Accuracy Limitations in Specular-Mode Optical Topography Extraction

Fred L. Terry, Jr.

Dept of EECS / University of Michigan 734-763-9764 734-763-9324 (fax) fredty@umich.edu http://www.eecs.umich.edu/~fredty

Outline

- Goal: Use Specular Reflected Light Measurements from Gratings (Scatterometry) for Control of CD/Topography
- UofM Group: 1st Demos of Real-Time Monitoring and Endpoint Control of Photoresist CD in Etch Chambers
 - Ex Situ & In Situ Results
 - Demos on O₂ Plasma Trim-back of Photoresist for Gate
 - <u>Requires Adaptation to Measurement Accuracy</u> <u>Limitations</u>
- Simulations and Implications for Future of Scatterometry as Process Control Sensor

Spectroscopic Ellipsometry

—Functions of wavelength and incident angle

Grating ⇔ Anisotropic Thin Film Analogy

- Line Height ⇔ Film Thickness
- Line Shape ⇔ Optical Dielectric Function

Specular Spectroscopic Scatterometry

- Probes Wavelength Dependence of Scattering from a Given Line Size/Shape
- Grating Amplifies & Averages Single Line Effects
- Grating Periodicity Aids Accurate Diffraction Solution
- Result Sub-Wavelength Topography Sensitivity
- Extremely High Sensitivity to Line Height (D) ⇒ Analogous to Thin Film Thickness
- Very Good Sensitivity to Linewidth (W) & Line-shape Under Proper Circumstances ⇒ Analogous to Parameterized Extraction of Optical Dielectric Function of Thin Film
- Accuracy of Topography Extraction Analogous to Accuracy of $\varepsilon(\lambda)$ Extraction From Thin Films Using SE
 - Will Fail If Grating Is Too Shallow (Effective Optical Thickness Fails to Produce Thin Film Interference Effect)

Cruelty of Diffraction Physics: W/ λ_{min} + ϵ_{line} Control Strength of Scattering

 $W \gtrsim \lambda_{min}$ /2 to λ_{min} High Sensitivity to Detailed Shape in *Structure* of Data vs. λ

 $W \approx \lambda_{min} / 10$ to $\lambda_{min} / 2$ Sensitivity to Average CD, Diminishing Shape Information

Most Shape Info in Magnitude not Fine Structure of Data

 $W \ll\!\!\!\ll \!\!\!\! \lambda_{min} \text{ Results Converge to EMA, No} \\ \text{Real CD Info, Only Average Composition} \\$

Topography Extraction Example W> λ_{min}

- Experimental Data Taken at 7° AOI with Sopra GESP-5 Ellipsometer
- 350 nm Line/ 700 nm Period Photoresist on 31.7nm SiO₂ on Si
- Successively Improved Topography Estimations Using Levenberg-Marquardt Non-Linear Regression
 - Trapezoid (3 parameters)
 - Trapezoid on Rectangular Base (4 parameters)
 - Triangular Top on Trapezoid on Rectangle (5 parameters)
 - 3 Quadratic Segments with Zero Top Width (Triangle-Trapezoid-Trapezoid with Curvature, 9 parameters)

Submicron Grating

- ~0.35µm Line/Space Grating In Photoresist/300Å SiO₂/Si
- Accurate Photoresist N(λ) Obtained by SE Measurement of Similarly Prepared Unpatterned Film
- Period Measured as 0.700 μm Using 1st Order Diffraction Angle at Multiple λ's

Trapezoidal Fit 400-825 nm

Trapezoidal Fit

Trapezoid on Rectangle Fit

Triangle-Trapezoid-Rectangle Fit

3-Segment Quadratic Fit

Extracted Topography Comparison

3-Level Quadratic Fit Parameters, Confidence Limits, & **Cross-**Correlation Coefficients

		95.4%	
Term	Value	conf. Limit	Units
h1	146.51	4.55	nm
m11	0.7389	0.0097	slope
m12	-0.4698	0.011	quadratic curvature
h2	545.72	36.05	nm
m21	0.3461	0.0272	slope
m22	-0.1921	0.0282	quadratic curvature
h3	112.35	34.79	nm
m31	0.0803	0.0529	slope
m32	-0.1933	0.0659	quadratic curvature

Fit Was Pushed to the Limits of Data

	h1	m11	m12	h2	m21	m22	h3	m31	m32
h1	1	0.356	-0.217	-0.369	-0.176	0.121	0.267	0.101	0.04
m11	0.356	1	-0.88	-0.34	-0.31	0.354	0.301	-0.098	0.219
m12	-0.217	-0.88	1	0.373	-0.02	-0.08	-0.363	-0.146	-0.009
h2	-0.369	-0.34	0.373	1	0.512	-0.527	-0.993	-0.369	-0.108
m21	-0.176	-0.31	-0.02	0.512	1	-0.981	-0.493	0.286	-0.474
m22	0.121	0.354	-0.08	-0.527	-0.981	1	0.517	-0.31	0.501
h3	0.267	0.301	-0.363	-0.993	-0.493	0.517	1	0.394	0.082
m31	0.101	-0.098	-0.146	-0.369	0.286	-0.31	0.394	1	-0.866
m32	0.04	0.219	-0.009	-0.108	-0.474	0.501	0.082	-0.866	1

RTSE Etch Movie

- In Situ Sopra Real-Time Spectroscopic Ellipsometry Monitoring of Photoresist Trim-Back in Lam 9400 TCP
- Data Collect at 63.5° AOI
- Non-Linear Filter Method to Detect Endpoint
- This Experiment Stopped at 200nm
- Work of Drs. Hsu-Ting Huang, Ji-Woong Lee, Pramod Khargonekar, and Fred Terry

Trim to Target CD Movie

sprt7_tritraprect.mov

In Situ Optical CD/Automated Etch to Target CD

- O₂ Plasma Photoresist Trim in Lam 9400 TCP
- In Situ Real-Time Spectroscopic Ellipsometry Monitoring of Photoresist Grating Structure
- Off-Line RCWA Analysis of Grating Diffraction Problem
- Nonlinear Filtering Algorithm for Real-Time Data Analysis
 - Completely Hands-off Automated Etch to Target CD
- Before Etching (top):
 - Bottom CD: 296 nm
 - Feature Height: 777 nm
- After Trim-back (bottom):
 - Bottom CD: 200 nm (target)
 - Feature Height: 697 nm

RTSE Etch Monitoring: Over-Fitting

- Attempt to Fit for Under-Cut of Resist
- Over-Parameterization Due to Limited Absolute Accuracy of Measurement
- In This Case, Accuracy is Limited by Stray Light, Lower UV Photon Counts
 - Usable Minimum Wavelength ~300nm

- Some Distortion of Peak/Valley Shapes

RTSE Fit Time Step=101

Simulations of ITRS Photoresist Milestones

- Simulated Data using Model DUV Photoresist at 2010, 2013, and 2016 Technology Nodes
- Rectangular Profiles Assumed with:
 - Λ=90nm W=25±1.5nm Thick=100nm
 - Λ=64nm W=18 ± 1.1nm Thick=80nm
 - Λ=44nm W=13 ± 0.7nm Thick=50nm
- Assumed 190-800nm Spectroscopic Ellipsometry Measurements
- Good News: Diminishing but Usable CD Sensitivity to 2016
- Bad News: Loss of Detailed Shape Sensitivity even at 2010

Simulated ~40nm PR Line A=90nm

Can Detailed Shape Information Be Extracted?

Fit Using Rectangular Only Model

Rectangle Fit Averages More Complex Structure

 Examine Structure Differences in Data Through Derivatives vs. λ

d³β/dλ³ For Complex Line & Rectangular Fit

No *Structural* Difference in Data Vs. Fit, All Information Concerning the More Complex Shape is in the Small Absolute Differences

Structure of Data and Fit

- Fitting with a Rectangle-Only Geometry Yields NO Structure Differences, Only Magnitude Differences
- Examining Derivatives of Data and Fit Illustrates Complete Lack of Structural Differences
- VERY High Instrument <u>Accuracy</u> Needed For Detailed Topography Extraction Without Resorting to VUV Measurements
- High Accuracy RCWA Calculations Required for Simulation/Regression

Conclusions

- Extraction of Topography Using Specular-Mode Spectroscopic Ellipsometry and Related Techniques Provides Outstanding Height and Average CD Capabilities to the End of the ITRS
- Detailed Lineshape Extraction Ability Exists But Gets Worse As W/λ_{min} Decreases
- Situation Better for Gate Materials vs. Photoresist (ε)
- Possibly Achievable but Very High Accuracy Measurements Are Required for Detailed Shape Extraction
 - Instrumentation, Alignment, and Simulation <u>Accuracy</u> Must All be Very Good
- VUV & EUV Scatterometry Needed for the Future
- Unanswered Questions on Line-Edge Roughness, Line Material Variations, etc.

Acknowledgements

- Initial Work Funded by SRC Center of Excellence for Automated Semiconductor Manufacturing
 - Project Ended August, 1999
- Research funded in part by: AFOSR/DARPA MURI Center for Intelligent Electronics Manufacturing (AFOSR F49620-95-1-0524)
 - Projected Ended August, 2001
- Research funded in part by: NIST Intelligent Control of the Semiconductor Patterning Process (70NANB8H4067)
 - Project Ended June, 2002
- Industry Support Badly Needed for Continued University Efforts in this Area