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Block Noninteracting Control with
Stability via Static State Feedback*

J. W. Grizzlet and A. Isidori}

Abstract. Necessary and sufficient conditions for the existence of a static state
feedback that achieves noninteraction and internal stability are obtained. This
is accomplished by first characterizing the set of all controllability subspaces
(distributions) that can arise as solutions to the noninteracting control problem.
This characterization is then used to identify a fixed internal dynamics that is
common to every noninteractive closed loop. The stability properties of this
dynamics is shown to be the key factor in the problem of achieving noninteracting
control with internal stability.

Key words. State feedback, Noninteracting control, Controllability distributions,
Geometric Methods.

1. Introduction

This paper addresses the problem of achieving noninteracting control with internal
stability via invertible static state feedback, for a system whose outputs have been
grouped into blocks. Both linear and nonlinear systems are investigated.

If one restricts attention to left-invertible square systems (equal numbers of scalar
input and output components) where each output “block” is scalar valued, then the
problem of achieving noninteracting control with internal stability by means of
static state feedback is well understood. The solution for the class of linear systems
was given by Gilbert [G1] in 1969; the solution for nonlinear systems has only
recently been obtained [H1], [H2], [HG], [IG]. The papers [G1] and [IG] show
that imposing a noninteractive structure, by means of a static state feedback, entails
the assignment of a certain fixed internal dynamics. This dynamics, which is inde-
pendent of the particular static feedback used to achieve noninteraction, must
necessarily be asymptotically stable if an asymptotically stable noninteractive closed
loop is sought. Moreover, under mild assumptions (asymptotic stabilizability of the
original system, noncriticalness), the asymptotic stability of the fixed dynamics is
also sufficient for the achievement of noninteraction with stability. Hence, the
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induced fixed dynamics constitutes the only obstruction to the solvability of the
noninteracting control problem with internal stability by means of static state
feedback.

For the class of linear systems, Wonham and Morse [WM] effectively quenched
any interest in pursuing the corresponding problem for systems with block outputs
when they proved that if one allows dynamic state feedback, then, provided the
original system is stabilizable, the conditions required for achieving noninteracting
control, and those for achieving noninteracting control with stability, are the same;
that s, if noninteraction is at all possible, then noninteraction with stability is always
possible [W, Theorem 9.3]. Their technique was to devise a dynamically extended
system which could be made noninteractive with static state feedback, but which
possessed, in light of the results of [G1], and [IG], no fixed dynamics. Actually,
Wonham and Morse presented this latter property in a different but equivalent
manner, proving that the eigenvalues of the resulting noninteractive system were
freely assignable.

Investigations on achieving noninteracting control via dynamic state feedback
have also been carried out for nonlinear systems; necessary and sufficient conditions
for the existence of such a feedback, as well as procedures for its construction, are
now known [DM], [F], [NR]. However, these results were specifically designed to
enlarge the class of systems which could be made noninteractive, and not necessarily
to gain asymptotic stability. Indeed, even for linear systems the techniques in
question, unlike those developed by Wonham and Morse, do not guarantee an
internally stable noninteractive closed-loop system.

A natural question, therefore, is whether it is possible to develop general dynamic
compensation techniques for nonlinear systems which simultaneously accomplish
noninteraction and internal stability. This has been resolved in the negative [1G].
It has been shown in particular that no system of the form {x, = u;, X, = u,, %; =
a(xy, X3, X3}, Y1 = X1, Y2 = X,|(0a/0x,)(0) # 0, (0a/dx,)(0) # 0, (da/0x,)(0) > O,
(0%a/dx,0x,)(0) # 0} can be made noninteractive and internally stable by any
dynamic (or static) state feedback, despite the fact that (a) each such system can be
separately stabilized or made noninteractive, and (b) the linearization of such a
system can be made stably noninteractive with a simple one-dimensional dynamic
state feedback. The key point of the analysis was that noninteractive control via
static state feedback induced an unstable fixed dynamics, and, contrary to what is
possible for linear systems, this dynamics could not be removed by any dynamic
state feedback resulting in a noninteractive closed-loop. The central role of the fixed
dynamics in understanding nonlinear noninteracting control with stability was thus
made clear.

The goal of this paper is to extend the analysis of [IG], which is valid only for
square systems, to the block noninteracting control problem. The main difficulty to
be overcome is the nonunicity of solutions, where, by solution, is meant the specifi-
cation of a set of controllability subspaces (distributions) from which an appropriate
feedback leading to a noninteractive closed loop can be constructed. Results will be
established to identify a particular (sub)dynamics that is common to every non-
interactive closed loop. This dynamics will be called the fixed dynamics, and its
central role in the problem of achieving noninteracting control with internal sta-
bility will be established.
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Section 2 develops the results in the context of linear systems. Even here the
consideration of all possible solutions in order to uncover a suitable notion of the
fixed dynamics is nontrivial, and most of the detailed arguments are relegated to
the appendices. The main ideas, however, are presented in such a way that the
nonlinear analysis of Section 3 follows the same sequence of steps. Unfortunately,
the possible presence of singularities presents real difficulties, and weaker results are
obtained for the class of nonlinear systems.

2. Linear Block Noninteracting Control with Stability
Consider a linear system whose outputs have been grouped into blocks:

5. {x = Ax + Bu,

2.1
yi=Cx, 1<i<y, @1

where x € R”, u € R™, and y; € R?. The system is said to be noninteractive with
respect to a given partition u” = (uy, ..., ,, u,4,) of the inputs, u; possibly vector
valued, if y; is unaffected by u; for all i # j. The noninteracting control problem
addressed here is to find, if possible, a regular static state variable feedback, u =
Fx + Gv, |G| # O (regular refers to the invertibility of G) and a partitioning of the
new command inputs » so that the resulting closed-loop system is noninteractive.
If in addition the eigenvalues of A + BF are in the open left half-plane, the problem
is said to be solvable with stability.

The goal is to give necessary and sufficient conditions for noninteracting control
with stability, using static state variable feedback. The geometric tools of [MW]
and [W] will be used freely. If M is an n x n matrix and & < R"is a subspace, then
M|F =S +MF +-+ M

Necessary and sufficient conditions for achieving noninteraction without the
constraint of internal stability are well known [D], [DLM], [MW]. None of the
available criteria is a convenient starting point for the additional analysis needed
in order to characterize stabilizing solutions. The approach taken in [G2] appears
to be well suited for this purpose. This is first briefly developed.

The following result is a geometric formulation of the notion of noninteraction;

see p. 87 of [W].
Lemma 2.1. The system

p+l

XxX=Ax + Z By,
i=1

y,-=C,~x, lSiS,ll,

is noninteractive with respect to the indicated partition of the inputs if, and only if,
there exist subspaces V!, ..., V* = R" such that, for 1 <i <y,

(@) Vi cker C,

(b) AV c V},

(c) Im B, Viforallj+#i.

Using this, one obtains the following necessary and sufficient condition for

achieving noninteracting control (without the constraint of internal stability). The
proof is given in Appendix A.
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Theorem 2.2. The system X, (2.1), can be rendered noninteractive with a regular
static state variable feedback if and only if there exist controlled-invariant subspaces
Vicker C, 1 <i < p, such that

ImBAV'+ Y(ImBnAV/)=ImB 2.2)
J#i
Joreachl1 <i<p.

Equation (2.2) turns out to be a necessary and sufficient condition for the existence
of a single feedback rendering the set of subspaces {V!,..., V*} simultaneously
invariant, and hence could be called the compatibility condition. Whenever a set of
subspaces can be made simultaneously invariant with a single feedback, it will be
called a compatible set (of subspaces).

If V is a controlled-invariant subspace, and if # is the maximal controllability
subspace contained in ¥, then V nIm B = # n Im B. Using this fact one deduces
the following corollary of Theorem 2.2, which will form the basis of all further
analysis.

Corollary 2.3. The system Z, (2.1), can be rendered noninteractive with a regular
static state variable feedback if and only if there exist controllability subspaces
R, < ker C;, 1 <i < p, such that

(#,~Im B) + () (#;~Im B) = Im B 2.3)
J#l

Joralll <i<p

A set of subspaces {#,, ..., &,} satisfying the hypotheses of Corollary 2.3 will be
called a solution to the noninteracting control problem. Note that if {®,, ..., ®,} is
any such solution, then

n
R:= ()% (24)

=t
is a controlled-invariant subspace since it is the intersection of compatible sub-
spaces. The maximal controllability subspace contained in £ will be denoted by 2.
Let n: # — #/2 be the canonical projection, and let F be any feedback matrix such
that (A + BF)%& < &. Then (4 + BF)|(#/2) will denote the induced operator on

#/2; .., the unique linear operator A such that no (4 + BF)|® = A o n| ®.

Lemma 2.4 (see also Theorem 7.2 of [WM] and Theorem 3 of [D]). Let
{21, ..., A,} be any solution to the noninteracting control problem, and let F, and F,
be any two feedback matrices such that (A + BF)®, c Efori<j<spl<i<2
Then (A + BF,)|(#/2) = (A + BF,)|(®/2). That is, the modes (A + BF)|(®/2) are
independent of the particular choice of feedback F rendering {R,,..., R,} simultane-
ously invariant.

Proof. This follows easily from Theorem 5.7 of [W]. |
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The dynamics (4 + BF)|(%/2) will be called the fixed modes associated with the
solution {#,, ..., #,}. Clearly these modes must be stable if there is to exist a
feedback associated with the solution {£,, ..., #,} which simultaneously achieves
noninteraction and stability. If the system is stabilizable, then it can be shown that
stability of the fixed modes is also sufficient. Whenever the system in question is
left-invertible, then the solution to the noninteracting control problem shall be seen
to be unique, and, therefore, Lemma 2.4 easily leads to a necessary and sufficient
condition for the existence of a feedback which simultaneously achieves noninter-
action and stability. For the general block noninteracting control problem, there
may exist many solutions {#,, ..., %, }, and hence Lemma 2.4 can at best lead to
necessary and sufficient conditions for the existence of a stabilizing feedback asso-
ciated with a particular choice of {#,..., #,}, and thus only to weak sufficient
conditions for the existence of a stabilizing noninteractive control law. What is
needed, in some sense, is a “parametrization” of the set of all solutions. This is
developed next.

Let 2#* denote the maximal controllability subspace contained in ker C;, 1 <
i < u, and define 2* := ()4, #*. Let 2* denote the maximal controllability sub-
space contained in 2*.

Lemma 2.5. Suppose that the noninteractive control problem is solvable and let

{R,,.... R,} be any particular solution. Then the set of controllability subspaces

(Ry,..., Ry, PY, ..., P}} is always compatible. Moreover, there exists a regular

static state feedback and a partitioning of the new command inputs, u = Fx +
¥+l G.v,, such that

@ (A+BRZ¥cPr1<i<y,
(b) (A+BF)R,c R, 1<i<p,
(c) Im BG, < R, forall j # i.

Proof. See Appendix A. |

This lemma shows in particular that if the noninteractive control problem is
solvable, then {2, ..., 2*} is a solution; in fact, it is the maximal solution. The next
result shows how any particular solution to the noninteracting control problem
relates to the maximal solution. Recall that if & is a controllability subspace, and
if F is any feedback matrix rendering & invariant, then

& = (A + BF|¥ nIm B).

Theorem 2.6. Suppose that the noninteractive control problem is solvable and let
{R,,..., R,} be any solution. Then, for each 1 <i < p,

92:’ + .@* = %‘.
Proof. Since 2* c #* (by definition of 2*) and #; c £* (by maximality of £?*),

R, + 2* « #*. By Lemma 2.5, &, + 2* is a controlled-invariant subspace com-
patible with 2*. Let F be any feedback matrix rendering #; + 2* and Z}* simultane-
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ously invariant. Then, (A + BF|(%, + 2*)nIm B) = &, + 2*. Hence, to estab-
lish the theorem, it suffices to show that (#; + 2*)nIm B = Z* nIm B, for it
would then follow that 2* = (A4 + BF|#*nIm B) = {A + BF|(®, + 2*)n
Im B) = &, + 2*, completing the double inclusion. Toward this end, define ¢* :=
dim[2* A Im B, r,:= dim[(%,; + 2*) A Im B], 7, := dim[[);.;(%; + 2*)nIm B],
d; = dim[#* nIm B), and m := dim[Im B]. Since {®,}{, is a solution to the
noninteracting control problem, it follows that, foreach 1 <i < g,

(#;+ 2*)nIm B+ () (%, + 2*)nIm B=1Im B. 2.5)
J#i

Now, note that 2*~Im Bc &, [(# + 2*)nIm Bl <« (&, [#*nIm B] =
P?*nIm B = 2* nIm B, and hence

f‘i\ [(#;+ 2*)nIm B] = 2*nIm B. (2.6)
i=1

Combining (2.5) and (2.6), one obtains r; + 7, = m + g*. Using similar reasoning,
one has

Z*nImB+ () (% + 2*)nImB=Im B @mn
J#i

and

[#* A 1m B] n[ N (@ + 2*)n1Im B] = 2* nIm B. (2.8)
J#i

This yields d; + 7, = m + g*. Therefore, r; = d; which proves (%#; + 2*)nIm B =
P*nIm B. a

The above result establishes the connection between an arbitrary solution
{#,,..., #,} and the maximal solution {2}, ..., Z*}. As a general remark, there
is not as much freedom in the set of possible solutions as one may have expected
a priori. In particular, if the system X is left-invertible, the V*, the maximal controlled-
invariant subspace contained in ker C = ker[C{, ..., C]] T satisfies V*~Im B =
{0}, which in turn yields 2* = {0} and the unicity of the solution {2}, ..., Zf}.In
this special case, Lemma 2.4 identifies the fixed modes of the system and its
conclusion is actually just a reformulation of results of [WM]. Using the results of
[NS2], one can show that 2* corresponds to the “radical” employed in [WM], and
that this result can be extended to the class of nonlinear systems.

The goal now is to relate the fixed modes (see Lemma 2.4) of the maximal
solution {2}, ..., 2} to the fixed modes of any other solution {%,,..., ®,}.
Recall that 2* := ()i, #*, 2* = maximal controllability subspace contained in
P* and B = (=1 &,

Theorem 2.7. Let P*, R, and 2* be as above. Then
P* =R + 9*.
Proof. See Appendix A. |

As an immediate corollary one has
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Corollary 2.8. Let F be any feedback matrix rendering {R,, ..., R,, P, ..., P¥}
invariant. Then

R

(A + BF) YT

Y Tin

7 —(A+BF)|

To summarize what has been established up to this point, by Lemma 2.5 there
exists a feedback matrix F rendering {%,,..., &,, Z¢,..., #}} simultaneously
invariant; clearly the same matrix also renders 2*, 2*, 2, and # invariant. By
Lemma 2.4, the fixed modes (4 + BF)|(%/2) and (4 + BF)|(#*/2*) are indepen-
dent of the particular choice of F, and hence the eigenvalues of (4 + BF)|(%/2) and
(A + BF)|(#*/2*) will be eigenvalues of any noninteractive closed-loop system
obtained from {&,,..., #,} or {P¥, ..., §}}, respectively. By construction, all of
the subspaces are invariant under (4 + BF), and thus (4 + BF)|(Z/(# n 2%))is well
defined. Now, since 2 « # and 2 c 2%, one has 2 c 2* n 4, so the set of eigen-
values of (A + BF)|(Z/(# n 2*)) is a subset of the eigenvalues of (4 + BF)|(#/2).
But by Corollary 2.8, (4 + BF)|(Z/(# n 2*)) = (A + BF)|(£*/2*), so the eigen-
values of (4 + BF)|(#*/2*) are also eigenvalues of (4 + BF)|(#/2). Stating this
result formally, one has the following necessary condition for the achievement of
noninteracting control with stability.

Lemma 2.9. Suppose that the system Z, (2.1), can be rendered noninteractive with
regular static state feedback. Then, if the fixed modes of the maximal solution are
unstable, it is impossible to achieve noninteraction and stability simultaneously.

The converse to this result is essentially contained in Theorem 7.2 of [WM] and
Theorem 3 of [D], but expressed in different terminology and with a different set of
controllability subspaces. For completeness, it will also be developed here. This is
most easily done via some general decomposition and structural results, which are
new.

Lemma 2.10. Suppose X can be rendered noninteractive with a regular static state
feedback. Let {R,, ..., R,} be any solution and let {P}, ..., P¥} be the maximal
solution. Denote by C* the controllable subspace of Z. Then the set of subspaces
{CR,,..., R,, 2, P}, ..., P¥, R 2*} is simultaneously decomposable. That is,
there exists a decomposition of the state space as R" =V, @ V, D - @ V3, and a
Surther splitting of Vi for | <i<p+ lasV,=V*® VP, so that
u+2
C*=3% V¥ Ry =

J=1 j¢{ip+3}

PE=ROVE, BR=V,, 2=Va,

Vi,

Proof. See Appendix A. |

In terms of the above subspaces, one easily calculates that & := (4, &; =
Vir1 @ Vyuay P* 1= n;’=1 Pt = Vi VP @ Va1 ® Viwzs BI12=V @ V.42, and

oo,
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R/(R N 2*) = V,,.,. Hence, one can use this result to produce an alternate proof of
Lemma 2.9, since, by Corollary 2.8, (A + BF)|(?*/2*) = (A + BF)|(%/% n 2*)).

Using this lemma, it is possible to exhibit the internal structure of a noninteractive
system.

Corollary 2.11.  Suppose that T has been rendered interactive with a feedback com-
patible with {?}, ..., Z¥}. Let ;= P} in Lemma 2.10 and let (x,, ..., X,3) be a
coordinate system adapted to {V,, ..., V,.3}; that is, x,€ V, for 1 <i < p + 3. Then
in such coordinates T decomposes as

EN [_A“ 0o - 0 0 0 * X4
X, 0 A, : 0 0 * X,
: ;. 0 : : : Z
X, |=1 0 0 A, 0 0 * X,
Xy * * * Agsnpen * * Xu+1
Xy+2 * * * 0 A+ 2ypu+2) * Xu+2
[ %3] LO O 0 0 0 Agrayur s [ Xuss
[ B, ] [ 0] [0 ]
0 0 0
+|{ 0 juy+--+|B, |u,+| 0 [|uy,
* * B,.,
* * 0
| 0 ] | 0 | | 0 |

Vi = CuX; + Cyue3pXpusss l<isp

Moreover, the fixed modes are given by A, 3yu+2).

Since the proof follows readily from Lemma 2.10, it will be omitted. It is simply
noted that the structure of the matrix multiplying u,.,, comes from V,,, = 2*,
It is now easy to state and prove the final result.

Theorem 2.12. Consider the system X, (2.1). Let 2* denote the maximal control-
lability subspace contained in ker C,. Define 2* := (\j=, #* and let 2* denote the
maximal controllability subspace contined in 2*. Then X can be rendered noninter-
active with regular state variable feedback if and only if

@ Z*nImB+ ();x(@*nImB)=ImB, 1 <i<p

Moreover, if noninteractive control is possible, then a stable noninteractive closed loop
can be achieved if and only if the following two additional conditions hold:

(b) (A + BF)|(2*/2*) is stable, where F is any fixed feedback matrix rendering
{P¥, ..., P}} invariant.

(c) I is stabilizable (i.e., A|(R"/C*) is stable where C* is the controllable subspace
of Z).
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Proof. The first statement follows from Corollary 2.3. Concerning noninteracting
control with stability, the necessity of (c) is clear; the necessity of (b) is the state-
ment of Lemma 2.9. The sufficiency of (b) and (c) follow from Corollary 2.11 be-
cause (4 + BF)|(P*/2*) = A+ 2)u+2) AI(RYC*) = A(ys3)u+3), and all other pairs
(A, B), 1 <i < p+ 1, are easily shown to be controllable. ]

3. Nonlinear Block Noninteracting Control with Stability

Consider now a nonlinear system whose outputs have been grouped into
blocks:

%= f(x) + i g,

z: 3.1

yi=hi(x)1 l SlSﬂ,

where x € R”, y;€ R, y;€ R, and f, g;, h; are analytic. The system is said to be
noninteractive with respect to a given partition u” = (u,, ..., u,, u,,) of the inputs,
u; possibly vector valued, if y; is unaffected by u; for i # j. The noninteractive control
problemis to find, if possible, a regular static state variable feedback, u = a(x) + f(x)v,
[B(x)] # O for all x (regular refers to the invertibility of ) and a partitioning of the
new command inputs v so that the resulting closed-loop system is noninteractive.
If an addition, the zero-input dynamics (or drift term) x = f(x) + Y72, gi(x)o(x),
where a(x) = (2,(x), . .., %.(x))7, is asymptotically stable about a given equilibrium
point x,, the problem is said to be solvable with stability.

In the following, necessary and sufficient conditions for solving the above prob-
lem locally will be sought. That is, a solution will be sought on some open neigh-
borhood of a given equilibrium point. The nonlinear geometric tools pioneered in
[H3] and [IKGM] and recently synthesized in [I] will be used freely. The develop-
ment will closely follow that of Section 2 and the recent paper [1G]; consequently
many of the proofs will be abridged or omitted all together.

It will be seen that there are two main obstacles to achieving a complete general-
ization of the previous results to the nonlinear setting. The first is the occurrence of
singularities. The second is related to a deficiency in the notion of a controllability
distribution of a nonlinear system: there is no “dynamics assignability,” and hence
no guarantee of “invariance with stability,” as one has in the linear setting (see, for
example, Chapter 5 of [W]).

Criteria for the achievement of noninteraction without the constraint of internal
stability are now well known [NS1], [NS2], but, once again, they are not convenient
starting points for the additional analysis needed to characterize stabilizing solu-
tions. The approach of Section 2, however, works equally well in the nonlinear
setting.

Let I, ..., I+, be a partition of the set {1,...,m}; that is [;c {1,...,m},
Lnl, = @forall j#k and | Ji1 I, = {1,..., m}. These index sets will be used to
indicate a partitioning of the inputs, with respect to which a system is to be
noninteractive. The notion of noninteraction is now formulated in geometric terms.
Whenever convenient, f will also be denoted as g,.
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Lemma 3.1 [, Theorems 3.2 and 3.12]. Letl,,..., 1, be a partition of {1, ..., m}
and consider the system

u+l
. % = go(x) + k; (}Z aj(x)uj),
<

el)
i = hy(x), 1

Then the following statements are equivalent:

i<u

(a) Z is noninteractive with respect to the indicated partition of the inputs.
(b) For k=1, 2, ..., Lg; - Lg, h(x)=0 for all x whenever at least one
i ¢ I,v{0}.
(¢) There exist analytic involutive distributions A,, ..., A, such that, for 1 <i < g,
(i) A; < ker dh,,
() [ge, A=A O<k<m,
(iii) g;e A; for allj ¢ 1,0 {0}.

It is emphasized that at this point the distribution A, ..., A, do not need to be
constant dimensional; (c) is easily shown to imply (b) on the open and dense subset
where the A, are constant dimensional. But, as the functions in (b) are smooth,
vanishing on an open and dense subset entails vanishing everywhere.

Using this lemma, one obtains the following necessary conditions and sufficient
conditions for achieving noninteracting control (without the constraint of internal
stability). The proof is given in Appendix B. As a point of notation, ¢ will denote
the distribution

%(x) := span{g,(x), ..., gm(x)}; (3.2)

throughout the paper we assume that %(x) has dimension m.

Theorem 3.2. Suppose that the system (3.1) can be rendered noninteractive with
a regular static state feedback. Then there exist controlled invariant distributions
Ay, ..., A, satisfying

A, c ker dh,, (3.3)
GnA+(\#FnA)=9% 34
J#i

Jor each 1 < i < u. Conversely, if in a neighborhood of some point x, there exist
controlled-invariant distributions A,, ..., A, satisfying (3.3) and (3.4), and if an
addition, the distributions 4, A, A;n9, and (); (9 N A), 1 <i< p, are constant
dimensional, then, on a possibly smaller neighborhood of x, there exists a regular static
state feedback rendering (3.1) noninteractive.

Equation (3.4) turns out to be the necessary and sufficient condition (modulo
singularities) for the local existence of a single feedback rendering the set of distribu-
tions {A,,..., A,} simultaneously invariant, and hence could be called the com-
patibility condition. Whenever a set of distributions can be made simultaneously
invariant with a single feedback, it will be called a compatible set (of distributions).
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If A is an involutive controlled-invariant distribution, and if # is the maximal
controllability distribution contained in A, then A N 4 = # N 4. ising this fact, one
deduces the following corollary of Theorem 3.2, which will form the basis of all
subsequent analysis.

Corollary 3.3. Suppose that the system (3.1) can be rendered noninteractive with a
regular static state feedback. Then there exist controllability distributions &#,, ..., R,
satisfying

R, < ker dh, (3.5)
SR+ (\EnR) =9 (3.6)
j#i

for each 1 <i < p. Conversely, if in a neighborhood of some point x, there exist
controllability distributions R, ..., R, satisfying (3.5) and (3.6), and if in addition the
distributions 9, B;, R, "G, and (); (% N R;), 1 < i< p, are constant dimensional,
then, on a possibly smaller neighborhood of x,, there exists a regular static state
feedback rendering (3.1) noninteractive.

A set of controllability distributions {#,, ..., #,} satisfying the constant dimen-
sionality assumptions of Corollary 3.3 will be called a regular set; at times the
qualifier, “about the point x,,” will be added for clarify. If in addition {%,, ..., #,}
satisfies (3.5) and (3.6), it will be called a regular solution to the noninteracting control
problem. Note that if {#,, ..., #,} is a regular solution, then

B
R= ()R 3.7
J=1
is a controlled-invariant distribution (at least on a neighborhood of x,) since it is
the intersection of compatible distributions. The maximal controllability distribu-
tion contained in £ will be denoted by 2.

The goal now, as in the linear analysis, is to identify the fixed modes [1G]
associated with a given regular solution. For linear systems, the analysis was
implicitly carried out on an open set (all of R") about an equilibrium point, the
origin, and the feedback in question always preserved the equilibrium point. These
details will have to be assumed when dealing with nonlinear systems.

Temporarily, let # be any involutive controlled-invariant distribution, 2 the
maximal controllability distribution contained in £ (so that # "% = 2N %), let x,
be an equilibrium point of (3.1) (i.e., f(x,) = 0), and assume that 2, 2, 2" %, and ¥
have constant dimension around x,. Since £ is controlled-invariant, there exists a
feedback function «(x) such that [ f + ga, ] < 2 (this entails automatically that
[f + g2, 2] < 2). Moreover, a can always be chosen such that a(x,) = 0, i.e, it
preserves the equilibrium point [IKGM]. Therefore f + ga is tangent to M, the leaf
of # passing through x,, and f + ga|M is a well-defined vector field of M. Consider
the quotient manifold M/2 which, because of constant dimensionality assumptions,
locally around x, is a smooth manifold of dimension dim £ — dim 2. Let n denote
the canonical projection n: M — M/4. Since 4 is invariant under f + ga|M, locally
around 7m(x,) there is a well-defined induced vector field on M/Z; i.e., a vector field
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f such that n (f + ga|M) = fn. This vector field will be denoted by f + ga|(M/2).
Note thatif (x,, x,)is a choice of local coordinates on M such that 2 = span{d/dx, },
the submanifold L = {(x,, x,): x; = 0} is a local representation of M/2. In these
coordinates the vector field f + ga|M is represented as

- il&xl,xz):'
S+ g [fz(xz)

and f,(x,) is a local representation of [+ ga|(M/2).

It is now claimed that the vector field f + ga|(M/2) is independent of the partic-
ular choice of @, as long as a preserves the equilibrium point and renders £ invariant.
To see this, let o' and o2 be two such feedbacks. Since 2 and 2 are both controlled-
invariant and 2 < %, one can always find an m x m matrix of functions g,
B(x,) invertible, such that [(gf);, #] =« Z,[(gf);, L1 = 2, 1< j<mand 2n¥ =
span{(gB),, ..., (gB)}- Since [ [ + g, #] = R, one deduces that

[f+(@gB)B'a' — [ —(gB)B'a? R] < &,
that is, for all vector fields Y € &,

[@h)B (@' —«?), Y]e R

Hence,
,Z”:, {[(gB);, YI(B~ ' — p7'a®); — (gB)Ly(B ' — B7'0*)} e R
for all Y € #. Now, using [(gB);, Y1 € # and & nspan{(gB)+1,---» (gB)m} = {0},
one obtains that,fork + 1 < j < m,
Ly(f7'a' — p7'a?);=0 forall Yea.

This implies that (87'a' — f~'a?), is constant on leaves of £, and therefore, since
o' (xo) = a*(xo), that, fork + 1 < j < m,(f'«'),and (B~'«?), agree on M. To finish
the proof of the claim, note that, by construction of 8, 0 = n,(gB), for 1 <i <k
Hence, on L one has the following string of equalities:

Ty [f + ‘g gi“}] =n,|f+ 2‘ (Qﬂ)z(ﬂ_l“l)ijl

(b

=7 | S+ (gﬂ):(ﬂ"d’)a]

i=k+1

x
+

(NgE!

=, | S+ (gl?):(b’"laz):]

i=k+1

=n,|f+ :'Si (gﬂ),(lf"dz);]

B m
u[re o]

This establishes the claim. Hence all of the above can be summarized by stating that
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f + ga|(M/2) is independent of the particular choice of a, as long as a renders #
invariant and preserves the equilibrium point.
Applying the above analysis to the noninteracting control problem gives

Theorem 3.4. Let x, be an equilibrium point of (3.1). Suppose that on a neighborhood
of xo, {R,, ..., R,} is a regular solution to the noninteracting control problem, and,
moreover, that B := (4., &, and 2, the maximal controllability distribution contained
in R, are constant dimensional. Let u = a(x) + B(x)v be any regular static state
feedback constructed from {R,, ..., R,} which renders (3.1) noninteractive and pre-
serves the equilibrium point. Then the leaf of # passing though x,, denoted M, is
an invariant submanifold of x = (f + go)(x) and, moreover, f + ga|(M/2) does not
depend upon the particular choice of a.

The vector field f + ga|(M/2) will be called the fixed dynamics (or fixed modes)
of the solution {®,, ..., ®,}. Clearly this dynamics must be stable if an asymptot-
ically stable noninteractive closed-loop is to be constructed from {Z,, ..., 9?,,}. For
the class of linear systems, it was shown in Section 2 that the minimal fixed dynamics
was obtained by choosing the maximal solution to the noninteracting control
problem. This is developed next.

Lemma 3.5. Suppose that the noninteractive control problem admits a regular solu-
tion{R,, ..., R,} and that the set {P}, ..., Pr} is regular. Then the set of controlla-
bility distributions {R,, ..., R,, P{, ..., P}} is locally compatible and so, in partic-
ular, {2, ..., 3’;‘} is a regular solution. Moreover, there locally exists a regular
static state feedback and a partition of the new command inputs, u = a(x) +

2121 (Xger, Bix)y), such that
(a) [f + gaa ‘%*] c .%*, [(gﬁ)k’ gal*] c ‘@i*, 1 S k S m,
®) [f+guRB]c R, (9B B =R, 1 Sk <m,
() (gB)ie R, forallj¢ I,

Proof. See Appendix B. |

Lemma 3.5 yields the following result, relating arbitrary regular solutions to the
maximal solution, when the latter is also reglar.

Theorem 3.6. Suppose that {®,, ..., R,} is any regular solution to the noninter-
acting control problem and suppose that the maximal solution {2}, ..., Z}} is also
regular. Then, for each 1 < i < y,

R, + 2% = P,

Proof. Simply apply the linear argument point-wise to obtain the result; in doing
so, one should note that (i, (#* N %) is constant dimensional as a consequence
of the regularity of the maximal solution. ]
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From this theorem, one sees that whenever 2* = {0}, there is only one solution
to the noninteracting control problem, and hence, in this case, Theorem 3.4 con-
stitutes a general necessary condition for the existence of a noninteractive stabilizing
solution. This, already, is a generalization of Theorem 5.1 of [IG]. When 2* # {0},
one must dig a little further.

Theorem 3.7. Suppose that {®,, ..., ®,} is any regular solution to the noninter-
acting control problem and suppose that the maximal solution {¢, ..., P*} is also
regular. Let R := (i, &), P* = iy ¥, and 2* = maximal controllability dis-
tribution contained in P*. Then, if # ~ 2* is constant dimensional,

P* =R + 9%
Proof. See Appendix B. |

As an immediate corollary one has

Corollary 3.8. Let 2#*, 2*, and R be as above. Suppose that 2*, 2*, and 2* N R all
have constant dimension about some equilibrium point x4, and that « preserves the
equilibrium point and renders {R,, ..., R,, P¥,..., P}} invariant. Let M* denote
the leaf of ?* passing through x, and M denote the leaf of & passing through x,. Then

*

M
ot

f+ga YLk

To summarize what has been established up to this point, by Lemma 3.5 there
exists a regular static feedback u=a(x) + f(x)v rendering {%,, ..., &,, #¥, ..., Zf}
simultaneously invariant; hence the same feedback also renders 2*, #*, 2, and #
invariant. By Theorem 3.4, the fixed dynamics f + ga|(M/2) and f + ga)(M*/2*)
are independent of the particular choice of a, as long as x, is an equilibrium
point preserved by a. Therefore, they will each be part of the drift (ie., zero
input) dynamics of any noninteractive loop obtained from {Z&,,...,4%,} and
{2}, ..., P}, respectively. By construction, everything is invariant under f + ga,
and thus f + ga|(M/A(# n 2*)) is well defined. Now, since 2 = # and 2 < 2%,
it follows that 2 < 2* N &, so the dynamics f + ga|(M/(% n 2*)) is contained
within the dynamics f + ga|(M/2); more precisely, f + ga|(MAR N 2¥)) is a
projection of f + ga|(M/2). Hence, applying Corollary 3.8, one obtains that the
dynamics f + ga|(M*/2*) is a projection of the dynamics f + ga|(M/2). If
one chooses local coordinates (x,, X, X3, X,) on M* such that 2 = span{d/ox, },
2* N # = span{d/dx,, 8/0x,}, # = span{0/0x,, 0/0x,, 0/0x,}, and 2* =
span{d/0x,, 6/0x,, 0/0x,}, then the vector field f + ga|M* is represented as
fi(xy, X2, X3, X4)(0/0x,) + f2(x25 X3, X4)(0/0x3) + f3(x3)(8/0x3) + fa(x4)(9/0x,),
and f + gajM = fi(x, X2, 0, x4)(8/0x,) + fa(x2, 0, x4)(0/0x,) + fuo(x4)(8/0x4),
S+ gal(M/2) = [i(x;,0,x,)(0/0x2) + fo(x4)(0/0x4), f + gal(M*/2*) =
S+ gal(M/(R  2*)) = fu(x,)(0/0x,).

This analysis yields the following “necessary” condition for the achievement of
noninteracting control with stability.
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Theorem 3.9. Suppose that in a neighborhood of an equilibrium point x,, {2¥, ...,
P} is a regular solution to the noninteracting control problem. Suppose in addition
that P* and 9* have constant dimension near x, and that u = a(x) + p(x)v is any
regular static state feedback rendering {P¥, ..., P}} invariant. Then, if the fixed
dynamicsf + ga|(M*/2*)is not asymptotically stable, there does not exist any regular
solution {R,, ..., R,}, with R, 2, and R ~ 2* constant dimensional, that admits an
asymptotically stable noninteractive closed loop.

The above result is rather weak because there is no effective means of testing the
hypotheses, due to the assumption on & N 2*. However, it does show that the only
other way for a stabilizing noninteractive control law to exist is through the
occurrence of singularities.

The next step is to investigate whether the stability of the fixed dynamics con-
stitutes a sufficient condition for achieving noninteracting control with asymptotic
stability. It will be shown that if one excludes critical asymptotic stability, then this
is indeed the case. This will be accomplished via a general decomposition result,
which is of independent interest.

Lemma 3.10. Fix x, € R". Suppose that {®,, ..., &,} is a regular solution about x,
to the noninteractive control problem and suppose that the maximal solution {2}, ...,
P*} is also regular near xo; moreover, assume that, &, 2, 2*, 2*, and R ~ 2* have
constant dimension near x,. Finally, suppose that C*, the strong accessibility distri-

bution, also has constant dimension near x,. Then there exists an open set about x,,
and a coordinate system x = (X, ..., X,43), each x; possibly vector valued, such

. that
a a
C* = span T
P {61 ax,,wz}

Q»—span{a ey 0 , 0 yeres g },
0x, Ox;—y OXp4y 0%, 45
Q‘@span{ 0 }
ox!

0
2% N A = span s
p {axa-}-l}

0
2 = span {—a—},
xu-H.

where, for | <i < p+ 1, x; = (xf, xP) is a further splitting of x;.

Proof. See Appendix B. [ ]

In terms of the above coordinates, & = span{d/0x,, /0%, 42}, P* =R D
span{d/dx?, ..., 8/0x5}, R/2 = span{d/0x,.,,0/0x,.,} and R/R N 2*)
span{d/dx,.,}. Hence, one could use this result in conjunction with Corollary 3.8
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to show how the fixed dynamics of {#,,..., #,} contains the fixed dynamics of
{2, ..., 22}

Using this lemma, the internal structure of a general block noninteractive system
is exhibited, along with a local coordinate representation of the fixed-dynamics; see
also Theorem 4.2 of [IG].

Corollary 3.11.  Fix x, € R". Suppose that in a neighborhood of x4, {2}, ..., P¥} is
a regular solution to the decoupling problem, that 2* and 2* have constant dimension,
and that Z, (3.1), has already been rendered noninteractive with a feedback which is
compatible with {P¥, ..., Z}}. Then in the coordinates (x,, ..., X,3) of Lemma 3.10,
where &, is taken to be equal to #¥*, T decomposes as

X = fi(x,) + k; Grn (1 )4y,

’Ep = j;x(x,u) + Z gkp(xu)ub
kel,
m
Xyer = fur1(X1sony Xpaa) + j; i1y (X1s -0 Xy s 3)U;

x.;H'Z = .I;H-Z(xl’ Teey xﬂ’ xu+29 xy+3) + jﬁ (hz gk(u-l-Z)(xla (R x;u xy+21 xn+3)uk);
=1 EIJ

Xye3 = fur3(Xue3)s
Vi = hilxi, x,43), I<i<y,

where {I}42} is a suitable partiton of the inputs. Moreover, if x is an equilibrium point,
the coordinates can always be chosen in such a way that x, = 0, and then the fixed
dynamics is precisely

xu+2 = j;l+2(0? (KRS} 0; Xu+2s 0)' (3°8)

Since the proof, as in the case of linear system, follows readily from Lemma 3.10,
it will be omittted. It is now possible to state and prove a sufficient condition for
decoupling with stability.

Theorem 3.12. Consider the system X, (3.1). Let 2* denote the maximal control-
lability distribution contained in ker dh,. Define P* := (i, P*, 2* the maximal
controllability distribution contained in #*, and ¥ = span{g,, ..., g.,}. Assume that
G, 2%, P*, P¥, P* G, and (\;21(P* N %) are all constant dimensional on a neigh-
borhood of a given point x, € R". Then there exists a neighborhood of x, on which is
defined a regular static state feedback rendering T noninteractive if and only if

PG+ (PN =9 (39)
J#i

Jor 1 < i < u. Moreover, if in addition x is an equilibrium point, the linearization of
Z about x, is (asymptotically) stabilizable and the linearization of the fixed-dynamics
(3.8) about x is asymptotically stable, then there exists a regular static state feedback
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which simultaneously achieves noninteraction and asymptotically stabilizes the drift
dynamics.

Proof. The first statement follows from Corollary 3.3. The second statement is an
easy consequence of Corolllary 3.11. [ |

4. Conclusions

This paper has extended the analyses of [G1] and [IG] to the block noninteracting
control problem, showing that imposing a noninteractive structure by means of
static state feedback entails the assignment of a certain fixed internal dynamics. This
dynamics, which is independent of the particular static feedback used to achieve
noninteraction, must necessarily be asymptotically stable if an asymptotically stable
noninteractive system is sought. Conversely, if the fixed dynamics is asymptotically,
but not critically, stable, and if the original system is asymptotically, but not
critically, stabilizable, then noninteractive control with internal stability can be
achieved with a static feedback. This shows that whenever a system is (noncritically)
stabilizable, the only obstruction to achieving noninteracting control with stability
is purely geometric and is characterized by the fixed dynamics. When the solution
to the noninteracting control problem is unique (i.e., 2* = {0}), then even in cases
of critical stability, an asymptotically stable noninteractive closed loop can be
obtained if one allows dynamic compensation [I1G].

Appendix A

A.l. Proof of Lemma 2.5

A preliminary lemma is first established.

Lemma A.l.  Let {V,, ..., V,} be a collection of subspaces of some vector space X.
Then {V,, ..., V,} is simultaneously decomposable in the sense that there exists a
collection of subspaces {X,, ..., X,.,} contained in X satisfying

@ X=X ®X,® @ X, and
(b Vi=Zj¢IXj

ifand only if, forall1 <i < p,

Vi+ N V=X. (A.])
J#1

Proof. Necessity being obvious, only sufficiency will be proved; the proof will be
constructive. Define subspaces W, = X*, the dual of X, by W, := V;*. Dualizing (A.1)
yields

Wn %, W= {0}, (A2)

and hence the subspaces {W,, ..., W,} are independent. Therefore, there exists a
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subspace W,., such that

M@W2®"‘®Wp+1=x*- (A-3)
Define X, by

1
X, = (};‘ Vlﬁ) . (A4)

It is straightforward to verify that the set {X,, ..., X+, } so defined is independent;
thatis, foralll <i<p+1,

XinY X;={0}. (A.5)
j#i
It is now claimed that
V=Y X, (A.6)
e
By duality, (A.6) holds if and only if
W=X JJ-. (A7)
J#i

But Xj" = ¥, 4; W, so that

nXJl=ﬂ(;Wh)=W:- ]
j#i J#i \k#}

Continuing the proof of Lemma 2.5, since, for each 1 <i<yu, InBN%; +
ﬂ j#i(Im BN #;) =1m B, Lemma A.l guarantees that one can decompose Im B
insucha way that InB=4, @ ®%,,, and In BN R, =Y ;& Let B, be
matrices such that Im B, = %, columns of B, linearly independent, and define

B =[B|B,|""|B,s.].
Since A%; = .% +Im B,and #,nIm B =}, %, it follows that

AR, R, + Im B, (A.8)
Similarly, since 2;* is controlled-invariant and £, c #¥, one has

AP* c #* + Im B, (A9)
Therefore, for each 1 < i < y, there exists a matrix F; such that

(4 + BR)P* c P (A.10)
and

(4 + BF)& < R, (A.11)
Now define F = (F], F,. H)T where Fpﬁ is chosen arbitrarily so that F is an

m x n matrix. Choose a matnx G, |G| # 0, such that B = BG and partition G =
[G,|Gz|***|G,41] so that B, = BG,. Finally, define F = GF.

Itis now claimed thatu = Fx + Y ¢} G, is the desired feedback and partitioning
of the new command inputs. Part (c) of the lemma is clear, since, by construction,

Im BG,=Im B;= %), (A12)
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and %; c &, for all j # i. To show part (b), note that A + BF = 4 + ) 42} F and
consider

(A+ BF)®, = (A + BF)®, + ( ; E,F,) R;. (A.13)
Jj#Ei

Then (4 + B,F)#®; < #; by construction of F, and, for j # i, BF,#, < Im B, =
%, < R,. Part (a) follows in a similar manner.

A.2. Proof of Theorem 2.2

The necessity of the condition (2.2) follows easily from Lemma 2.1. The proof of its
sufficiency follows exactly the same steps as the proof of Lemma 2.5.

A.3. Proof of Theorem 2.7

(a) Preliminaries. Let {%,,..., #,} be any solution to the noninteractive control
problem, 2 := ()i, #,;,and 2 = maximal controllability subspaoe contained in &.
Let {#F,..., #¥} be the maximal solution, #* := (|4, #*, and 2* = maximal
controllability subspace contained in £*. Fmally, let F be any feedback matrix
rendering all of these subspaces simultaneously invariant (see Lemma 2.5) and define
A=A+ BF.

Decompose % := Im B such that (see Proof of Lemma 2.5 in the appendix)

@ B=2B,D ®B,.1>
(b) @‘ﬁlmB = Zj;éi%.

Further decompose %; as

© B, =% & B,
(d) %* f\Im B = Zj#p@]@@il.

This latter splitting is possible because #; = #*, which implies that 2,nIm B c
Z*nImB,sothat Z*nIm B =) ;.. %B,® (#* N B); hence B! = P* N B,.
This then yields

() &, = ZJ'#!(A'%):
(i) 2 Zm(AIQj) + <A| B},
(iii) 2* =), <A4|1%') + (A|B a+1)-

Finally, express 2* as
P=SDLHD DT,
where, for 1 <i <y, & = (A|B!) and &, = {A|B,4,)-
Lemma A.2. Let C* denote the controllable subspace of Z,(2.1). Then, for each i,
R+ (R =
j#i

Proof. Follows from #2,nIm B + ﬂ j#1(Z;~Im B) = Im Band the invariance of
{#:}%., under A. ]
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Lemma A3. dim # =%, dim &, — (4 — 1) dim C*.

Proof. Follows from repeated application of the identity: dim(¥nJ) =
dim(&) + dim(J) — dim(¥ N J), in conjunction will Lemma A.2. | |

Lemma Ad. Suppose 2* N R = {0}. Then P* = R + 2*.

Proof. Since both # and 2* are contained in 2*, it suffices to show that dim #* <
dim # + dim 2*. From Theorem 2.6, #* = &, + 2*, which by definition of { & }{}
can be written as 2* = #, + . Hence, using Lemma A.3,and &, c 2< 2*n
# = {0},

"
dim 2* = Z dim(%; + ) — (u — 1) dim C*

=1

<

M=

u
dim #; + ) dim & — (¢ — 1) dim C*
i =1

< dim & + dim 2%,

1

I

where Lemma A.3 has been used a second time along with the fact that 2% =
AD @Sy n

Lemma A4 proves Theorem 2.7 for the special case 2* n# = {0}. The
next idea is to attain this situation (2* n# = {0}) by passing to the quotient
“TIRN(2* n R)).”

(b) Passing to the Quotient. Define K := 2* n &. Then K is a subspace which is
compatible with, and contained within, #,, ..., #,, &, Zf, ..., P}, P*, 2*. Let n
denote the canonical projection n := R" —» R"/K, and whenever convenient, let a
(hat) above a quantity denote its projection; that is, # := n(&), etc.

Let F be any feedback matrix rendering &,, ..., #,, 2, ..., #} invariant, and,
hence, also #, 2*, 2*, and K. Then the system

X =(A + BF)x + Bu,

yi = Cx, I<igy,
naturally projects [W] to X := R"/K, as

% = A% + Bu,

w=Cx% I<isp

where £ := n(x), A% := n[(4 + BF)x], B := n o B,and C; := C, o n. In the following,
A + BF will be denoted as A.

In order to reduce the proof of Theorem 2.7 to an application of Lemma A 4, the
following points must be established:

(i) The set of subspaces Ry, ..., R, R} satisfies:
(a) 4, is a controllability subspace, | <i <y,
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®) %03+ ()l @B =3,
© %= V=14 . o
(i) The set of subspaces {2, ..., 2F, $*, 2*} satisfies:
(d) @ is the maximal controllability subspace contained in ker C;,
() 2* is the maximal controllability subspace contained in $*.
(i) 2* and 2 satisfy
) 3* ~n 2% = {0).

Then the quotient system satisfies $* = # + 9% which yields $* + K =
NP =N B+ 3% =R+ 3*+ K =R+ 2% ie,P* = R+ 2* Thisestab-
lishes the theorem since £ + 2* c 2*.

Points (b), (c), and (f) follow from the following lemma, whose proof is given for
the sake of completeness.

Lemma A5. For V, and V, arbitrary subspaces of R",
r())nalV,) =xaV; + K)nxn(V, + K)==([V; + KIn[V; +K])

Proof. The first equality follows from #(K) = 0. For the second one, note that
o[V, + KIn[V, + K]) = =(V; + K)n=n(V, + K),

so to establish equality it is sufficient to prove equality of dimension. Doing the
relevant computations

dim(z([V, + K]1n[V> + K]))
=dim([V, + K]n [V, + K]) — dim(K)
=dim[V¥; + K] + dim[V, + K] — dim[V; + V, + K] — dim[K],
whereas,
dim[#(V; + K) nzn(V, + K)]
= dim[n(V, + K)] + dim[n(V, + K)] — dim[=n(V; + V; + K)]
= dim[V; + K] + dim[V, + K] — dim[V, + V;, + K] — dim[K].

Hence, they are equal. |

The following lemmas are aimed at establishing points (a), (d), and (e).

Lemma A.6. If K and V are controlled-invariant subspaces satisfying K < V < 8§,
S a subspace, then n(V) is a controlled-invariant subspace contained in n(S).

Proof. Since K = V and both are controlled-in_variant, there exists a feedback
mat‘rix F such that AK < K and AV = V where 4 = A + BF. From the definition
of A, and the controlled-invariance of V, one has

An(V) := n(AV) < n[V + Im B] = n[V] + Im B,
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so n(V) is a controlled-invariant subspace of the projected system. Its containment
in n(S) is obvious. [

Lemma A.7. Let & be a controllability subspace and K c & a controlled-invariant
subspace. Then n(R) is a controllability subspace.

Proof. Let F be such that (4 + BF)Z < # and (A + BF)K c K, so that
A|1B Ry = R = (A|R) where A = A + BF. Then,
CAIn(B) " (B)) = n Aln~" (r(%) N 7(B)))
= {A|R (B + K)) > n{A|R " B)

= 1(A).
Also,
{A|R N (# + K)) c n{A|R) = n(R).
Hence,
(A|m(B) " n(B)) = n(R),
so n(A) is a controllability subspace. |

Lemma A.8. Suppose V* is the maximal controlled-invariant subspace contained in
S, and K < V* is also controlled-invariant. Then n(V*) is the maximal controlled-
invariant subspace contained in n(S).

Proof. By Lemma A.6, n(V*)is a controlled-invariant subspace contained in z(S).
To show that n(V *)is indeed maximal, it suffices to show that if ¥ is any controlled-
invariant subspace contained in z(S), then n~! (V) is a controlled-invariant subspace
of S, and hence is contained in ¥* by maximality. Let ¥ be any subspace of R” such
that n(V) = V. V being controlled-invariant means

An(V) < n(V) + n(B);
hence,
K+AVc(V+K) +ImB
which yields
AV < (V+K)+Im B.
Using the fact that K is controlled-invariant, one obtains
A(V + K) = (V + K) + Im B,
which finally gives
Az Y (V) e 2~ Y(V) + Im B,

establishing that n7!(V) is controlled-invariant. |
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Lemma A.9. Suppose V is a controlled-invariant subspace, #* is the maximal
controllability subspace contained in V, and K is a controlled-invariant subspace of
R*. Then n(R*) is the maximal controllability subspace contained in (V).

Proof. As always, let F be such that (4 + BF)V < V and (4 + BF)K < K. By
Lemma A.6, n(V) is controlled-invariant, and hence the maximal controllability
subspace contained in n(V) is (4| (V) N 7(B)). The task is to show that this equals
n(#*). Proceeding

KAln(V) (D)) = n{A]V (B + K)) < ndAIV A (B + &%)
= n{A|R*) = n(R*),

where the penultimate equality follows from the fact that (V n #) = #* < V implies
V(B + #*) = #*, by the Modular Distributive Rule. For the reverse inclusion,

AV A (B + K)) > 2 A|V A B) = n(R*),
since #* = (A|V N B). [ ]

Now, point (a) follows from Lemma A.7; points (d) and (e) follow from Lemmas
A.8 and A9 taken together. Hence, the proof is complete.

Ad4. Proof of Lemma 2.10

From Lemma A.2,

.@" + ﬂ '%J = C*
J#i
and
gait + m gaj* = C*;
i#
by the definition of 2*,
R; < P* < C*,
By duality, one obtains
R n,-;.- R = C*, (A.14)
P Y Pt =C*, (A.15)
J#i
and
C*t c 2+t < @t (A.16)

Let W, := C*'. By (A.16), there exist subspaces W;* and W such that ¥+ =
We D W,,; and B = W @ WP @ W,,,. Since & := 4, &, by duality, #* =
Yu_, ®;. This, combined with (A.14), shows that #* = W/ @ W} @ - @ W, @
W) @ W,,,. Since 2 < 2* "R = R, by duality, #* = (2* " R)* = #*. Hence,
there exist subspaces W, ., and W2, such that (2* " ®)* = #* ® W,,, and 2* =
2t ® W,,, ® W),,. Finally, one can choose W2, such that 2* @ W72, = (R")*.



338 J. W. Grizzle and A. Isidori

Now, defining
Vf:(m"@Wlb@"'@ gi1®th®Wib®...@m+3)l’

etc., gives the desired set of subspaces.

Appendix B

B.1. Proof of Lemma 3.5

Using #,n% + ();1(#;n %) =¥ and the regularity of {#,,..., #,}, one can
apply Lemma A.1 pointwise to construct a smooth decomposition of ¢ into con-
stant dimensional (but not necessarily involutive distributions) %; such that ¥ =
%@ D%, and

Gnd=Y 9. B.1
i };; (B.1)

Define a partition of {l,...,m} by I, ={1,...,dim %}, L, ={l +dim%,, ...,
dim(%, + %,)}, etc., and choose a set of vector fields {g, ..., g} such that & =
span{g)|j € I;}.

Since &, is controlled invariant, and (B.1) holds, it follows that, forall 1 < k < m,

R R+ %, (B.2)

(G, ] = i + %1 (B3)
Similarily, since 2¥ is controlled-invariant and &, c £,

PP+ 9, (B4)

(.21 P+ 4 (B.5)

foralll <k <m.

In order to simplify the notation (specifically, to avoid subscripting the sub-
scripts), it will now be assumed that the cardinality of each index set I, is one, and
hence that m = u + 1. It will be clear that the general case follows in the same
manner.

For each 1 <i < p, (B.2)~(B.5) imply the existence of a regular feedback u; =
%(x) + Bi(x)v;, such that

LS+ ga, Z) c R, (B.6)
(3.8, 2] = A, (B.7)
and
[f +gid, P*] < P, (B.3)
[4:B. 27+] = P (B.9)

Define &(x) = column (&,(x), ..., &,+1(x)), where &,,,(x) is chosen so that
&(x) is an m x 1 vector, but is otherwise arbitrary. In addition, define f(x) =
diag(B,(x), ..., Bu+1(x)), where B,,,(x) is chosen so that B(x) is an invertible m x m
matrix, but is otherwise arbitrary. Finally, select an invertible m x m matrix I'(x)
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such that
(3N 1Gmlx)] = [g1(X)] - |gm(x)]T ()
and define
a(x) = I(x)a(x), (B.10)
B(x) = T(x)B(x). (B.11)

It is now claimed that I\, ..., I,,, and u = a(x) + B(x)v are the desired partition
and feedback, respectively. To see this, first note that (gf); = (6[7), forl<j<m,
and that (Jﬁ), € &, for all j € I,, by (B.1). This shows part (c) of the lemma. Consider
next, f + ga = f + ga, which can be written as

utl
f+3¥ Y gu. (B.12)
=1 jel;
By (B.6),
[f + Y g8, 991] S (B.13)
Jjel;
from (B.1),
Y 9 EeR,
K#L jely
and so by the involutivity of £#;,
[Z Y. 0% %] < R, (B.14)
k#i jely
Taking (B.13) and (B.14) together yields
LS+ g0 #] < R, (B.15)
In a similar manner, (gB), = (§B), for all 1 < k < m. Equation (B.7) shows that
[(@B), 2] < R (B.16)

For each j ¢ I,, (B.1) yields that (gB), € &,.
This, combined with the involutivity of &; gives

(@B, &) = & (B.17)
for all j ¢ I,. Taking (B.16) and (B.17) together yields

L(gBh, Z] = &, (B.18)
forall 1 < k < m. Part (b) of the lemma is therefore established by (B.15) and (B.18).
Part (a) follows in a similar fashion. ]

B.2. Proof of Theorem 3.2

The necessity of (3.3) and (3.4) follows from Lemma 3.1. The sufficiency argument
follows the same steps as the proof of Lemma 3.5 |
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B.3. Proof of Theorem 3.7

The proof follows the same steps as those in the proof of Theorem 2.7, with
appropriate modifications. For example,

'%i = Iq_g
,;,- <A|%;)
is replaced by
Ri=Y {fodre Gul D
J#

where f, §,, ..., §n are the vector fields of the closed-loop system obtained by
applying the feedback of Lemma 3.5,% = ¢, @ - ® 9, is an appropriate decom-
position of ¢, and ¢ f,g 1s -+-» Gml ;> denotes the smallest distribution containing ¥
and invariant under f, §,, ..., §,,. From the controllability distribution algorithm
of [1, p. 159], it follows that &, so defined is the smallest distribution containing
Y ;1% and invariant under £, §,,..., §n. When 2* is expressedas &, @ @ Suy,
it is not necessary that the distributions % be involutive; etc. ]

B4. Proof of Lemma 3.10

Follows easily from the proof of Lemma 2.10 in combination with the techniques
used, for example, in Lemma 4.1 of [IG]. [ ]
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