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The use of optical metrology, including ellipsometry and reflectometry, has been successful for process monitoring. However, their
applications to actual production are limited due to the problems inherent in the analysis of reflected light from patterned structures. In
this paper, we examine techniques for the quantitative analysis of data from both highly regular grating structures and from patterns with
low local order. We find good quantitative agreement of vector diffraction theory to specular reflection data. It is demonstrated that the
shape evolution of spectroscopic ellipsometry data during etching process is useful for in situ analysis of wafer state.  We conclude that
there is significant promise for the use of specular techniques for in situ monitoring of topography provided that computational speed is-
sues can be improved.

Introduction

Advanced semiconductor process development and
control requires high accuracy, high speed, non-invasive
wafer topographic monitors. Specular reflected light tech-
niques, including both single wavelength and spectro-
scopic versions of ellipsometry (1) and reflectometry
(2,3), have been used successfully for both etch and
growth rate control of vacuum processes on unpatterned
substrate. However, applications of these methods in ac-
tual production have been very limited due to the prob-
lems inherent in monitoring patterned structures. Recently,
multi-wavelength ellipsometry utilizing scalar theory has
been used to monitor patterned structures (4). However,
the scalar approach becomes inaccurate as the investigated
feature size goes into sub-micron regime. Scatterometry
for ex situ applications by analyzing diffracted intensities
vs. angle of incidence (5), or relative intensity of several
diffracted orders at a single incident angle (6) has also
been reported. However, for in situ applications, it is often
only possible to obtain specular reflection information at a
single angle of incidence. In this paper, we will present
results on applications of scalar models and vector dif-
fraction theory to the analysis of spectroscopic ellipsome-
try (SE) data from patterned structures. Strong potential of
specular measurements for topographic monitoring is in-
dicated.

Experiments

Three types of experimental samples were fabricated
for SE tests. The first was a set of relief grating etched in
(100) orientation single crystal Si wafers. Gratings with
nominally equal lines and spaces were fabricated with
periods of 2, 4, and 10 µm.  They were fabricated by con-
ventional photolithography and etching process. Six wa-
fers were etched to different depths (approximately100 to
600 nm in 100 nm increments) by changing the etching
time. We concentrated our analysis efforts on the 500nm
deep grating. The other wafers were used to simulate in
situ data from the etching process. Post-etch cross-section

scanning electron microscopy (SEM) was used to evaluate
the line structure profile on the 500 nm sample (shown in
Figure 1). The lineshapes can be modeled as trapezoidal.
There appears to be some concave-down rounding of the
bottoms of the grating. This may have some influence on
the results of our attempts to fit optical data from these
structures.

Figure 1. Cross-sectional view of 4 µm period Si relief grating.
We estimate the structure as: period = 3.96 µm, top linewidth=
2.2 µm, depth = 0.5 µm, and wall angle = 73º.

The second set of samples was a set of aSi:H on Cr on
glass samples from our flat panel display efforts. The
samples contain no array structures within each die. The
die are square and have a repeat distance of about 360
µm. Approximately 100 nm of Cr was deposited by mag-
netron sputtering on Corning 1737F glass substrates. The
aSi:H was deposited using a PlasmaTherm Clusterlock
7000 PECVD chamber and then etched using conven-
tional photolithography and selective wet chemical etch-
ing.

The third type of samples was a patterned SiO2 structure
on Si. This sample was obtained from the source drain
area of a TFT for flat panel displays. The thickness of the
SiO2 is 491.8 nm.

All SE, SR and scattering measurements were per-
formed on a Sopra GESP-5 spectroscopic ellipsome-
ter/photometer system.

Modeling and Simulation

For scalar analysis, we are using the modified Heimann
approach (7) of the Lucent group (5). For diffraction



analysis, we are using both commercial grating simulation
software (8) which uses the rigorous coupled wave analy-
sis (RCWA) method (9) and our own software which uses
a surface integral equation (SIE) method (10). We also
developed our own software to examine the speed of con-
vergence and accuracy of RCWA method.

The scalar model assumes that the total reflection coef-
ficient of the structure can be calculated as a complex
combination of the individual reflection coefficients from
the different uniform thin film regions, i.e.,
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where Rpi
 and Rsi

 are the reflectances in the p and s po-

larization corresponding to the i-th region. The
nonnegative real number afi is the area fraction of the i-th
region. In Eq. (1), δi is the thickness of a layer of vacuum
added on top of the i-th region to consider the phase lag
due to the different heights of the stacks. Now, as usual,
the ratio of Rp and Rs determines ρ = tan(Ψ)ej∆ . The coef-
ficients Rpi

 and Rsi  are well-known nonlinear functions of

the thickness of the layers in each stack (11). One of the
limitations of this model is that the effect of finite coher-
ence length is not considered. This effect tends to reduce
the constructive and destructive interference in the re-
flected beam. We have developed a first order correction
to include this effect in the scalar model. The computa-
tional load of the scalar model is equivalent to the re-
quirements of four different models for blanket wafers and
is negligible compared with the vector diffraction models.

The RCWA algorithm finds a set of inhomogeneous
plane waves which approximate the exact solution of the
Maxwell’s equation boundary value problem defined by
the grating. The set of differential equations is solved with
standard difference equation - eigenmatrix methods. Ar-
bitrarily complex grating line profiles are approximated
with discrete slices. The number of slices, s, and the num-
ber of plane waves (the order of algorithm, N) determines
the computation time/wavelength point and simulation
precision. A 2(N+1)s x 2(N+1)s matrix problem is cre-
ated, but can be solved relatively efficiently due to the 4s
x 2s block diagonal character of the matrix. For ellip-
sometry simulations, the complex s- and p-polarization
fields were first computed and the tan(ψ) and cos(∆)
quantities were computed from these fields. In all our
RCWA simulations, we used 10 slices to approximate the
grating profiles. One limitation of the commercial soft-
ware is that it will not use point-wise optical refraction
indexes. To overcome this difficulty, we fitted silicon’s n
and k by a 10th order polynomial (the maximum the soft-
ware allowed). This introduced about 3% error in the
worst region. The order, N, for our simulations was de-

termined on the basis of energy conservation, and was
typically in the range of 45-65. Our typical run times were
on the order of 2.1-5.4 minutes/wavelength on a 300 MHz
Pentium II™ system (so that a 100 wavelength SE simu-
lation for a given structure could take up to 9 hours). Par-
allel computation can offer great time advantages but was
not pursued in this initial effort.

We also developed our own RCWA software to study
the convergence and accuracy of the algorithm. We find
that the speed of convergence is slower for shorter wave-
lengths. In our regime of spectrum, the typical convergent
order is larger than 50, while the number of slices required
for sufficient accuracy is no less than 4.

The SIE algorithm uses a number of surface current
filaments placed at the boundary between two media (air
and Si in our case). By utilizing the equivalence theorem
(a generalization of Huygen’s Principle) and a two-
dimensional periodic Green's function as a kernel, the
diffracted field above and below the Si surface can be
convoluted to form a single integral equation. By match-
ing boundary conditions, the continuity of tangential com-
ponents of both the E and H fields, the amplitude and
phase of each surface current filament can be solved. The
field of each diffraction mode can then be evaluated by
the interference from these secondary filament sources.
The typical execution times for this algorithm were 1.3
minutes/wavelength using 16 filament/(wavelength spac-
ing on the grating) on a Sun Ultra Sparc 1 workstation.

In comparison with RCWA, the SIE approach uses
fewer unknowns, and thus reduces the size of the variable
matrix. Also, the most time-consuming part in the SIE
algorithm, the evaluation of the periodic Green’s function,
must only be calculate once for both s and p polarization.
Therefore, this method is much more computationally
efficient than RCWA. To date, we have only been suc-
cessful in applying the SIE model to the normal incidence
case.

Experimental Results

For the scalar analysis of the aSi:H/Cr/glass samples,
the structure was divided into two thin film regions. We
have included a native SiO2 layer on top of the wafer. In
addition, based on SE measurements of unpatterned aSi:H
films on these substrates, we have inserted a thin surface
roughness layer between the aSi:H and the Cr substrate.
The refractive index of this layer was calculated with
Bruggeman’s effective media approximation using 50% of
amorphous silicon and 50% of Cr.

We have measured tan(Ψ) and cos(∆) at an angle of in-
cidence of 75°. Figure 2 shows the results of fits with this
model. The model is in near-perfect agreement with the
experimental data for tan(Ψ). Moreover, the area fraction
of region 1 obtained by the model is very close to the
nominal area fraction deduced from SEM measurements
(about 9.3%). However, the scalar model shows an almost
constant offset in cos(∆). This effect is evident in the data



presented by the authors of as well. This difference may
be due to diffraction effects even though the pattern repeat
distance is very long for these samples.
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Figure 2. Measured SE data and fit of the scalar  model  for the
aSi:H test structure.  Model parameters: region 1- 10.96%
(94.52Å SiO2 / 2888.42Å a-Si / 197.09Å roughness / Cr);  re-
gion 2- 89.04% (8.89Å roughness / Cr).

This scalar model is not always successful due to the fi-
nite coherence length effects which reduce the degree of
constructive and destructive interference in the reflected
beam. A first order correction was used to modify the
scalar model. Figure 3 shows the comparison of the per-
formance of the scalar model and its modification when
both modes are applied to a patterned structure of SiO2 on
Si. It is clear that the modified scalar model is able to
capture the features of the measured data better than the
original scalar model.
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Figure 3. Comparison of the scalar model and modified scalar
model for a patterned structure of SiO2/Si. The thickness of
SiO2 is 491.8 nm. The angle of incidence is 64.5°.

On the grating structures, SE data were collected from
several dies on the 500 nm depth sample at 75º. Typical
data are illustrated in Figure 4. Data were collected both
with the plane of incidence normal to the grating and par-
allel to the grating. As expected, we observed the strong-

est grating induced structure in the SE data for the case
normal to the grating direction. As very long times are
required for the RCWA simulation, we concentrated our
data analysis efforts on an arbitrarily selected single 4 µm
period grating the normal-to-the-grating geometry.
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Figure 4. Measured SE data from the 500 nm depth, 4 µm pe-
riod sample. The plane of incidence was normal to the grating.
The RCWA simulation yielded a period of 4.0 µm, a top
linewidth of 2.2 µm, a sidewall angle of 72.95º, and a depth of
480 nm.

Our RCWA simulations show several general trends.
The positions of peaks and valleys in the oscillations in
tan(ψ) and cos(∆) vs. λ are very sensitive to the period of
the grating, while the magnitudes of both ellipsometric
parameters were very sensitive to the structure depth.
More subtle but still strong structures in the curves are
related to the details of the lineshapes. The concave-down
rounding may have significant effects on the curve shapes,
especially for the longer wavelengths. However, these
effects are not mutually orthogonal, so it is not a straight-
forward exercise to extract the topography information
from even these simple test structures. Samples with addi-
tional thin film structure would present even stronger
challenges.

Therefore, we used a hybrid procedure for finding ap-
proximate fits to the grating topography. First, we meas-
ured the scattering data to extract the grating period using
the grating equation:

λφ ⋅=⋅ kp sin  (2)

where p is the grating period, k is the diffraction order,
and φ the diffraction angle. We can measure up to 4th or-
der of diffraction, and calculate the period with accuracy
in the range of 10 nm.  Then we measured both near-
normal (6º) s- and p-polarized SR and SE data, and 75º
SE data. Simple scale theory allow the thickness to be
estimated from ¼ wave interference between waves re-
flected from the top and bottom of the grating:

)/1/1(4/1 valleypeald λλ −= (3)

We used this estimate on the p-polarized data as it is
expected that these data will be less strongly influenced by
coupled mode effects (12). These thickness estimates can
then be refined, and linewidth and sidewall slope esti-



mates can be added by iteratively fitting using the SIE
approach. Finally, these estimates can be further refined
using the RCWA algorithm.

The best fits we have achieved to the near-normal in-
cidence data are shown in Figure 5. The 75º SE data and
RCWA simulation are illustrated in Figure 4. The agree-
ment between the SEM-measured quantities and the ones
from fits to optical data is good. The differences may be
due to the differences between the two dies, incomplete
optimization of the RCWA analysis, magnification cali-
bration errors in the SEM, or human error in measuring
the SEM photo.
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Figure 5. Near-normal (6º) SE data, SIE fit to tan(ψ) data, and
RCWA simulation

The potential of SE to measure evolving grating topog-
raphies  during  an etch  was  simulated  by measuring the
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Figure 6. Comparison of simulated (upper) and experimental
(lower) cos(∆) curves at 75º angle of incidence for a series of
etched 4 µm period Si gratings.

samples etched for varying times. As can be seen in Figure
6, the basic trends in the experimental data are reflected in
the modeled results. The simulations and experiments
reveals similar non-monotonic behavior in both tan(Ψ)
and cos(∆) (only cos(∆) is shown here) as the etch depth
increases. By more accurately fitting theory to experi-
mental data, it should be possible to accurate extract etch
depth and wall vs. etch time from in situ data. Other RCWA
simulations which we have made for 0.1 µm line/space
gratings indicate that this technique will be applicable for
monitoring the etching of deep submicron structures.

Conclusions

Use of SE and/or SR yields quantitatively accurate
critical dimension and wall angle data on patterned semi-
conductor structures. Based on the fittings of etch data, it
is possible to automate the procedure using nonlinear re-
gression method. This is essentially an inverse problem.
The ultimate goal would be to monitor geometrical pa-
rameters of wafer during deposit/etch for the purpose of
processing control.
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