used for approximating grating profile,
- Then at each wavelength we need
- 4Ns linear equations for p-polarization
- 2($N+1$)s linear equations for s-polarization
- Number of Required Slices (s) Depends on Shape of Line (typical 10-30)
- Number of Require Spatial Harmonics Depends on $\Lambda \lambda, \varepsilon$ of materials (typical 15-100)
- Large Scale Computation but Vectorizes Naturally for Parallel Processing (each λ independent)
- Continuing Advances by Computational E\&M Theory Community

Grating \Leftrightarrow Anisotropic Thin Film Analogy

1-D Grating

Anisotropic Thin Film

- Line Height \Leftrightarrow Film Thickness
- Line Shape \Leftrightarrow Optical Dielectric Function

Specular Spectroscopic Scatterometry

- Probes Wavelength Dependence of Scattering from a Given Line Size/Shape
- Grating Amplifies \& Averages Single Line Effects
- Grating Periodicity Aids Accurate Diffraction Solution
- Result Sub-Wavelength Topography Sensitivity
- Extremely High Sensitivity to Line Height (D) \Rightarrow Analogous to Thin Film Thickness
- Very Good Sensitivity to Linewidth (W) \& Line-shape Under Proper Circumstances \Rightarrow Analogous to Parameterized Extraction of Optical Dielectric Function of Thin Film
- Accuracy of Topography Extraction Analogous to Accuracy of $\varepsilon(\lambda)$ Extraction From Thin Films Using SE
- Will Fail If Grating Is Too Shallow (Effective Optical Thickness Fails to Produce Thin Film Interference Effect)

Topography Extraction Example $\mathbf{W}>\lambda_{\text {min }}$

- Experimental Data Taken at 7° AOI with Sopra GESP-5 Ellipsometer
- 350 nm Linel 700 nm Period Grating Etched in Single Crystal Si
- 350 nm Linel 700 nm Period Photoresist on 31.7 nm SiO_{2} on Si
- Successively Improved Topography Estimations Using Levenberg-Marquardt Non-Linear Regression
- Trapezoid (3 parameters)
- Trapezoid on Rectangular Base (4 parameters)
- Triangular Top on Trapezoid on Rectangle (5 parameters)
- 3 Quadratic Segments with Zero Top Width (Triangle-TrapezoidTrapezoid with Curvature, 9 parameters)

Etch Experiment Description

- Lam TCP9400SE Plasma Etching System
- $\mathrm{Cl}_{2} / \mathrm{HBr}$ Si Main Etch Recipe
- Nominal Etching Rates:
- Oxide $\quad 5.43 \AA \AA / \mathrm{sec}$
- Poly 52.1Å/sec
- Times: 60, 77, 97, 116, 135, 154, 174 sec

Near Normal SE for RIE Etched Si Grating

	 RCWA	SEM
CD (nm)	323 ± 1.6	323 ± 5
Depth $(\mu \mathrm{m})$	331 ± 0.4	340 ± 5
Wall Angle	83.2° $\pm 0.29^{\circ}$	84.1° $\pm 1.4^{\circ}$

Time Evolved SE Data and Fitting

Incidence at 7°

- : Experiment
: Theory

Etching Time

Fred L. Terry, Jr., ICSE-3, Vienna, Austria, July 7, 2003

Submicron Grating

- $\sim 0.35 \mu \mathrm{~m}$ Line/Space Grating In Photoresist/300A $\mathrm{SiO}_{2} / \mathrm{Si}$
- Accurate Photoresist N(λ) Obtained by SE Measurement of Similarly Prepared Unpatterned Film
- Period Measured as $0.700 \mu \mathrm{~m}$ Using 1st Order Diffraction Angle at Multiple λ 's

Trapezoidal Fit 400-825 nm

Alpha=cos(2Psi) iteration=10

Fred L. Terry, Jr., ICSE-3, Vienna, Austria, July 7, 2003

Trapezoidal Fit

Alpha=cos(2Psi) iteration=10

Fred L. Terry, Jr., ICSE-3, Vienna, Austria, July 7, 2003

Trapezoid on Rectangle Fit

Fred L. Terry, Jr., ICSE-3, Vienna, Austria, July 7, 2003

Triangle-Trapezoid-Rectangle Fit

Alpha $=\cos (2$ Psi) iteration=10

Fred L. Terry, Jr., ICSE-3, Vienna, Austria, July 7, 2003

3-Segment Quadratic Fit

Regression Fit of Photoresist Grating Measured at $\mathrm{AOI}=7$ Degrees

Fred L. Terry, Jr., ICSE-3, Vienna, Austria, July 7, 2003

Extracted Topography Comparison

Fred L. Terry, Jr., ICSE-3, Vienna, Austria, July 7, 2003

3-Level
Quadratic Fit Parameters, Confidence Limits, \& CrossCorrelation Coefficients

Term	Value	95.4% conf. Limit	Units
h1	146.51	4.55	nm
m11	0.7389	0.0097	slope
m12	-0.4698	0.011	quadratic curvature
h2	545.72	36.05	nm
m21	0.3461	0.0272	slope
m22	-0.1921	0.0282	quadratic curvature
h3	112.35	34.79	nm
m31	0.0803	0.0529	slope
m32	-0.1933	0.0659	quadratic curvature

	h1		m11 m12 h2			m21 m22 h3			m31 m32	
	h1	1	0.356	-0.217	-0.369	-0.176	0.121	0.267	0.101	0.04
	m11	0.356	1	-0.88	-0.34	-0.31	0.354	0.301	-0.098	0.219
	m12	-0.217	-0.88	1	0.373	-0.02	-0.08	-0.363	-0.14	-0.009
Pushed to	h2	-0.369	-0.34	0.373	1	0.512	-0.527	-0.993	-0.36	-0.108
	m21	-0.176	-0.31	-0.02	0.512		-0.981	-0.493	0.286	-0.474
the Limits	m22	0.121	0.354	-0.08	-0.527	-0.981	1	0.517	-0.31	0.501
of Data	h3	0.267	0.301	-0.363	-0.993-0.	-0.493	0.517		0.394	0.082
,	m31	0.101	-0.098	-0.146	-0.369	0.286	-0.31	0.394		-0.866
	m32	0.04	0.219	-0.009	-0.108-	-0.474	0.501	0.082	-0.866	1

In Situ Measurements: Real-Time Monitoring and Control

Movies

LAM TCP 9400 SE with SOPRA RTSE

Thanks to Dr. Helen Maynard, Lucent Bell Labs for Assistance with Port Layout

Fred L. Terry, Jr., ICSE-3, Vienna, Austria, July 7, 2003

Real-Time Ellipsometry Pararmeters

- 63.5° AOI Dictated by Geometry of Etch System
- RTSE System Run at Maximum Data Collection Rates Due to Fast Time Scale of Industrial Etch Processes (~ 100 s total times, Etch Rates ~3-5 nm / s)
- Single-Turn of Polarizer Data Sampling Time (0.1 s)
- Capture Data with Only few 0.1's nm Thickness Change During Samplin
- Minimum Data Acquistion Time ~ 1 sample/0.18s
- Usable Data for $\lambda=300-780 \mathrm{~nm}$
- Fixed Analyzer Angle 45°

Example Process Critical Dimension Control: Etch to Target

Reactive Ion Etch to Shrink CD to a Desired Dimension Goal: Achieving Same Final CD regardless of Incoming CD \& RIE Process Variation

Fred L. Terry, Jr., ICSE-3, Vienna, Austria, July 7, 2003

Experiment Description

- Lam 9400 TCP Etcher
- O_{2} Plasma Gas
- Target: Trim Bottom CD to 200nm
- Non-Linear Filter Method to Detect Endpoint and Shut-Off Plasma
- This Experiment Stopped at 200nm
- Work of Drs. Hsu-Ting Huang, JiWoong Lee, Pramod

~350nm Line/Space
 Grating

[^0] Khargonekar, and Fred Terry

FiTSE Fit Time Step=40

FiTSE Fit Time Step-60

RTSE Fit Time Step=80

FTSE Fit Time Step $=100$

FTSE Fit Time Step=119

In Situ Optical CD/Automated Etch to Target CD

- O_{2} Plasma Photoresist Trim in Lam 9400 TCP
- In Situ Real-Time Spectroscopic Ellipsometry Monitoring of Photoresist Grating Structure
- Off-Line RCWA Analysis of Grating Diffraction Problem
- Nonlinear Filtering Algorithm for Real-Time Data Analysis
- Completely Hands-off Automated Etch to Target CD
- Before Etching (top):
- Bottom CD: 296 nm
- Feature Height: 777 nm
- After Trim-back (bottom):
- Bottom CD: 200 nm (target)
- Feature Height: 697 nm

Start:
CD 296.7 $\pm 9.1 \mathrm{~nm}$
Height $790.0 \pm 63.4 \mathrm{~nm}$

Trimmed:
CD 189.1 $\pm 29.3 \mathrm{~nm}$
Height $710.9 \pm 67.6 \mathrm{~nm}$

Experimental Description

- Lam TCP9400SE Plasma Etching System
- Plasma Gas: HBr 100 sccm \& Cl 15 sccm
- Nominal Etching Rate: PR 5A/sec, Oxide 3.6Å/sec, and Poly 30Å/sec

FTSE Fit Time Step=1

FTSE Fit Time Step=1

FTSE Fit Time Step=1

FTSE Fit Time Step=40

FiTSE Fit Time Step=82

Comparison of PR-Masked Si Etch to SEM Cross-Section

- Si Trench Depth $173.32 \pm 0.26 \mathrm{~nm}$
- Si CD $354.62 \pm 11.37 \mathrm{~nm}$

Limitations \& Challenges

RTSE Etch Monitoring: Over-Fitting

- Attempt to Fit for Under-Cut of Resist
- Over-Parameterization Due to Limited Absolute Accuracy of Measurement
- In This Case, Accuracy is Limited by Stray Light, Lower UV Photon Counts
- Usable Minimum Wavelength ~300nm
- Some Distortion of Peak/Valley Shapes

FTSE Fit Time Step=1

MSE $=0.033189$

RTSE Fit Time Step=101

Cruelty of Diffraction Physics:

 $W / \lambda_{\min }+\varepsilon_{\text {line }}$ Control Strength of Scattering$\mathrm{W} \gtrsim \lambda_{\min } / 2$ to $\lambda_{\min }$ High Sensitivity to Detailed Shape in Structure of Data vs. λ

$\mathrm{W} \approx \lambda_{\text {min }} / 10$ to $\lambda_{\text {min }} / 2$ Sensitivity to Average CD, Diminishing Shape Information
Most Shape Info in Magnitude not Fine Structure of Data

$\mathrm{W} \ll \lambda_{\text {min }}$ Results Converge to EMA, No Real CD Info, Only Average Composition

Simulations of ITRS Photoresist Milestones

- Simulated Data using Model DUV Photoresist at 2010, 2013, and 2016 Technology Nodes
- Rectangular Profiles Assumed with:
- $\Lambda=90 \mathrm{~nm} W=25 \pm 1.5 \mathrm{~nm}$ Thick $=100 \mathrm{~nm}$
$-\Lambda=64 \mathrm{~nm} W=18 \pm 1.1 \mathrm{~nm}$ Thick=80nm
$-\Lambda=44 \mathrm{~nm} W=13 \pm 0.7 \mathrm{~nm}$ Thick=50nm
- Assumed $190-800 \mathrm{~nm}$ Spectroscopic Ellipsometry Measurements
- Good News: Diminishing but Usable CD Sensitivity to 2016
- Bad News: Loss of Detailed Shape Sensitivity even at 2010

Simulated $\sim 40 \mathrm{~nm}$ PR Line $\Lambda=90 \mathrm{~nm}$

Can Detailed Shape Information Be Extracted?

Fred L. Terry, Jr., ICSE-3, Vienna, Austria, July 7, 2003

Fit Using Rectangular Only Model

Beta

- Rectangle Fit Averages More Complex Structure
- Examine Structure Differences in Data Through Derivatives vs. λ

Fred L. Terry, Jr., ICSE-3, Vienna, Austria, July 7, 2003

$d^{3} \beta / d \lambda^{3}$ For Complex Line \& Rectangular Fit

No Structural Difference in Data Vs. Fit, All Information Concerning the More Complex Shape is in the Small Absolute Differences

Fred L. Terry, Jr., ICSE-3, Vienna, Austria, July 7, 2003

Structure of Data and Fit

- Fitting with a Rectangle-Only Geometry Yields NO Structure Differences, Only Magnitude Differences
- Examining Derivatives of Data and Fit Illustrates Complete Lack of Structural Differences
- VERY High Instrument Accuracy Needed For Detailed Topography Extraction Without Resorting to VUV Measurements
- High Accuracy RCWA Calculations Required for Simulation/Regression
- VUV \& EUV Scatterometry Needed for the Future

Conclusions \& Challenges

- Spectroscopic Ellipsometry + Accurate Diffraction Modeling Allows Topography Extraction with Resolution $\ll \lambda$
- in situ Applications Allow Fabrication Processes to be Studied and Controlled in New Ways
- Wide-Spread Deployment in IC Industry
- 2-D Arrays Under Development by Several Companies
- Exploratory Line-Edge Roughness Extraction Work Underway

Conclusions \& Challenges

- Diffraction Modeling for Non-Periodic Structures
- Process Control on Real Product IC's
- Applications in Biology and other "Messy" Fields
- Instrumentation and Measurement Schemes for Isolated or Sparse Structures
- Detailed Understanding of Accuracy Limitations, Parameter Correlation Effects, etc.

Acknowledgements

- Collabators:
- Drs. Hsu-Ting Huang, Pete Klimecky, Wei Kong, Ji_Woong Lee, Meng-En Lee, Brooke Stutzman
- Prof. Pramod Khargonekar
- Dr. Dennis Grimard, Mr. Dennis Swieger, and Mr. Jeff Fournier
- Initial Work Funded by SRC Center of Excellence for Automated Semiconductor Manufacturing
- Project Ended August, 1999
- Research funded in part by: AFOSR/DARPA MURI Center for Intelligent Electronics Manufacturing (AFOSR F49620-95-1-0524)
- Projected Ended August, 2001
- Research funded in part by: NIST Intelligent Control of the Semiconductor Patterning Process (70NANB8H4067)
- Project Ended June, 2002

[^0]: Acc.V Spot Magn Det WD Exp 3.00 kV 3.0 18622x SE 9.43

 PR Grating Sample

