Proof of properties

Property 1: Consider hypothesis RH5 in Appendix A (that is, the coordinates of the robot consist of $N-1$ relative angles, q_{1}, \cdots, q_{N-1}, and one absolute angle q_{N},) and assume furthermore that q_{N} is measured in the counterclockwise direction. Then the angular momentum of the robot about the stance leg end during the single support phase is $\sigma=d_{N}(q) \dot{q}$, where $d_{N}(q)$ is the last row of D in (1).

Proof: Let $\left(p_{c}^{h}, p_{c}^{v}\right)$ be the Cartesian coordinates of the center of mass of the robot. Let \vec{r}_{1} be a vector from the stance foot to the center of mass and let \vec{r}_{3} be the vector from the stance foot to the swing foot. Let Ψ and ψ be the angle between \vec{r}_{1} and the ground, and the angle between \vec{r}_{1} and \vec{r}_{3}, respectively. Let q_{N} be the absolute angle in the counterclockwise direction, see Fig. 1.

Then $\left|\vec{r}_{1}\right|$ and ψ are independent of q_{N} and $\Psi=\psi+q_{N}-q_{N, 0}$, where $q_{N, 0}$ is a scalar such that the swing leg end touches the ground at $q_{N}=q_{N, 0}$ while the relative angles q_{1}, \cdots, q_{N-1} are unchanged. Therefore, the coordinates of the center of mass are

$$
\begin{align*}
p_{c}^{h} & =\left|\vec{r}_{1}\right| \cos \left(\psi+q_{N}-q_{N, 0}\right) \tag{1}\\
p_{c}^{v} & =\left|\vec{r}_{1}\right| \sin \left(\psi+q_{N}-q_{N, 0}\right) \tag{2}
\end{align*}
$$

The partial derivatives of (1) and (2) with respect to q_{N} are given as

$$
\begin{align*}
\frac{\partial p_{c}^{h}}{\partial q_{N}} & =-\left|\vec{r}_{1}\right| \sin \left(\psi+q_{N}-q_{N, 0}\right)=-p_{c}^{v} \tag{3}\\
\frac{\partial p_{c}^{v}}{\partial q_{N}} & =\left|\vec{r}_{1}\right| \cos \left(\psi+q_{N}-q_{N, 0}\right)=p_{c}^{h} \tag{4}
\end{align*}
$$

The Lagrangian is defined as $L=K-V$, where K is the kinetic energy and V is the potential energy of the robot. Since K does not depend on q_{N} and $V=M g p_{c}^{v}$ with g being gravitational acceleration and M being total mass,

$$
\begin{equation*}
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{N}}=\frac{\partial L}{\partial q_{N}}=-\frac{\partial V}{\partial q_{N}}=-M g p_{c}^{h} \tag{5}
\end{equation*}
$$

Fig. 1. Coordinates of the center of mass

Let σ be the angular momentum about the stance foot. Then,

$$
\begin{equation*}
\frac{d \sigma}{d t}=\left(\vec{r}_{1} \times \vec{F}_{c}\right) \cdot \vec{e}_{3} \tag{6}
\end{equation*}
$$

where \vec{F}_{c} is the force acting on the center of mass. Since $\vec{r}_{1}=p_{c}^{h} \vec{e}_{1}+p_{c}^{v} \vec{e}_{2}$ and $\vec{F}_{c}=-M g \vec{e}_{2}$,

$$
\begin{equation*}
\frac{d \sigma}{d t}=-M g p_{c}^{h} \tag{7}
\end{equation*}
$$

From (5) and (7), we can deduce that $\partial L / \partial \dot{q}_{N}=\sigma+C_{0}$, with some constant C_{0}. Since $\partial L / \partial \dot{q}_{N}$ and σ are zero if $\left(\dot{q}_{1}, \cdots, \dot{q}_{N}\right)=0, C_{0}=0$. Therefore

$$
\begin{equation*}
\frac{\partial L}{\partial \dot{q}_{N}}=\sigma \tag{8}
\end{equation*}
$$

Since $d_{N}(q) \dot{q}=\partial L / \partial \dot{q}_{N}, d_{N}(q) \dot{q}$ is the angular momentum of the robot.

Property 2: Under hypotheses RH5 and GH2 in Appendix A, $d_{N}\left(q^{-}\right) \dot{q}^{-}=d_{e, N}\left(q_{e}^{-}\right) \dot{q}_{e}^{-}$, where $d_{e, N}\left(q_{e}\right)$ is the N th row of D_{e} in (2).

Proof: Let L and L_{e} denote the Lagrangians for the single support phase and double support phase, respectively. Define $L=K-V$ and $L_{e}=K_{e}-V_{e}$, where K and K_{e} are the kinetic energies and V and V_{e} are the potential energies. By the hypothesis $\mathrm{GH} 2, L=\left.L_{e}\right|_{\left(p_{1}^{h}, p_{1}^{v}, \dot{p}_{1}^{h}, \dot{p}_{1}^{v}\right)=(c, 0,0,0)}$, where c is constant. Since $d_{N}(q) \dot{q}=\partial L / \partial \dot{q}_{N}, d_{N}\left(q^{-}\right) \dot{q}^{-}=$ $\partial L / \partial \dot{q}_{N}=\partial L_{e} /\left.\partial \dot{q}_{N}\right|_{\left(p_{1}^{h}, p_{1}^{v}, \dot{p}_{1}^{h}, \dot{p}_{1}^{v}\right)=(c, 0,0,0)}=d_{e, N}\left(q_{e}^{-}\right) \dot{q}_{e}^{-}$

Property 3: Assume the hypothesis RH5 in Appendix A, then in the coordinates $q_{e}^{1}=\left(q_{1}, \cdots, q_{N}, p_{1}^{h}, p_{1}^{v}\right), d_{e, N}\left(q_{e}^{1-}\right) \dot{q}_{e}^{1-}=$ $d_{e, N}\left(q_{e}^{1+}\right) \dot{q}_{e}^{1+}$, where $q_{e}^{1-}, \dot{q}_{e}^{1-}$ are the states before the foot actuation and $q_{e}^{1+}, \dot{q}_{e}^{1+}$ are the states after the foot actuation.

Proof: In the given coordinate, the Cartesian coordinate of the stance foot is given by $\Upsilon_{1}\left(q_{e}\right)=\left(p_{1}^{h}, p_{1}^{v}\right)$. Therefore, $E_{N}=\left(\partial \Upsilon_{1} / \partial q_{N}\right)^{T}=0$. Thus, $d_{e, N}\left(q_{e}^{1+}\right) \dot{q}_{e}^{1+}-d_{e, N}\left(q_{e}^{1-}\right) \dot{q}_{e}^{1-}=0$.

Property 4: Let $\vec{P}_{c}^{+}, \vec{P}_{c}^{-}$be the linear momentum of the robot after and before foot actuation. Then $\vec{P}^{+}-\vec{P}_{c}^{-}=\mathcal{T} F_{f}$
Proof: Let $q_{c}=\left(q_{1}, \cdots, q_{N}, p_{c}^{h}, p_{c}^{v}\right)$ be the coordinates of the robot, where p_{c}^{h}, p_{c}^{v} denote the Cartesian coordinates of the center of mass, see Fig. 1. Then the kinetic energy K_{e} does not depend on p_{c}^{h}, p_{c}^{v} and the potential energy is given by $V_{e}=M g p_{c}^{v}$. Since the force acting on the center of mass is $F_{h}=0, F_{v}=-M g$,

$$
\begin{align*}
\frac{d}{d t} \frac{\partial L_{e}}{\partial \dot{p}_{c}^{h}} & =0=F_{h} \tag{9}\\
\frac{d}{d t} \frac{\partial L_{e}}{\partial \dot{p}_{c}^{v}} & =-M g=F_{v} \tag{10}
\end{align*}
$$

Therefore, $\frac{\partial L_{e}}{\partial \dot{p}_{c}^{e}}, \frac{\partial L_{e}}{\partial \dot{p}_{c}^{c}}$ are the linear momentum. In the coordinates q_{c}, let $\Upsilon_{1}\left(q_{c}\right)$ be the Cartesian coordinates of the stance foot. Then, $\vec{P}_{c}^{+}-\vec{P}_{c}^{-}=\mathcal{T} F_{f}$.

Property 5: Under hypotheses RH5 and GH2 in Appendix A, $d_{N}\left(q^{2+}\right) \dot{q}^{2+}=d_{e, N}\left(q_{e}^{2-}\right) \dot{q}_{e}^{2-}$. Proof: The proof is analogous to the proof of property 2.

Property 6: Assume the hypothesis RH5 in Appendix A. Then in the coordinate $q_{e}^{2}=\left(q_{1}, \cdots, q_{N}, p_{2}^{h}, p_{2}^{v}\right), d_{e, N}\left(q_{e}^{2-}\right) \dot{q}_{e}^{2-}=$ $d_{e, N}\left(q_{e}^{2+}\right) \dot{q}_{e}^{2+}$, where $q_{e}^{2-}, \dot{q}_{e}^{2-}$ are the states before impact and $q_{e}^{2+}, \dot{q}_{e}^{2+}$ are the states after impact.

Proof: The proof is analogous to the proof of property 3.

