Spectroscopic Ellipsometry and Reflectometry from Gratings (Scatterometry) for Critical Dimension Measurement and *in situ*, Real-Time Process Monitoring

Fred L. Terry, Jr.

Dept of EECS / University of Michigan +1-734-763-9764 +1- 734-763-9324 (fax) fredty@umich.edu http://www.eecs.umich.edu/~fredty

Outline

- Goals, Background, Theory
- Ex Situ Measurements for Topography Extraction
- In Situ Movies of Topography Evolution in Reactive Ion Etcher
- Limitations
- Conclusions, Challenges, Future Work

Goals & Background

- Nondestructive, High Speed Extraction of Information from Patterned Structures
 - Critical Dimensions
 - Wall Shapes
 - Film Thicknesses
- Ideally Also Usable *in situ* for Real-Time Monitoring and Control of Fabrication Processes
- Exciting Work Present by H. Maynard at ICSE-2
 - Limited Applicability Due to Diffraction Effects
 - ⇒ Use Structures for which the Diffraction Problem Can Be Accurately Solved

Background I

- Basic Concept: Scattering (Diffraction) of Light from Features Produces Strong Structure in Reflected Optical Field
- Analyze Unique Data to Obtain Topography Information
- Periodic Structures (Gratings) Can Be Numerically Modeled "Exactly"
- Feature Resolutions Much Better than Rayleigh Limit Are Possible Since This Is Not A General Image Formation Problem
 - Periodicity of Structure Is Known
 - Dielectric Functions of Materials Are Known

Background II

Single Wavelength Scatterometry

- Examine Structure in Specular and/or Diffracted Modes vs. Angle of Incidence at a Single Wavelength
 - Naqvi, McNeil, and Co-workers (UNM)
 - Elta, Terry, and Co-workers (U. Michigan)
 - Texas Instruments, Sandia Systems⇒Biorad ⇒Accent
- **Spectroscopic Ellipsometry and Reflectometry**
- Examine Structure vs. Wavelength at Fixed AOI
 - Terry and Co-workers (U. Michigan)
 - Spanos and Co-workers (UCB) \Rightarrow Timbre Technologies
 - IBM \Rightarrow Nanometrics
 - KLA-Tencor, ThermaWave/Sensys, Nova

Spectroscopic Ellipsometry

—Functions of wavelength and incident angle

Rigorous Coupled-Wave Analysis Method of Moharam and Gaylord

- The Line is Sliced into a Number of Thin Layers
- Numerical Eigen-Matrix Solution for Maxwell's Equations
- Amplitudes & Phases of Different Diffraction Orders Are Obtained by Matching the EM Boundary Conditions

RCWA Computation Issues

- Let *N* be the number of spatial harmonics retained for approximating the solution,
- s be the number of slices used for approximating grating profile,
- Then at each wavelength we need
 - 4Ns linear equations for *p*-polarization
 - 2(N+1)s linear equations for s-polarization
- Number of Required Slices (s) Depends on Shape of Line (typical 10-30)
- Number of Require Spatial Harmonics Depends on Λ/λ, ε of materials (typical 15-100)
- Large Scale Computation but Vectorizes Naturally for Parallel Processing (each λ independent)
- Continuing Advances by Computational E&M Theory Community

Grating ⇔ Anisotropic Thin Film Analogy

- Line Height ⇔ Film Thickness
- Line Shape ⇔ Optical Dielectric Function

Specular Spectroscopic Scatterometry

- Probes Wavelength Dependence of Scattering from a Given Line Size/Shape
- Grating Amplifies & Averages Single Line Effects
- Grating Periodicity Aids Accurate Diffraction Solution
- Result Sub-Wavelength Topography Sensitivity
- Extremely High Sensitivity to Line Height (D) ⇒ Analogous to Thin Film Thickness
- Very Good Sensitivity to Linewidth (W) & Line-shape Under Proper Circumstances ⇒ Analogous to Parameterized Extraction of Optical Dielectric Function of Thin Film
- Accuracy of Topography Extraction Analogous to Accuracy of $\varepsilon(\lambda)$ Extraction From Thin Films Using SE
 - Will Fail If Grating Is Too Shallow (Effective Optical Thickness Fails to Produce Thin Film Interference Effect)

Topography Extraction Example W>λ_{min}

- Experimental Data Taken at 7° AOI with Sopra GESP-5 Ellipsometer
- 350 nm Line/ 700 nm Period Grating Etched in Single Crystal Si
- 350 nm Line/ 700 nm Period Photoresist on 31.7nm SiO₂ on Si
- Successively Improved Topography Estimations Using Levenberg-Marquardt Non-Linear Regression
 - Trapezoid (3 parameters)
 - Trapezoid on Rectangular Base (4 parameters)
 - Triangular Top on Trapezoid on Rectangle (5 parameters)
 - 3 Quadratic Segments with Zero Top Width (Triangle-Trapezoid-Trapezoid with Curvature, 9 parameters)

Etch Experiment Description

- Lam TCP9400SE Plasma Etching System
- Cl₂/HBr Si Main Etch Recipe
- Nominal Etching Rates:
 - Oxide 5.43Å/sec
 - Poly 52.1Å/sec
- Times: 60, 77, 97, 116, 135, 154, 174 sec

Near Normal SE for RIE Etched Si Grating

Time Evolved SE Data and Fitting

Incidence at 7°

• : Experiment — : Theory

Etching Time

Submicron Grating

- ~0.35µm Line/Space Grating In Photoresist/300Å SiO₂/Si
- Accurate Photoresist N(λ) Obtained by SE Measurement of Similarly Prepared Unpatterned Film
- Period Measured as 0.700 μm Using 1st Order Diffraction Angle at Multiple λ's

Trapezoidal Fit 400-825 nm

Trapezoidal Fit

Trapezoid on Rectangle Fit

Triangle-Trapezoid-Rectangle Fit

3-Segment Quadratic Fit

Extracted Topography Comparison

3-Level Quadratic Fit Parameters, Confidence Limits, & **Cross-**Correlation Coefficients

		95.4%	
Term	Value	conf. Limit	Units
h1	146.51	4.55	nm
m11	0.7389	0.0097	slope
m12	-0.4698	0.011	quadratic curvature
h2	545.72	36.05	nm
m21	0.3461	0.0272	slope
m22	-0.1921	0.0282	quadratic curvature
h3	112.35	34.79	nm
m31	0.0803	0.0529	slope
m32	-0.1933	0.0659	quadratic curvature
			1

Fit Was Pushed to the Limits of Data

	h1	m11	m12	h2	m21	m22	h3	m31	m32
h1	1	0.356	-0.217	-0.369	-0.176	0.121	0.267	0.101	0.04
m11	0.356	1	-0.88	-0.34	-0.31	0.354	0.301	-0.098	0.219
m12	-0.217	-0.88	1	0.373	-0.02	-0.08	-0.363	-0.146	-0.009
h2	-0.369	-0.34	0.373	1	0.512	-0.527	-0.993	-0.369	-0.108
m21	-0.176	-0.31	-0.02	0.512	1	-0.981	-0.493	0.286	-0.474
m22	0.121	0.354	-0.08	-0.527	-0.981	1	0.517	-0.31	0.501
h3	0.267	0.301	-0.363	-0.993	-0.493	0.517	1	0.394	0.082
m31	0.101	-0.098	-0.146	-0.369	0.286	-0.31	0.394	1	-0.866
m32	0.04	0.219	-0.009	-0.108	-0.474	0.501	0.082	-0.866	1

In Situ Measurements: Real-Time Monitoring and Control

Movies

LAM TCP 9400 SE with SOPRA RTSE

Thanks to Dr. Helen Maynard, Lucent Bell Labs for Assistance with Port Layout

Real-Time Ellipsometry Pararmeters

- 63.5° AOI Dictated by Geometry of Etch System
- RTSE System Run at Maximum Data Collection Rates Due to Fast Time Scale of Industrial Etch Processes (~100 s total times, Etch Rates ~3-5 nm/s)
- Single-Turn of Polarizer Data Sampling Time (0.1 s)
 - Capture Data with Only few 0.1's nm Thickness Change During Samplin
- Minimum Data Acquistion Time ~1 sample/0.18s
- Usable Data for λ=300-780 nm
- Fixed Analyzer Angle 45°

Example Process Critical Dimension Control: Etch to Target

Reactive Ion Etch to Shrink CD to a Desired Dimension Goal: Achieving Same Final CD regardless of Incoming CD & RIE Process Variation

Experiment Description

- Lam 9400 TCP Etcher
- O₂ Plasma Gas
- Target: Trim Bottom CD to 200nm
- Non-Linear Filter Method to Detect Endpoint and Shut-Off Plasma
- This Experiment Stopped at 200nm
- Work of Drs. Hsu-Ting Huang, Ji-Woong Lee, Pramod Khargonekar, and Fred Terry

~350nm Line/Space Grating

In Situ Optical CD/Automated Etch to Target CD

- O₂ Plasma Photoresist Trim in Lam 9400 TCP
- In Situ Real-Time
 Spectroscopic Ellipsometry
 Monitoring of Photoresist
 Grating Structure
- Off-Line RCWA Analysis of Grating Diffraction Problem
- Nonlinear Filtering Algorithm for Real-Time Data Analysis
 - Completely Hands-off Automated Etch to Target CD
- Before Etching (top):
 - Bottom CD: 296 nm
 - Feature Height: 777 nm
- After Trim-back (bottom):
 - Bottom CD: 200 nm (target)
 - Feature Height: 697 nm

Start: CD 296.7±9.1nm Height 790.0 ±63.4nm

Trimmed: CD 189.1±29.3nm Height 710.9 ±67.6nm

Experimental Description

- Lam TCP9400SE Plasma Etching System
- Plasma Gas: HBr 100 sccm & Cl₂ 15 sccm
- Nominal Etching Rate: PR 5Å/sec, Oxide 3.6Å/sec, and Poly 30Å/sec

Comparison of PR-Masked Si Etch to SEM Cross-Section

- Si Trench Depth 173.32 ± 0.26 nm
 Si CD 354.62 ± 11.37 nm
- 51 CD 334.02 ± 11.37 mm

Limitations & Challenges

RTSE Etch Monitoring: Over-Fitting

- Attempt to Fit for Under-Cut of Resist
- Over-Parameterization Due to Limited Absolute Accuracy of Measurement
- In This Case, Accuracy is Limited by Stray Light, Lower UV Photon Counts
 - Usable Minimum Wavelength ~300nm

- Some Distortion of Peak/Valley Shapes

Cruelty of Diffraction Physics: W/ λ_{min} + ϵ_{line} Control Strength of Scattering

 $W \gtrsim \lambda_{min} / 2$ to λ_{min} High Sensitivity to Detailed Shape in *Structure* of Data vs. λ

W vs. fixed λ_{min} $W \approx \lambda_{min} / 10$ to $\lambda_{min} / 2$ Sensitivity to Average CD, Diminishing Shape Information

Most Shape Info in Magnitude not Fine Structure of Data

 $W \ll\!\!\!\ll \!\!\!\! \lambda_{min} \text{ Results Converge to EMA, No} \\ \text{Real CD Info, Only Average Composition} \\$

Simulations of ITRS Photoresist Milestones

- Simulated Data using Model DUV Photoresist at 2010, 2013, and 2016 Technology Nodes
- Rectangular Profiles Assumed with:
 - Λ=90nm W=25±1.5nm Thick=100nm
 - Λ=64nm W=18 ± 1.1nm Thick=80nm
 - Λ =44nm W=13 ± 0.7nm Thick=50nm
- Assumed 190-800nm Spectroscopic Ellipsometry Measurements
- Good News: Diminishing but Usable CD Sensitivity to 2016
- Bad News: Loss of Detailed Shape Sensitivity even at 2010

Simulated ~40nm PR Line Λ=90nm

Can Detailed Shape Information Be Extracted?

Fit Using Rectangular Only Model

Rectangle Fit Averages More Complex Structure

 Examine Structure Differences in Data Through Derivatives vs. λ

d³β/dλ³ For Complex Line & Rectangular Fit

No <u>Structural</u> Difference in Data Vs. Fit, All Information Concerning the More Complex Shape is in the Small Absolute Differences

Structure of Data and Fit

- Fitting with a Rectangle-Only Geometry Yields NO Structure Differences, Only Magnitude Differences
- Examining Derivatives of Data and Fit Illustrates Complete Lack of Structural Differences
- VERY High Instrument <u>Accuracy</u> Needed For Detailed Topography Extraction Without Resorting to VUV Measurements
- High Accuracy RCWA Calculations Required for Simulation/Regression
- <u>VUV & EUV Scatterometry Needed for the Future</u>

Conclusions & Challenges

- Spectroscopic Ellipsometry + Accurate Diffraction Modeling Allows Topography Extraction with Resolution $\ll \lambda$
- in situ Applications Allow Fabrication Processes to be Studied and Controlled in New Ways
- Wide-Spread Deployment in IC Industry
- 2-D Arrays Under Development by Several Companies
- Exploratory Line-Edge Roughness Extraction Work Underway

Conclusions & Challenges

- Diffraction Modeling for Non-Periodic Structures
 - Process Control on Real Product IC's
 - Applications in Biology and other "Messy" Fields
- Instrumentation and Measurement Schemes for Isolated or Sparse Structures
- Detailed Understanding of Accuracy Limitations, Parameter Correlation Effects, etc.

Acknowledgements

- Collabators:
 - Drs. Hsu-Ting Huang, Pete Klimecky, Wei Kong, Ji_Woong Lee, Meng-En Lee, Brooke Stutzman
 - Prof. Pramod Khargonekar
 - Dr. Dennis Grimard, Mr. Dennis Swieger, and Mr. Jeff Fournier
- Initial Work Funded by SRC Center of Excellence for Automated Semiconductor Manufacturing
 - Project Ended August, 1999
- Research funded in part by: AFOSR/DARPA MURI Center for Intelligent Electronics Manufacturing (AFOSR F49620-95-1-0524)
 - Projected Ended August, 2001
- Research funded in part by: NIST Intelligent Control of the Semiconductor Patterning Process (70NANB8H4067)
 - Project Ended June, 2002

