
Strong Extension Axioms and

Shelah's Zero-One Law for

Choiceless Polynomial Time

Andreas Blass�

Mathematics Department

University of Michigan

Ann Arbor, MI 48109{1109, U.S.A.

ablass@umich.edu

Yuri Gurevich

Microsoft Research

One Microsoft Way

Redmond, WA 98052, U.S.A.

gurevich@microsoft.com

September 11, 2000

Abstract

This paper developed from Shelah's proof of a zero-one law for

the complexity class \choiceless polynomial time," de�ned by Shelah

and the authors. We present a detailed proof of Shelah's result for

graphs, and describe the extent of its generalizability to other sorts

of structures. The extension axioms, which form the basis for earlier

zero-one laws (for �rst-order logic, �xed-point logic, and �nite-variable

in�nitary logic) are inadequate in the case of choiceless polynomial
time; they must be replaced by what we call the strong extension

axioms. We present an extensive discussion of these axioms and their

role both in the zero-one law and in general.

�Partially supported by a grant from Microsoft Research.

1

1 Introduction

The BGS model of computation was de�ned in [4] with the intention of
modeling computation with arbitrary �nite relational structures as inputs,
with essentially arbitrary data types, with parallelism, but without arbitrary
choices. In the absence of any resource bounds, the lack of arbitrary choices
makes no di�erence, because an algorithm could take advantage of parallelism
to produce all possible linear orderings of its input and then use each of these
orderings to make whatever choices are needed. But if we require the total
computation time (summed over all parallel subprocesses) to be polynomially
bounded, then there isn't time to construct all the linear orderings, and so
the inability to make arbitrary choices really matters.

In fact, it was shown in [4] that choiceless polynomial time, ~CPTime,
the complexity class de�ned by BGS programs subject to a polynomial time
bound, does not contain the parity problem: Given a set, determine whether
its cardinality is even. Several similar results were proved, all depending on
symmetry considerations, i.e., on automorphisms of the input structure.

Subsequently, Shelah [15] proved a zero-one law for ~CPTime properties
of graphs1. We shall state this law and present its proof later in this paper.
For now, let us just mention a crucial di�erence from the earlier results in
[4]: Almost all �nite graphs have no non-trivial automorphisms, so symmetry
considerations cannot be applied to them. Shelah's proof therefore depends
on a more subtle concept of partial symmetry, which we explain in Section 12
below.

Much of the present paper is devoted to an exposition of Shelah's proof
of (one version of) the zero-one law, but we also prove several other results
concerning the so-called strong extension axioms, which play a crucial role
in that proof. We also hope that, by concentrating on a single version of
the zero-one law, by formulating the argument in terms of (nearly) the same
computation model used in [4], and by including many details, we have made
the presentation of Shelah's proof more accessible than the original source
[15].

For simplicity, we shall generally deal only with input structures that are
undirected, loopless graphs, i.e., sets equipped with a symmetric, irreexive
binary relation of adjacency. We also restrict our attention to the uniform
probability model. That is, we de�ne the probability of a class (assumed

1Actually, Shelah's proof covers more general structures; see Section 3.

2

closed under isomorphism) of n-vertex graphs by considering all graphs with
vertex set f1; 2; : : : ; ng to be equally probable. This probability measure
can also be de�ned by saying that, for each potential edge, i.e., each set
of two distinct vertices, we ip a fair coin to decide whether to include the
edge in our graph. In such contexts, it is always to be understood that the
coin ips are independent. The asymptotic probability of a class of graphs
is de�ned as the limit, as n !1, of the probability of its intersection with
the class of n-vertex graphs. We sometimes refer to the probability of a
property of graphs, meaning the probability of the class of graphs that have
that property. In general, a zero-one law says that de�nable classes have
asymptotic probability 0 or 1, but, as we shall see, some care is needed in
formulating the zero-one law for ~CPTime.

All the results discussed in this paper can be routinely extended to other
contexts, such as directed graphs, or sets with several relations, including
relations of more than two arguments. It is also routine to replace the uniform
probability measure by one where all potential edges have probability p, a
constant other than 1

2
. We shall describe in Section 3 a general framework for

such extensions, but, because these generalizations complicate the notation
without contributing new ideas, we shall discuss only graphs in the rest of
the paper.

An abridged version [1] of this paper sketches the proof of the zero-one
law that is presented in detail here. Also, [2] is a popularization of part of
the material in the present paper concerning the strong extension axioms.

2 The Zero-One Law

We start with a very brief description of the BGS model of computation,
just adequate to formulate the zero-one law. In Section 4, we shall give more
details about the model, in preparation for a description of the proof of the
zero-one law.

The BGS model, introduced in [4], is a version of the abstract state ma-
chine (ASM) paradigm [11]. The input to a computation is a �nite relational
structure I. A state of the computation is a structure whose underlying
set is HF(I), which consists of the underlying set of I together with all
hereditarily �nite sets over it; the structure has the relations of I, some set-
theoretical apparatus (for example the membership relation 2), and some
dynamic functions. The computation proceeds in stages, always modifying

3

the dynamic functions in accordance with the program of the computation.
The dynamic functions are initially constant with value ; and they change
at only �nitely many arguments at each step. So, although HF(I) is in�-
nite, only a �nite part of it is involved in the computation at any stage.
The computation ends when and if a speci�c dynamic 0-ary function Halt
acquires the value true = f0g, and the result of the computation is then
the value of another dynamic 0-ary function Output. (We have adopted the
convention that the truth values are identi�ed with the �rst two von Neu-
mann ordinals, false = 0 = ; and true = 1 = f0g. Recall that the �nite
von Neumann ordinals represent the natural numbers by identifying n with
the set f0; 1; : : : ; n� 1g.)

This model was used to de�ne choiceless polynomial time ~CPTime by
requiring a computation to take only polynomially many (relative to the size
of the input structure I) steps and to have only polynomially many active
elements. (Roughly speaking, an element of HF(I) is active if it participates
in the updating of some dynamic function at some stage.) Also, Output
was restricted to have Boolean values, so the result of a computation could
only be true, or false, or undecided. (The \undecided" situation arises if the
computation exhausts the allowed number of steps or the allowed number
of active elements without Halt becoming true.) We shall use the phrase
polynomial time BGS program to refer to a BGS program, with Boolean
Output, together with polynomial bounds on the number of steps and the
number of active elements.

Two classes K0 and K1 of graphs are ~CPTime-separable if there is a
polynomial time BGS program � such that, for all input structures from K0

(resp. K1), � halts with output false (resp. true) without exceeding the
polynomial bounds. It doesn't matter what � does when the input is in
neither K0 nor K1.

Theorem 2.1 (Shelah's Zero-One Law) If K0 and K1 are ~CPTime-sep-
arable classes of undirected graphs, then at least one of K0 and K1 has as-
ymptotic probability zero.

An equivalent formulation of this is that, for any given polynomial time
BGS program, either almost all graphs produce output true or undecided
or else almost all graphs produce output false or undecided. It is tempting
to assert the stronger claim that either almost all graphs produce true, or
almost all produce false, or almost all produce undecided. Unfortunately,

4

this stronger claim is false; a counterexample will be given after we review
the de�nition of BGS programs in Section 4.

The theorem was, however, strengthened considerably in another direc-
tion in [15]. It turns out that the number of steps in a halting computation
is almost independent of the input.

Theorem 2.2 Let a BGS program � with Boolean output and a polynomial
bound for the number of active elements be given. There exist a number
m, an output value v, and a class C of undirected graphs, such that C has
asymptotic probability one and such that, for each hI; Ai 2 C, either

� � on input hI; Ai halts after exactly m steps with output value v and
without exceeding the given bound on active elements, or

� � on input hI; Ai either never halts or exceeds the bound on active
elements.

The proof of the theorem gives a somewhat more precise result. If there is
even one input hI; Ai 2 C for which � eventually halts, say at stepm, without
exceeding the bound on active elements, then in the second alternative in
the theorem the computation will exceed the bound on active elements at or
before step m.

Notice that this theorem does not assume a polynomial bound on the
number of steps. It is part of the conclusion that the number of steps in
a successful computation is not only polynomially bounded but constant as
long as the input is in C and the number of active elements obeys its bound.

Intuitively, bounding the number of active elements, without bounding
the number of computation steps, amounts to a restriction on space, rather
than time. Thus, Theorem 2.2 can be viewed as a zero-one law for choiceless
polynomial space computation.

The class C in the theorem actually has a fairly simple description; it
consists of the graphs that have at least n1 nodes and satisfy the strong
extension axioms to be de�ned in Section 6 below for up to n2 variables. The
parameters n1 and n2 in this de�nition can be easily computed when the
program � and the polynomial bound on the number of active elements are
speci�ed.

5

3 Thesauri

In this section, we describe a general framework for dealing with random
structures \similar" to graphs. The results in the rest of this paper can
be generalized to this framework, but this section can be skipped without
damage to the rest of the paper.

The uniform probability measure on graphs with vertex set f1; 2; : : : ; ng
has, as indicated above, two equivalent de�nitions, one \global" (all graphs
have equal probability) and one \local" (each potential edge has probability
1
2
of being present, and di�erent potential edges are probabilistically inde-

pendent). The global de�nition applies verbatim to structures of any sort,
but it is considerably more di�cult to study when it is not equivalent to
a local de�nition, for example when the structures are partial orderings.
Furthermore, the local de�nition admits variations, such as allowing edge
probabilities other than 1

2
, that are relatively easy to analyze but do not

admit a simple global de�nition. The framework developed in this section
is intended to describe probability distributions of the local sort. Recall
that local distributions make sense not only for graphs but also for general
relations of arbitrary arity. Graphs are an example where the (adjacency)
relation is subject to certain constraints, namely irreexivity and symmetry.
Thesauri are intended to capture general constraints of this sort. Notice that
not all constraints are amenable to such treatment; for example, transitiv-
ity of a binary relation constrains it in a way not compatible with assigning
probabilities by independent ips of a (possibly biased) coin.

We shall generalize the notion of a relation symbol in a �rst-order vo-
cabulary in two ways. First, the symbol may come with an attached notion
of symmetry. For binary relations, this means ordinary symmetry or an-
tisymmetry, but for relations of higher arity more complicated notions of
symmetry become possible. Second, our relations will not necessarily be
two-valued (with values true and false) but will have some speci�ed �nite
number of values.

We shall also restrict our generalized relations, which we call colorings,
to apply only to tuples of distinct elements. Thus, for example, if R is a
binary relation in the usual sense, then we would regard it as two (2-valued)
colorings, a binary one assigning to each distinct a and b the value R(a; b)
and a unary one assigning to each a the value R(a; a). Similarly, a ternary
relation becomes �ve (2-valued) colorings | one ternary, three binary (from
R(a; a; b), R(a; b; a), and R(b; a; a)), and one unary.

6

A thesaurus will consist of speci�cations | arity, number of values, and
symmetry | for �nitely many colorings. In addition, it will be convenient
to include, for each coloring, a probability distribution on the colors. For-
mally, the de�nitions are as follows; we present the syntax �rst and then the
semantics.

De�nition 3.1 A signum is a 6-tuple hR; j; v; G; h; pi where
� R is an arbitrary symbol,

� j is a natural number, called the arity,

� v is a non-zero natural number called the value number,

� G is a group of permutations of f1; 2; : : : ; jg,
� h is a homomorphism fromG into the group of permutations of f1; 2; : : : ; vg,
and

� p is a probability distribution on f1; 2; : : : ; vg that is invariant under
the group h(G) and that gives each element of f1; 2; : : : ; vg non-zero
probability.

A thesaurus is a �nite set of signa with distinct �rst components.

Here R is analogous to relation symbols in traditional vocabularies for
�rst-order logic. In keeping with this analogy, we sometimes write R when
we really mean the whole signum. Thus, we may say that j is the arity of
R or that R is a v-valued signum. We sometimes refer to a signum minus
the symbol R, i.e., hj; v; G; h; pi, as the type of the signum, and say that R
is a signum of this type. The G and h in the de�nition serve to specify the
symmetry, as will become clear from the following de�nition of the semantics.

De�nition 3.2 LetX be a non-empty set. A coloring ofX of type hj; v; G; h; pi
is a function C from the set Xj 6= of j-tuples of distinct elements of X into
f1; 2; : : : ; vg such that, for each permutation � 2 G and each (x1; : : : ; xj) 2
Xj 6=,

C(x1; : : : ; xj) = h(�)(C(x�(1); : : : ; x�(j))):

If � is a thesaurus, then an �-structure M consists of a nonempty base set
jM j with, for each R 2 �, a coloring RM of jM j of the same type as R.

7

This de�nition does not make use of the probability distribution, but the
next one will. We remark that the requirement, in the de�nition of coloring,
relating the colors to the permutations in G can be reformulated as follows.
Since G acts on f1; 2; : : : ; jg, it also acts on the set of functions from this
set into any set jM j and, by restriction, on the subset jM jj 6=. This induced
action is given by

�(x1; : : : ; xj) = (x��1(1); : : : ; x��1(j)):

Then the symmetry requirement in the de�nition says that C : jM jj 6= !
f1; 2; : : : ; vg commutes with the actions of G on its domain and (via h) on
its range.

We make use of the action ofG on jM jj 6= in the next de�nition by referring
to its orbits. Recall that the orbit of an element (in a set acted on by a
group) is the set of all elements obtainable from the given one by applying
elements of the group. Recall also that distinct orbits are disjoint, so the
orbits constitute a partition of the set.

De�nition 3.3 A random �-structure M with base set jM j = f1; : : : ; ng
is obtained as follows. For each signum R 2 �, say of arity j, for each G-
orbit in jM jj 6=, pick one element ~x of the orbit, choose a value for RM(~x) at
random in f1; : : : ; vg according to the probability distribution given in the
signum R, and then de�ne RM on the rest of the orbit in the unique way
that commutes with the action of G as required for a coloring.

This de�nition of random structure is independent of the choice of repre-
sentatives in the orbits, because the probability distribution on f1; : : : ; vg is
h(G)-invariant.

Example 3.4 A j-ary relation can be regarded as a collection of 2-valued
signa with various arities � j, one signum for each partition of the index set
f1; : : : ; jg (the arity of the signum being the number of blocks in the corre-
sponding partition). Take the groups and (therefore) the homomorphism to
be trivial, and take p to be the uniform distribution on the two values. Then
a structure for this thesaurus amounts to just a j-ary relation, and a random
structure is a random j-ary relation in the usual sense.

More generally, any �nite �rst-order vocabulary can be converted in this
way into a thesaurus, and structures of the thesaurus amount to structures of
the original vocabulary. Furthermore, random structures for this thesaurus

8

are the random structures, with respect to the uniform distribution, for the
original vocabulary.

By varying the probability distributions in the thesaurus, we get certain
non-uniform probability distributions on random structures.

Example 3.5 Ordinary graphs (undirected, without loops or multiple edges),
i.e., symmetric, irreexive, binary relations, are the structures for the the-
saurus with a single, 2-ary, 2-valued signum, the group G consisting of both
permutations of f1; 2g and the homomorphism h being trivial. With the
uniform probability distribution on f1; 2g, random structures are random
graphs in the sense de�ned earlier. With a di�erent probability distribution
on f1; 2g, we get random graphs with biased (but constant) edge probabili-
ties.

Example 3.6 Modify the preceding example by taking h to be the identity
homomorphism on the permutation group of f1; 2g. Now a structure amounts
to a tournament. Only the uniform probability distribution on f1; 2g satis�es
the invariance requirement in the de�nition of signa, and it yields the usual
notion of a random tournament. The fact that other probability distributions
are not permitted corresponds to the fact that \a random tournament with
biased edge directions" doesn't make sense | the two possible directions of
any edge play symmetric roles so one can't say which one the bias should
favor.

Example 3.7 Consider the thesaurus consisting of a single, 3-ary, 2-valued
signum, where G is the group of all six permutations of f1; 2; 3g and h is the
non-trivial homomorphism from G to permutations of f1; 2g (whose kernel
is the subgroup of cyclic permutations in G). Then a structure for this
thesaurus amounts to a set with a speci�ed cyclic ordering on every 3-element
subset.

By reading the rest of this paper with thesauri in mind, the reader will
be able to prove:

Theorem 3.8 Everything in this paper generalizes from the special case of
random graphs to the case of random structures for any thesaurus.

We omit all details of this but mention, to avoid possible confusion, that
the generalized strong extension axioms (from Section 6) will involve the

9

probability distributions from the thesaurus's signa. The axioms will say
that every quanti�er-free type is realized at least half (or some other fraction
< 1) as often as the expected number of realizers. That expected number
can depend on the particular signa and on the particular values (replacing
the truth values in types).

4 BGS Programs

In this section, we review the syntax and semantics of BGS programs, as well
as the concept of active elements. These are the ingredients used in de�ning
~CPTime in [4].

The programs we consider take as inputs �nite graphs, i.e., structures of
the form hI; Ai, where I is the set of vertices (I stands for \input") and A
the adjacency relation. Our computations take place in the universe HF (I)
of hereditarily �nite sets over I. This universe is the smallest set containing
all the members of I and all �nite subsets of itself. In other words, it is the
union of the sets Pn(I) de�ned inductively by

P0(I) = I

Pn+1(I) = I [P�n(Pn(I));

where P�n(X) means the set of all �nite subsets of X.
By the rank of an element x of HF (I) we mean the smallest n such that

x 2 Pn(I). Thus, an atom has rank 0, and a set has the smallest rank that
exceeds the ranks of all its members.

We identify the truth values false and true with the sets 0 = ; and
1 = f0g, respectively. Thus, relations can be regarded as functions taking
values in f0; 1g.

We call a set x transitive if whenever z 2 y 2 x then z 2 x; equivalently,
every set that is a member of x is also a subset of x. The transitive closure
TC(x) of a set x is the smallest transitive set having x as a member. Thus,
it contains x, its members, their members, and so on. (Many authors de�ne
TC(x) as the smallest transitive set having x as a subset; their TC(x) is the
same as ours except that it doesn't have x as a member.)

De�nition 4.1 Our function symbols are

� the logical symbols, namely = and the connectives :, ^, _, !, $,
true, and false,

10

� the set-theoretic function symbols 2, ;, Atoms,
S
, TheUnique, and

Pair,

� the input predicate symbol A, and

� �nitely many dynamic function symbols.

The intended interpretation of
S
x, where x is a family of sets and atoms,

is the union of the sets in x (ignoring the atoms). If x is a set with exactly one
member then TheUnique(x) is that member. Pair(x; y) means fx; yg. The
input predicate A denotes the adjacency relation of the input graph. The
intended meanings (and arities) of the other symbols should be clear; if they
aren't then see the formal set-theoretic expressions in Section 11. We adopt
the convention that if a function is applied to an inappropriate argument
(like

S
applied to an atom or A applied to sets) then the value is ;.

Among the function symbols, 2, A, and the logical symbols are called
predicates because their intended values are only true and false.

In addition to function symbols, we use a countably in�nite supply of
variables and certain symbols introduced in the following de�nitions of terms
and rules.

De�nition 4.2 Terms and Boolean terms are de�ned recursively as follows.

� Every variable is a term.

� If f is a j-ary function symbol and t1; : : : ; tj are terms, then f(t1; : : : ; tj)
is a term. It is Boolean if f is a predicate.

� If v is a variable, t(v) a term, r a term in which v is not free, and '(v)
a Boolean term, then

ft(v) : v 2 r : '(v)g
is a term.

The construction ft(v) : v 2 r : '(v)g binds the variable v.

In connection with ft(v) : v 2 r : '(v)g, we remark that, by exhibiting
the variable v in t(v) and '(v), we do not mean to imply that v must actually
occur there, nor do we mean that other variables cannot occur there. We
are merely indicating the places where v could occur free. The \two-colon"

11

notation ft(v) : v 2 r : '(v)g is intended to be synonymous with the more
familiar \one-colon" notation ft(v) : v 2 r ^ '(v)g. By separating the
v 2 r part from '(v), we indicate the computational intention that the
set should be built by running through all members of r, testing for each
one whether it satis�es ', and collecting the appropriate values of t. Thus
ft(v) : v 2 r : v 2 r0g and ft(v) : v 2 r0 : v 2 rg are the same set,
but produced in di�erent ways. (Such \implementation details" have no
bearing on our results but provide useful intuitive background for some of
our de�nitions.)

Our o�cial notation for terms, described above, contains propositional
connectives but not quanti�ers. We regard (bounded) quanti�ers as abbre-
viations, namely

(9x 2 r)'(x) abbreviates 0 2 f0 : x 2 r : '(x)g
(8x 2 r)'(x) abbreviates :(9x 2 r):'(x):

Unbounded quanti�ers are not available in BGS programs.
We shall also have occasion to use the set-forming construct ft(v) : v 2

r : '(v)g with more than one variable in the role of v. This can be de�ned
as

ft(u; v) : u 2 r; v 2 s : '(u; v)g abbreviates[
fft(u; v) : v 2 s : '(u; v)g : u 2 r : trueg;

and similarly with more than two variables.

De�nition 4.3 Rules are de�ned recursively as follows.

� Skip is a rule.

� If f is a dynamic j-ary function symbol and t0; t1; : : : ; tj are terms, then

f(t1; : : : ; tj) := t0

is a rule, called an update rule.

� If ' is a Boolean term and R0 and R1 are rules, then

if ' then R0 else R1 endif

is a rule, called a conditional rule.

12

� If v is a variable, r is a term in which v is not free, and R(v) is a rule,
then

do forall v 2 r; R(v) enddo
is a rule, called a parallel combination.

The construct do forall v 2 r; R enddo binds the variable v.

Convention 4.4 When the \else" part is Skip, we use if ' then R endif

to abbreviate if ' then R else Skip endif.
We use do in parallel R0; R1 enddo as an abbreviation for

do forall v 2 Pair(true; false)
if v =true then R0 else R1

endif

enddo

The do in parallel construct applied to more than two rules means an
iteration of the binary do in parallel .

De�nition 4.5 A program is a rule with no free variables.

Convention 4.6 By renaming bound variables if necessary, we assume that
no variable occurs both bound and free, and no variable is bound twice, in
any term or rule.

Throughout much of this paper, the context of our discussion will include
a �xed program �. In such situations, we adopt the following convention.

Convention 4.7 When we refer to a term or rule within �, we mean a
speci�c occurrence of the term or rule in �.

Since a program � has no free variables, every variable v occurring in
it is bound exactly once, either by a term ft : v 2 r : 'g or by a rule
do forall v 2 r; R enddo.

De�nition 4.8 If v is bound by ft : v 2 r : 'g, then the scope of v con-
sists of the exhibited occurrence of v as well as t and '. If v is bound by
do forall v 2 r; R enddo, then the scope of v consists of its exhibited oc-
currence and R. In both cases, the range of v is r. Notice that the range of
v is not in the scope of v.

13

This concludes the description of the syntax of BGS. The semantics will be
de�ned in great detail in Section 11, but we give a brief informal explanation
here. A state of a computation is a structure with base set HF (I), with all
the logical and set-theoretic function symbols and A interpreted as described
immediately after De�nition 4.1, and with the dynamic function symbols
interpreted arbitrarily. A pebbled state consists of a state together with an
assignment of values in HF (I) to �nitely many variables. When the relevant
variables and their ordering are understood, we think of a pebbled state as a
state plus a tuple of elements, (H; a1; : : : ; aj), where ai is the value assigned
to the ith variable. For brevity, we often use vector notation ~a for (a1; : : : ; aj).

Terms and rules can be evaluated in any pebbled state that assigns val-
ues to all their free variables. The value of a term is a member of HF (I)
computed using the interpretations of the function symbols. The value of
a rule is a set of updates, each changing the value of a dynamic function
symbol at some tuple of arguments. An update rule f(t1; : : : ; tj) := t0 pro-
duces a single update, changing the value of f at the tuple (a1; : : : ; aj) to
a0, where each ai is the value of the corresponding term ti. A conditional
rule if ' then R0 else R1 endif produces the same updates as R0 or R1

according to whether the value of ' is true or false. A parallel composition
do forall v 2 r; R(v) enddo produces all the updates produced by R(v) in
all the pebbled states obtained from the current one by assigning arbitrary
members of the value of r as values to v. And of course Skip produces no
updates. If the update set of the program � does not contain any conicting
updates | attempting to change the value of the same function at the same
argument tuple to two di�erent values | then the next state of the computa-
tion is obtained from the present state by applying all these updates. If there
is a conict, then the next state is the same as the present one. (Notice that,
since a program has no free variables, it can be evaluated in an unpebbled
state.)

The transition from one state of a computation to the next is often called
a macrostep, where \macro" refers to the large amount of work that may be
involved, especially because of parallelism. By contrast, a microstep would
be a single action such as looking up the value of a function at some argument
tuple or updating such a value. The number of microsteps in a computation
provides a more honest measure of computation time than the number of
macrosteps. As explained in [4], imposing a polynomial bound on the number
of microsteps amounts to imposing polynomial bounds on both the number
of macrosteps and the number of elements of HF (I) that are active in the

14

sense of the following de�nition. We use the latter formulation as the o�cial
de�nition of choiceless polynomial time, ~CPTime. Thus, we avoid the need
to precisely de�ne microsteps; we incur the need to precisely de�ne active,
but this is a concept that is directly needed in the proof of the zero-one law.

De�nition 4.9 The critical elements of a pebbled state (H;~a) are

� all the atoms and the set I of atoms,

� the Boolean values true and false,

� all values of dynamic functions,

� all components of all tuples where dynamic functions have values other
than ;, and

� all components of ~a.

An element is active if it is in the transitive closure of some critical element.

For ordinary (unpebbled) states, this de�nition di�ers from that in [4]
only in that the set I of atoms is critical and therefore also active.

We are now in a position to give the example, promised in Section 2, of
a BGS program � together with polynomial bounds on the number of steps
and the number of active elements, such that not all of the following three
classes of graphs have asymptotic probability 0 or 1: the graphs on which
� halts with output true (within the prescribed bounds on steps and active
elements), the analogous class for false, and the class of graphs on which �
fails to halt within the prescribed bounds. The required � can be taken to
be

do forall x 2 Atoms

do forall y 2 Atoms

do in parallel

if A(x; y) then f(Pair(x; y)) := true endif,

Output := true,

Halt := true

enddo

enddo enddo

This program � only executes once before halting, so we can take the
polynomial bound on the number of steps to be 2 and ignore this bound. The

15

number of active elements is n+3+e where n and e are the numbers of vertices
and edges in the input graph. (The active elements are the n atoms, the e
two-element sets corresponding to edges, the two boolean values, and the set
I of atoms.) In a large random graph, the expected value of e is n(n� 1)=4,
i.e., half the number of possible edges, but small uctuations about this value
are probable. The following easy lemma gives the information we need about
these uctuations.

Lemma 4.10 Consider N independent random trials, each succeeding with
probability 1=2. Then the probability that the number of successes in these N
trials is � N=2 approaches 1=2 as N !1.

Proof For odd values of N , the probability in question is exactly 1=2 by
symmetry; k successes are exactly as likely as N � k. For even values of N ,
the probability exceeds 1=2 because the event \number of successes � N=2"
includes all, rather than just half, of the cases where the number of successes
is exactly N=2. So the probability exceeds 1=2 by

1

2
�
�
N
N=2

�
2N

=
N !

2N+1((N=2)!)2
:

By Stirling's asymptotic formula for factorials, n! � nn
p
2�n=en, we �nd

that this excess probability is asymptotically

NN
p
2�N

eN2N+1
� eN

(N=2)N2�(N=2)
=

1p
2�N

;

and this approaches 0 as N !1. �

According to the lemma, the asymptotic probability that e � n(n� 1)=4
is 1=2. So, if we impose a bound of n + 3 + n(n � 1)=4 on the number of
active elements, then with asymptotic probability 1=2 our program will halt
with output true, and with asymptotic probability 1=2 it will fail to halt
because it cannot execute its single computation step without activating too
many elements.

5 Outline of Proof of Zero-One Law

The proof of the zero-one law for ~CPTime involves several ingredients. The
�rst is to show that whether a BGS program halts at a particular step with a

16

particular output can be de�ned by a �rst-order sentence over the structure
H = hHF (I);2; I; Ai, with a number of variables that does not depend on
the number of steps. A natural approach to proving Theorem 2.2 would then
be to use Ehrenfeucht-Fra��ss�e games and produce winning strategies for the
duplicator, to show that such sentences have the same truth value for almost
all input graphs hI; Ai. Unfortunately, that isn't true; for example, the parity
of jIj can be de�ned by a �rst-order statement over H, saying that there is
a bijection between I and an even von Neumann ordinal.

The second ingredient in the proof is to realize that bijections as in this
counterexample will not be relevant to polynomial time BGS computations.
Like the �rst ingredient, this idea was already present in [4], but it was con-
siderably easier to implement there. In [4], the role of the input graph hI; Ai
was played by a set with no additional structure, or at most with a partition
into a �xed number of pieces. In such a situation, symmetry considerations
ensure that, if some bijection b between the atoms and an ordinal were used
in the computation, then many others would be used as well, namely all those
obtainable from b by automorphisms of the input. But then the polynomial
bound on the number of active elements would be violated. In our present
situation, though, these symmetry considerations are unavailable, because
almost all �nite graphs have no non-trivial automorphisms.

Therefore, a subtler approach to symmetry is needed. Shelah introduces
a suitable class of partial automorphisms (for any given program � and any
given polynomial bound on the number of active elements) and shows that
it leads to an appropriate notion of symmetry. Here \appropriate" means
that the symmetry requirements are restrictive enough to provide winning
strategies for the duplicator yet are lenient enough to include all the sets
actually involved in a computation of �, limited by the given bound on
active elements.

To show that the symmetry requirements are restrictive enough depends
on showing that, just as a permutation of the atoms extends to an auto-
morphism of the set-theoretic structure HF (I), a partial automorphism of
the graph of atoms extends to a partial automorphism of HF (I). The proof
of the existence and good behavior of such extensions is considerably longer
than the corresponding proof for total permutations.

The hardest part of the proof is showing that this notion of partial sym-
metry is lenient enough: The computation involves only symmetric sets. This
will be proved by a double induction, �rst on the stages of the computation
and second, within each stage, on the subterms and subrules of �. The in-

17

ner induction proceeds along a rather unusual ordering of the subterms and
subrules, which we call the computational ordering.

In this double induction, it is necessary to strengthen the induction hy-
pothesis, to say not only that every set x involved in the computation is
symmetric but also that all sets x0 obtained from x by applying suitable
partial automorphisms are also involved in the computation. The assumed
bound on the number of active elements will imply a polynomial bound on
the number of involved elements. (Not all involved elements are active, but
there is a close conection between the two.) That means that the number of
x0's is limited, which in turn implies, via a highly non-trivial combinatorial
lemma, that x is symmetric.

The traditional extension axioms, as in [8], are satis�ed by almost all
graphs and are adequate to produce the duplicator's strategies that we need,
but they are not adequate to imply the combinatorial lemma needed in the
symmetry proof. For this purpose, we need what we call strong extension
axioms, saying that every possible type over a �nite set is not only realized
but realized by a large number of points.

We devote the next few sections to a discussion of the strong extension
axioms. Thereafter, we shall give the set-theoretic de�nitions of the behavior
of BGS computations. These provide the �rst of the ingredients in the proof
outline above; they also make precise our informal explanations of the mean-
ing of terms and rules in Section 4. Next, we shall describe in detail the other
concepts mentioned in the outline: computational order, objects involved in
a computation, extension of partial automorphisms of the graph of atoms to
partial automorphisms of HF (I). Then we shall prove the highly non-trivial
combinatorial lemma that ensures that all involved objects are symmetric.
Finally, we assemble all these ingredients to complete the proof.

6 Strong Extension Axioms

Extension axioms (for graphs) assert the existence of vertices in any possi-
ble \con�guration" relative to �nitely many given vertices; strong extension
axioms assert not only existence but plentitude.

More precisely, a k-parameter type is a formula �(y; x1; : : : ; xk) of the
form ^

1�i�k

(y 6= xi ^ �(yAxi)):

18

Here � before a formula means that the formula may or may not be negated.
So � speci�es the adjacency and non-adjacency relationships betwen y and
the k parameters xi; in addition, it says that y is distinct from the xi's
(which is redundant when yAxi is not negated, since the adjacency relation
A is irreexive). The extension axiom EA(�) associated to a type � is

8x1; : : : ; xk
 ^

1�i<j�k

xi 6= xj

!
! 9y �(y; x1; : : : ; xk)

!
:

For a �xed k, there are 2k of these extension axioms, because of the k choices
for the � signs in � . We write EAk for their conjunction together with
the statement that there are at least k vertices (so that the EA(�)'s aren't
vacuous). Thus, EAk says that every possible con�guration for a vertex y,
relative to k distinct, given vertices, is realized at least once. (We have
deviated a bit from the standard terminology of model theory. There, one
would replace the variables xi by names for speci�c, distinct vertices, and one
would call the resulting modi�ed � a generator for a k-parameter, quanti�er-
free 1-type. Since we won't need types of any other kind, we shortened the
terminology to �t our needs.)

We say that a graph satis�es the strong extension axiom SEA(�) if, for
every k distinct vertices x1; : : : ; xk, there are at least

1
2
n=2k vertices y satis-

fying �(y; x1; : : : ; xk). (Unlike the extension axioms, strong extension axioms
are not �rst-order formulas.) We write SEAk for the conjunction of all 2k

of the strong extension axioms SEA(�) as � ranges over all the k-parameter
types, together with the statement that there are at least k vertices. Thus,
SEAk says that each possible con�guration of y relative to k distinct xi's is
realized not just once (as EAk says) but fairly often, 1

2
n=2k times.

Why 1
2
n=2k? In a random graph with n vertices, the probability that

an arbitrary vertex b, di�erent from a1; : : : ; ak, satis�es �(b; a1; : : : ; ak) is
1=2k, so the expected number of vertices b satisfying �(b; a1; : : : ; ak) is (n�
k)=2k. So it is reasonable to expect, and we shall prove below, that with high
probability there are at least half the expected number (even with the factor
n�k increased slightly to n), i.e., 1

2
n=2k, vertices b satisfying �(b; a1; : : : ; ak).

The factor 1
2
could be replaced here with any positive constant � < 1; that

gives a strong extension axiom SEA�
k .

As indicated in Section 2.1, the class C of graphs in Theorem 2.2 consists
of those graphs that have su�ciently many vertices and satisfy SEAk for a
su�ciently large k. (In fact, the requirement that the number of vertices

19

be large can be subsumed by the SEA requirement, perhaps at the cost of
increasing k.) Thus, it is crucial for our purposes that each strong extension
axiom, like each (ordinary) extension axiom, is satis�ed by almost all graphs.

Proposition 6.1 For each k, the asymptotic probability of SEAk is 1.

The proof of this proposition depends on a \large deviation" inequality of
the sort given in Cherno�'s paper [7] and Lo�eve's book [14, Section 18]. The
references we have found prove stronger results than we need and therefore
give more complicated proofs than we need. We present here a simple proof
of an inequality strong enough for our purposes.

Lemma 6.2 Fix numbers �; r in the open interval (0; 1). There is a constant
c, also in (0; 1), such that the following is true for every positive integer m.
Let X be the number of successes in m independent trials, each trial having
probability r of success. Then Prob [X � �mr] � cm.

That is, the probability that the number of successes (X) is smaller than
the expected number (mr) by at least the (�xed) factor � decreases expo-
nentially as a function of the number m of trials.

Proof We begin with the well-known observation that, if Z is a non-
negative random variable and q is a positive real number, then

Prob [Z � q] � E(Z)

q
;

where E means \expectation." Indeed,

E(Z) = E(ZjZ � q)Prob [Z � q] + E(ZjZ < q)Prob [Z < q]

� E(ZjZ � q)Prob [Z � q]

� q � Prob [Z � q] :

We apply this with Z = exp[t(mr �X)], where t is a positive parameter
to be chosen later. Thus, we have

Prob [X � �mr] = Prob [Z � exp[t(mr � �mr)]]

= Prob [Z � exp[tmr(1� �)]]

� E(Z)

exp[tmr(1� �)]
:

20

We continue by computing E(Z). The random variable mr �X can be
viewed as the sum, over all m trials, of r � S, where S is 1 if the trial is a
success and 0 if not. Thus, Z is the product over all trials of exp[t(r � S)].
But the trials are independent, so the expectation of this product is the
product of the individual expectations. For each individual trial, we have

E(exp[t(r � S)]) = r � exp[t(r � 1)] + (1� r) � exp[t(r � 0)]

= exp[tr](r exp[�t] + 1� r):

Therefore,
E(Z) = exp[tmr](r exp[�t] + 1� r)m:

Substituting this into the inequality for Prob [X � �mr], we �nd

Prob [X � �mr] �
�
exp[tr](r exp[�t] + 1� r)

exp[tr(1� �)]

�m

= [exp[t�r] � (r exp[�t] + 1� r)]m:

So the lemma will be proved if we can �nd a positive t for which the value
of

f(t) = exp[t�r] � (r exp[�t] + 1� r)

is in the open interval (0; 1), for then this value can serve as the required c.
Notice that f(0) = 1 and that

f 0(t) = �r exp[t�r] � (r exp[�t] + 1� r) + exp[t�r] � (�r) exp[�t]:

Thus, f 0(0) = �r � r < 0 (because � < 1 and r > 0). Therefore, any
su�ciently small positive t will give 0 < f(t) < 1 as required. �

Remark 6.3 The best, i.e., smallest value of c obtainable by the preceding
argument is the minimum value of f(t). A routine calculation, setting f 0(t) =
0, shows that this minimum is�

1� r

1� �r

�1��r

�
�
1

�

��r

:

21

Notice that this is the weighted geometric mean of two quantities whose
correspondingly weighted arithmetic mean is�

1� r

1� �r

�
� (1� �r) +

�
1

�

�
� (�r) = 1:

Since the two quantities are not equal to 1 (as � < 1), the arithmetic-
geometric mean inequality shows again that the optimal c is smaller than
1.

Proof of Proposition 6.1 We shall show that, for each �xed k-parameter
type � , the probability that SEA(�) fails, in a random graph on vertex set
f1; 2; : : : ; ng, approaches 0 as n ! 1. Then, as SEAk is the conjunction of
a �xed number 2k (independent of n) of SEA(�)'s, its probability of failure
also approaches 0, as required.

So we concentrate henceforth on a single � . Temporarily, also concentrate
on k speci�c, distinct vertices a1; : : : ; ak 2 f1; 2; : : : ; ng. LetX be the number
of vertices b satisfying �(b; a1; : : : ; ak). In a random graph, each of the n� k
vertices other than a1; : : : ; ak has probability 1=2k of satisfying � , and these
n� k trials are independent. So, applying the lemma with m = n� k, with
r = 1=2k, and with some � in the interval (1

2
; 1), and noting that, as � > 1

2
,

we have � � (n� k) � 1
2
n for large n, we obtain some c 2 (0; 1) such that

Prob

�
X <

1

2
n=2k

�
� Prob

�
X < �(n� k)=2k

�
� cn�k:

This bounds the probability that our speci�c choice of a1; : : : ; ak is a coun-
terexample to SEA(�).

Now un-�x a1; : : : ; ak. Since the number of choices for this k-tuple is
� nk, the probability that at least one choice gives a counterexample, i.e.,
the probability that SEA(�) fails, is at most

nkcn�k:

Since 0 < c < 1, this bound approaches 0 as n!1. �

The same proof can be used to show that, for each k and each � 2 (0; 1),
the axiom SEA�

k has asymptotic probability 1.

22

Remark 6.4 Kolaitis and Vardi introduced in [13] a notion of \richness"
intermediate between the ordinary and the strong extension axioms. It re-
quires that each k-parameter type be realized at least

p
n times, where n is

the total number of vertices. It appears that this notion could be used in
place of our strong extension axioms in proving the zero-one law. The main
change needed would be a doubling of the exponent q + 1 in Theorem 15.2
below, to compensate for the square root in the de�nition of richness.

7 Inadequacy of Extension Axioms

Do we really need strong extension axioms? The zero-one law for �rst-order
logic [10, 9] is based on the (ordinary) extension axioms: for every �rst-
order sentence ', there exists k such that EAk implies ' or EAk implies :'.
The same holds for �xed-point logic FO+LFP [3, 16] and for the in�nitary
logic L!

1;! [12] (see also [8]). Might extension axioms su�ce to de�ne the
class C in Theorem 2.2? Then the use of strong extension axioms would be
merely an artifact of the proof. We show in this section that this is not
the case. Extension axioms are too weak to support the zero-one law for
~CPTime. We give an example of a single polynomial time BGS program
that separates structures satisfying arbitrarily many extension axioms. So
strong extension axioms are really needed for the ~CPTime zero-one law. (See,
however, Section 18 for a restricted situation where extension axioms su�ce.)

Though our general policy has been, for expository purposes, to concen-
trate on algorithms whose inputs are graphs, this example will use as input a
graph together with a single distinguished vertex, i.e., a rooted graph. That
is, we add a constant symbol d to the vocabulary fAg of graphs. We ex-
pect that a similar example could be given without introducing the constant
symbol, but we have not seen how to do this.

It should be noted that the zero-one laws for the usual logics, like L!
1;!,

continue to hold, and to follow from the extension axioms, in the presence of
a distinguished vertex. (They fail when there are two distinguished vertices,
simply because these two are adjacent with probability 1

2
.) It should also be

noted that, instead of using a distinguished vertex, we could add a unary
relation R to the vocabulary and modify the extension axioms to specify,
in addition to adjacency information, whether y should satisfy R. In that
version of the construction, R would play the role played in our proof by the
set of neighbors of d.

23

Proposition 7.1 There is a polynomial time BGS program � such that, for
any given k, there are two rooted graphs, both satisfying EAk, such that �
produces output true on one of them and false on the other.

Proof We begin by exhibiting the BGS program �; the polynomial bounds
on the number of macrosteps and the number of active elements will be n and
2n+3, respectively. The program � computes the parity of the maximum size
of a clique containing the distinguished vertex d. It does this by building up
the collection of all i-element subsets of fx : xAdg for i = 0; 1; : : : , checking
at each step whether any cliques remain. One essential ingredient of the
proof will be that d has so few neighbors in our graphs that the time used
by this computation is polynomial relative to the sizes of these graphs.

� uses four dynamic 0-ary function symbols: Halt, Output, Mode, and
C. Recall that in the initial state of a computation these have the value
; = false = 0. The program � is

do in parallel

if Mode = 0 then

do in parallel

C := f;g, Mode := 1
enddo

endif

if Mode = 1 then

do in parallel

C := fx [fyg : x 2 C; y 2 Atoms : yAd ^ y =2 xg,
Output := :Output, Mode := 2

enddo

endif

if Mode = 2 then

if (9x 2 C)(8u; v 2 x) uAv
then Mode := 1
else Halt := true

endif

endif

enddo.

After the �rst part of �, with Mode = 0, has been executed, C is ini-
tialized to f;g, the family of 0-element subsets of the set R of neighbors of

24

d. After i executions of the part with Mode = 1, C has become the family
of i-element subsets of R. The part with Mode = 2 checks whether there
are any cliques in C. If so, we return to Mode 1 to enlarge the sets in C; if
not, then the common size i of the sets in C is one more than the maximum
size of a clique included in R. Since Output reverses its truth value at each
Mode 1 step and since it is initially false, we see that, the �nal value of
Output is true if and only if the maximum clique size in R is even, if and
only if the maximum size of a clique containing d is odd.

For future reference, we estimate the amount of work done by this pro-
gram. Writing n for the number of vertices in the input graph, r for the
number of neighbors of d, and s for the maximum size of a clique among
these neighbors, we �nd that the Mode 0 part of � is executed once and
the Mode 1 and Mode 2 parts are executed s + 1 times each. So the whole
computation takes 2s + 3 macrosteps. The elements that the computation
activates are the subsets of R of cardinality at most s + 1, the s + 2 values
taken by C, and the number 2. (The numbers 0 and 1 were identi�ed with
the truth values and were therefore already active in the initial state. Since
0 is also among the subsets of R and 1 = f0g is also among the values of C,
we have a slight overcount of activated elements.) For non-trivial values of
r and s, the number of activated elements is easily seen to be majorized by
(r + 1)s+1. The initially active elements are the n atoms, the set of atoms,
and the two truth values. Thus, the total number of active elements in this
computation is at most n + 3 + (r + 1)s+1. We shall design our graphs to
have quite small r and s (relative to n), so that n + 3 + (r + 1)s+1 is below
the bound 2n + 3 that we imposed on the number of active elements, and
2s+ 3 is below the bound n on the number of macrosteps.

The graphs required in the proposition will be described in three steps.
First, we give a general description depending on two parameters: the (large)
number n of vertices and the (much smaller but still rather large) number r
of neighbors of d. Second, leaving n arbitrary (but large), we prescribe two
values for r, to produce the two graphs we want. Finally, we �x n so large that
these graphs have all the required properties. Actually, the description in the
�rst step involves randomization, and rather than �xing n in the last step
we simply show that, for all su�ciently large n, the graphs have the required
properties with high probability. This clearly su�ces for the existence claim
in the proposition.

Given n and r, we build a (random) graph G(n; r) as follows. The vertex
set consists of the distinguished vertex d and n�1 others which we denote by

25

1; 2; : : : ; n� 1. (This introduces an ambiguity, since these vertices are atoms
in HF (I) and the same symbols denote natural numbers (�nite von Neu-
mann ordinals) which are sets. Fortunately, the ambiguity never leads to
any possibility of confusion.) d is adjacent to the vertices 1; 2; : : : ; r and no
others. The rest of the adjacency relation is chosen at random; ip indepen-
dent, fair coins for all potential edges to decide whether to include them in
the graph. This completes the description of G(n; r). We record for future
reference that the subgraph induced by the set R = f1; 2; : : : ; rg of neighbors
of d is a random graph (in the usual sense) on r vertices.

The next part of the proof, choosing r as a function of n, is the most
delicate. We need r small enough so that � stays within the bound on active
elements, but if we take r too small then G(n; r) will violate the extension
axioms. We need the following result from [6, Section XI.1].

Lemma 7.2 There is a function � from natural numbers to natural numbers
with the following two properties. First,

C1s2
s=2 � �(s) � C2s2

s=2

for certain positive constants C1 and C2. Second, if p(s) denotes the proba-
bility that a random graph on �(s) vertices has maximum clique size exactly
s, then p(s)! 1 as s!1.

Actually, Bollob�as proves a far more precise result. The constants in
the lemma can be taken to be any constants satisfying C1 < 1=(e

p
2) < C2

provided s is su�ciently large. All we shall need, however, is the lemma as
stated.

Using this lemma, we associate to each (large) n two values of r as follows.
Let s and s0 be the two largest integers below 3 log logn. (We use log to mean
base 2 logarithm and ln to mean base e logarithm.) Let r = �(s), r0 = �(s0),
G = G(n; r), and G0 = G(n; r0). According to the lemma, when n is large
enough there is a very high probability that, among the neighbors of d, the
largest clique in G has size s and similarly for G0 and s0. In particular, since
s and s0 are consecutive integers, the program � will (unless it runs out of
time) produce output true for one of G and G0 and false for the other.

We next address the question whether � with these inputs G and G0

succeeds in carrying out its computation within the bounds on the number
of macrosteps (n) and active elements (2n + 3). We already computed the

26

number of macrosteps and an upper bound for the number of active elements.
In the present context, these are, with high probability for large n,

2s+ 3 < 3 log logn + 3 < n

and
n+ 3 + (r + 1)s+1 < n+ 3 +

�
C3s2

s=2
�s+1

for G (where C3 is slightly larger than C2 to compensate for changing from
r + 1 to r), and similarly for G0 with s0 and r0 in place of s and r. So the
bound on macrosteps is satis�ed with high probability for su�ciently large
n. As for the bound on active elements, we must show that�

C3s2
s=2
�s+1 � n:

To this end, we �rst compute that, since s < 3 log logn,

C3s2
s=2 < C3 � 3 log logn � (logn)3=2 < (logn)2

for large n. The desired inequality follows because the logarithm of its left
side is at most

(s+ 1) log
�
(logn)2

�
< (3 log logn+ 1) � 2 log logn < logn:

To complete the proof of the proposition, we must still verify that (with
high probability, when n is large) G and G0 satisfy EAk. We give the ar-
gument for G; it applies equally well to G0. Recall that G was de�ned as
G(n; r) with n su�ciently large and r = �(s) � C1s2

s=2, where s is one of
the largest two integers below 3 log logn. In particular, s > 2 log logn (for
large n), and so

r � C1 � 2 log logn � logn = �(n) logn;

where all we need to know about �(n) = C1 � 2 log logn is that it tends to
in�nity with n. We can therefore complete the proof by showing that, for
each �xed k-parameter type � , the probability that G(n; r) satis�es EA(�) is
close to 1 when n is large and r � �(n) logn.

Fix, therefore, an arbitrary k-parameter type � , and temporarily �x values
a1; : : : ; ak for its parameters. There are three cases to consider, according to
whether d is among the parameters and, if it is, whether � says y should
be adjacent or non-adjacent to d. Since d has so few neighbors (only r,

27

compared with approximately n=2 for other vertices), the probability that
�(y; a1; : : : ; ak) holds is smallest in the case where some ai is d and � says
y is adjacent to d. We calculate this worst case �rst and then indicate the
changes for the other cases.

So suppose d is one of the parameters and � requires y to be adjacent to
d. Then the only candidates for values of y satisfying � are the r neighbors
1; 2; : : : ; r of d. For any one of these neighbors b, distinct from the other para-
meters, the probability that it satis�es � , i.e., that it satis�es k�1 additional
adjacency or non-adjacency requirements each of which has probability 1

2
, is

1=2k�1. Since these probabilities are independent for di�erent b's and since
there are at least r � k + 1 available b's (the r neighbors of d minus at most
k � 1 that are among the other parameters),

Prob [no b satis�es �(y; a1; : : : ; ak)] �
�
1� 1

2k�1

�r�k+1

� e�(r�k+1)=2
k�1

;

where we used the fact that 1� t � e�t.
In the case where d is one of the parameters but � says that y is not

adjacent to d, the computation works the same way but with n � r � k in
place of r�k+1. In the case where d is not one of the parameters, the result
is again similar but with (n�k�1)=2 in place of r�k+1. In either of these
cases, r � k + 1 has been replaced with something larger (when n is large),
so the upper bound for the probability of failure is even smaller than in the
�rst case. Summarizing, we have, for every choice of k distinct parameters,
an upper bound of e�(r�k+1)=2

k�1

for the probability that � has no solution.
Therefore, the probability that EA(�) fails is at most�

n

k

�
e�(r�k+1)=2

k�1 � nke�(r�k+1)=2
k�1

:

To estimate this, we consider its natural logarithm, which is at most

k lnn� r � k + 1

2k�1
� ��(n) logn

2k�1
+ k lnn+ constant:

Since �(n)!1 as n!1, the right side of this formula tends to �1. So
our upper bound for the probability that EA(�) fails tends to 0 as n ! 1.
�

28

It should perhaps be pointed out explicitly that the graphs constructed in
the preceding proof violate SEA1, for the number of neighbors of the special
vertex d is far smaller than the n=4 that SEA1 would require.

8 Rigidity and Hamiltonicity

In this section, we discuss two familiar properties of random (�nite) graphs.

De�nition 8.1 A graph is rigid if its only automorphism is the identity.

De�nition 8.2 A graph is hamiltonian if it includes a cycle containing all
its vertices.

It is known (see [6, Chapters VIII and IX]) that both of these properties
have asymptotic probability 1. It is also known (see [5]) that neither of them
follows from any extension axiom. Since we know, from the preceding section,
that the strong extension axioms are genuinely stronger than the (ordinary)
extension axioms, it is reasonable to ask whether some SEAk implies rigidity
or hamiltonicity. We can give a complete (negative) answer for rigidity but
only a partial answer for hamiltonicity.

Proposition 8.3 For any k, there exists a non-rigid graph satisfying SEAk.

Proof We use the same randomizing construction as in [5]. Let l be a
large natural number, and let G(l) have the integers from �l through l as
vertices. We require that, if a is adjacent to b, then �a is adjacent to �b;
this ensures that G(l) is not rigid, for a 7! �a is a non-trivial automorphism.
Except for this symmetry requirement, G(l) is random. That is, for each
pair of corresponding potential edges fa; bg and f�a;�bg (which may be
just a single potential edge if a = �b), we decide whether to include both or
neither in G(l) by ipping a fair coin. We shall show that, for any �xed k,
the probability that the graph G(l) satis�es SEAk tends to in�nity with l.

As usual, it su�ces to check this for SEA(�) for every single k-parameter
type � . So let � be given, and temporarily �x values a1; : : : ; ak for the
parameters. Let b range over positive vertices di�erent from all the �ai's.
For each such b, the probability that it satis�es � with our �xed parameters is
1=2k, and for di�erent b's these probabilities are independent. By Lemma 6.2,
for any � 2 (0; 1), the probability that fewer than � � l�k

2
� 2�k of these

29

b's satisfy � decreases exponentially with l. Of course the same goes for
negative b's. Therefore, the same goes for the probability that fewer than
� � (l � k) � 2�k vertices altogether satisfy � . (We had to consider positive
and negative b's separately, because their behavior is not independent as
required for application of Lemma 6.2.) Taking � slightly larger than 1

2
, to

get � � (l � k) > 1
2
� l for large l, we �nd that the probability that our �xed

a1; : : : ; ak constitute a counterexample to SEA(�) decreases exponentially
with l.

Now un-�x the parameters ai. Notice that the number of choices of the
parameters is bounded by a polynomial in l, namely (2l+1)k. Therefore, the
probability that SEA(�) fails is small for large l. �

We remark that the proof shows that even the axioms SEA�
k for arbitrary

� 2 (0; 1) do not imply rigidity.

Proposition 8.4 For any k and any � 2 (0; 1
2
), there is a graph that satis�es

SEA�
k but is not hamiltonian.

Proof We simplify a randomizing construction from [5]. Let l be a large
natural number, and let G(l) be the graph produced as follows. The vertices
are the natural numbers from 0 to 2l; we call the �rst l of these vertices
friendly and the remaining l + 1 unfriendly. No two unfriendly vertices will
be adjacent. For each potential edge subject to this constraint, i.e., for each
two vertices of which at least one is friendly, ip a fair coin to decide whether
to include that edge in G(l).

No matter what happens in the randomization, this graph cannot be
hamiltonian. Indeed, in any cycle, at most half the vertices can be unfriendly,
since unfriendly vertices are not adjacent. But in the whole graph, more than
half of the vertices are unfriendly.

To complete the proof, we show that, with high probability for large l,
G(l) satis�es SEA�

k . As usual, it su�ces to show, for each �xed k-parameter
type � and each choice of values a1; : : : ; an, that the probability that fewer
than ��(2l+1)�2�k vertices b satisfy � (with the chosen parameters) decreases
exponentially as a function of l. So let � and the parameters be �xed, and let
b range over friendly vertices distinct from all the parameters. So there are at
least l�k values for b, and each satis�es � with probability 2�k, these events
being independent for di�erent b's. We apply Lemma 6.2 to this situation,
but with the � of the lemma replaced by some � > 2� (where this � is the
one in the present proposition). Since � < 1

2
, we can �nd such a � < 1, so

30

Lemma 6.2 is applicable. It gives us exponentially decreasing probability for
the event that fewer than � � (l � k) � 2�k friendly vertices satisfy � with the
chosen parameters. But since � > 2�, we have � � (l � k) > � � (2l + 1) once
l is large enough. Thus, we also have exponentially decreasing probability
for the event that fewer than � � (2l + 1) vertices satisfy � with the chosen
parameters. �

We do not know whether the preceding proposition can be extended to
� � 1

2
. Its proof made crucial use of the assumption that � < 1

2
. The non-

hamiltonicity of the graph depended on the presence of an independent set
containing more than half the vertices (the unfriendly ones), and no such set
can exist when � > 1

2
. More precisely, we have the following proposition,

which prevents any construction like the preceding one from working when
� > 1

2
. (The speci�c randomizing construction in the preceding proof doesn't

work for � = 1
2
either.)

Proposition 8.5 Let � > 1
2
. There exists a number k (depending on �)

such that, for every su�ciently large n and every n-vertex graph satisfying
SEA�

k , no independent set contains more than half of the vertices.

Proof Given �, choose k so large that�
1� 1

2k

�
� >

1

2
;

and let n be much larger yet. Consider an n-vertex graph satisfying SEA�
k ,

and suppose it had an independent set U of cardinality at least n=2. Fix k
distinct elements a1; : : : ; ak 2 U , and consider the axioms SEA(�) applied to
these k parameters, where � ranges over all k-parameter types except the one
that says y is adjacent to none of the parameters. Thus, we are considering
2k � 1 types, and each can be satis�ed only by elements outside U . Thus,
these types altogether have at most n=2 elements satisfying them. But, by
SEA�

k , each of them is realized by at least � � n � 2�k, so altogether they are
realized by at least � �n � 2�k � (2k� 1) vertices. But this number exceeds n=2
by our choice of k. �

9 The Almost Sure Theory is Undecidable

In the case of �rst-order logic, the almost sure theory (that is the set of
sentences with asymptotic probability 1) is decidable. The same holds if we

31

add the least �xed point operator to �rst-order logic [3]. But it fails for
~CPTime.

Proposition 9.1 The class of almost surely accepting polynomially bounded
BGS programs and the class of almost surely rejecting polynomially bounded
BGS programs are recursively inseparable.

Proof Consider Turing machines with two halting states h1 and h2. For
i = 1; 2, let Hi be the collection of Turing machines that eventually halt
in state hi if started on the empty input tape. It is well-known that H1

and H2 are recursively inseparable. Associate to each Turing machine T a
polynomial time BGS program as follows. The program � ignores its input
graph and simulates T on empty input tape (working exclusively with pure
sets). � outputs true (resp. false) if T halts in state h1 (resp. h2). The
polynomial bounds on steps and active elements are both twice the number
of atoms. Then if T 2 H1 (resp. T 2 H2) our polynomial time BGS program
will accept (resp. reject) all su�ciently large inputs. �

10 Existential Second-Order Logic

We remarked earlier that the strong extension axioms cannot be expressed
in �rst-order logic. To prove this remark, it su�ces to notice that the proof
of Proposition 7.1 exhibited graphs satisfying EAk for any prescribed k but
not satisfying even SEA1. Since the extension axioms provide a complete
axiomatization of the �rst-order theory of random graphs, it follows that this
theory does not contain SEA1 (and therefore does not contain any SEAk).

On the other hand, each SEAk can be expressed in existential second-
order logic. The following lemma implies this and a bit more.

Lemma 10.1 Let '(x) and (x) be �rst-order formulas, and let � be a
positive rational number. There is an existential second-order formula � ex-
pressing \the number of x's satisfying '(x) is at least � times the number of
x's satisfying (x).

The formulas '(x) and (x) may have additional free variables; those
variables will then be free in � also.

Proof Write � as the quotient of two positive integers, p=q. We want to
express that q times the number of solutions of '(x) is at least p times the

32

number of solutions of (x). The required � says that there are p partial
functions f1; : : : ; fp such that

� each fi has domain exactly the solutions of (x),

� each fi has range included in the solutions of '(x), and

� no point has q + 1 pre-images under these functions.

Here a pre-image of x is a y such that fi(y) = x for some i; if several i's, say
m of them, work for the same x and y, then y counts as m pre-images of x.
So formalizing the third requirement on the fi's will involve a conjunction
over all ways of expressing q + 1 as a sum of p non-negative numbers. �

Remark 10.2 The lemma could be strengthened by allowing '(x) to be
any existential second-order formula and (x) to be any universal second-
order formula. To see this, modify the � in the proof to say that the fi are
relations (rather than partial functions) with domains including (rather than
exactly) the solutions of (x). Then '(x) is used only positively and (x)
only negatively in �, so � is still existential second-order under the weakened
assumptions on '(x) and (x).

Proposition 10.3 For every k and every rational �, SEA�
k is expressible as

an existential second-order sentence.

Proof Use the conjunction, over all k-parameter types � , of existential
second-order sentences expressing

(8x1; : : : ; xk)
 ^

1�i<j�k

xi 6= xj

!
!

the number of solutions of �(y; x1; : : : ; xk) is at least

� � 1
2k

times the number of solutions of y = y

�
;

where an existential second-order form of the right side of the implication is
provided by the lemma. �

One could hope that, just as the extension axioms imply the whole �rst-
order theory of random graphs, so the strong extension axioms might imply
the whole existential second-order theory of random graphs. Unfortunately,
that is not the case.

33

Proposition 10.4 There is an existential second-order sentence that has
asymptotic probability 1 but is not a consequence of any SEA�

k .

Proof In a graph with an odd number of vertices, call a vertex balanced
if it is adjacent to exactly half of the other vertices. By Lemma 10.1, there
is an existential second-order formula expressing \x is balanced." Use this
to form an existential second-order sentence � saying \either the number of
vertices is even or there are at least two balanced vertices." We shall show
that this sentence has asymptotic probability 1 but is not a consequence of
any strong extension axiom.

Notice �rst that, in a random graph with n = 2m+ 1 vertices, the prob-
ability that a speci�c vertex is balanced is�

2m

m

�
� 1

22m
� 1p

�m
�
r

2

�
� 1p

n
;

by Stirling's formula (see the proof of Lemma 4.10). De�ning the random
variable B as the number of balanced vertices, we infer that the expectation
of B is asymptotically

p
2=�

p
n. So it is certainly reasonable that a large

random graph should have at least 2 balanced vertices. To prove it, however,
is not trivial, since the events \v is balanced" for di�erent vertices v are not
independent. Nevertheless, it is proved in [6, Theorem III.1] that, because
the expected number of balanced vertices (there called �(n�1)=2(n)) tends to
in�nity with n, the asymptotic probability of \there are at least t balanced
vertices" is 1 for every �xed t. In particular, this holds for t = 2, so � has
asymptotic probability 1.

To show that � is not a consequence of any SEA�
k , we shall need to know

that a random graph does not have too many balanced vertices. For this
purpose, we use the well known estimate

Prob [B � q] � E(B)

q
;

which is true for every non-negative random variable (see the beginning of
the proof of Lemma 6.2), in particular for the number B of balanced vertices.
So we have, for odd n,

Prob
�
B � n2=3

� � Cn1=2

n2=3
= Cn�1=6;

34

for a suitable constant C. So this probability tends to 0 as n!1. Thus, a
large random graph almost certainly has fewer than n2=3 balanced vertices.

Using this, we shall produce, for any prescribed strong extension axiom
SEA�

k , a graph satisfying this axiom yet making � false. Fix a number �
with � < � < 1 (recall that the de�nition of SEA�

k requires � < 1). Let G
be a graph that satis�es SEA�

k , that has fewer than n
2=3 balanced vertices,

and that satis�es n2=3 < (� � �)n � 2�k, where n is the number of vertices
of G. By the preceding paragraph and by Proposition 6.1 (and the remark
immediately following its proof), such a G is easy to �nd; any su�ciently
large random graph will work with high probability. We shall complete the
proof by showing how to modify G so as to violate � while still satisfying
SEA�

k .
If the number of balanced vertices in G is even, then group them arbi-

trarily into pairs; if the number is odd, then pair o� all but one of them. For
each of these pairs, if the two (balanced) vertices were adjacent in G then
make them non-adjacent, but if they were non-adjacent then make them ad-
jacent. This changes by 1 the number of neighbors of each of these vertices,
so they are no longer balanced. Thus, the resulting graph G0 has at most
one balanced vertex, i.e., it violates �.

The modi�cations leading from G to G0 a�ected the adjacency relation-
ships of fewer than n2=3 vertices. Thus, for any k-parameter type and any
choice of the k parameters, since there were at least �n2�k vertices satisfying
the type in G, there remain at least �n2�k� n2=3 vertices satisfying it in G0.
And we chose n large enough to ensure that this is more than �n2�k. So G0

satis�es SEA�
k . �

11 Set-Theoretic De�nitions

We now begin working toward the proof of Theorem 2.2. The �rst part of
the proof is to express, in set-theoretic terms, the behavior of BGS programs.
By explicitly exhibiting the relevant set-theoretic formulas, we also formalize
the interpretation of terms and rules, described informally in Section 4.

Consider any particular state of one of our ASM's. It is a structure
H+ with underlying set HF (I) and with interpretations for all the function
symbols listed in De�nition 4.1. Let H be the structure

H = hHF (I);2; I; Ai

35

that is like H+ except that among the non-logical symbols only 2, Atoms,
and A are interpreted. (In the usual terminology of mathematical logic, H is
a reduct of H+.) Let HD be the intermediate structure in which the dynamic
function symbols are also interpreted (by the same functions as in H+). We
shall need to know that all essential aspects of the execution of � in the state
H+, i.e., the computation leading from H+ to its sequel state, can be de�ned
in the structure HD. (It will turn out that, for every state H+ that actually
arises during the computation of a BGS machine, the dynamic functions will
be de�nable in H, and so we could use H instead of HD here. See the proof
of Proposition 11.1 below.)

To avoid having to introduce new symbols for a multitude of set-theoretic
formulas, we adopt the notational convention that d'emeans the set-theoretic
formalization of the (informal) statement '.

We begin by de�ning dy 2 te and dy = te for all terms t; here y is a
variable not free in t. In most cases one of dy 2 te and dy = te is a bit easier
to de�ne than the other, and once one is de�ned it is usually easy to obtain
the other. Speci�cally, if we have dy = te then we can de�ne dy 2 te as
9z (dz = te ^ y 2 z). Conversely, if we have dy 2 te and we know that the
value of t is not an atom, then we can de�ne dy = te as

y =2 Atoms ^ 8z(z 2 y $ dz 2 te):
In the de�nitions that follow, whenever only one of dy 2 te and dy = te
is speci�ed, the other is to be obtained by these standard de�nitions. We
proceed by recursion on t.

� If v is a variable then dy 2 ve is y 2 v and dy = ve is y = v.

� If f is a dynamic function symbol, then dy = f(t1; : : : ; tj)e is

9z1 : : :9zj

j^
i=1

dzi = tie ^ y = f(z1; : : : ; zj)

!
:

� dy 2 falsee is false.
� dy 2 truee is dy = falsee.
� dy 2 (t1 = t2)e is

dy = falsee ^ 9z (dz = t1e ^ dz = t2e):

36

� dy = :te is (dfalse = te^dy = truee)_(:dfalse = te^dy = falsee),
and similarly for the other connectives. (Note that the de�nition is
arranged so as to give the value false when the argument is not a
truth value.)

� dy 2 (t1 2 t2)e is
dy = falsee ^ 9z19z2 (dz1 = t1e ^ dz2 = t2e ^ z1 2 z2):

� dy = ;e is dy = falsee.
� dy = Atomse is y = Atoms

� dy 2 S te is 9z (y 2 z ^ dz 2 te).
� dy = TheUnique(t)e is

[8z (dz 2 te $ z = y)] _
[dy = ;e ^ :9v8z (dz 2 te $ z = v)]

� dy 2 Pair(t1; t2)e is dy = t1e _ dy = t2e.
� dy 2 A(t1; t2)e is

dy = falsee ^ 9z19z2 (dz1 = t1e ^ dz2 = t2e ^ A(z1; z2))

� dy 2 ft(v) : v 2 r : '(v)ge is
9v (dv 2 re ^ dtrue = '(v)e ^ dy = t(v)e):

In the last clause here, y should be di�erent from v; otherwise rename v.
Next, we de�ne in HD the semantics of rules. For each rule R and each

dynamic function symbol f , say of arity j, we �rst de�ne a preliminary for-
mula, dR wants to set f at x1; : : : ; xj to ye, which ignores possible conicts
between updates. This is a formula with free variables x1; : : : ; xj; y and any
variables z1; : : : ; zk free in the rule R. It holds in state HD of elements
a1; : : : ; aj; b; c1 : : : ; ck if and only if ((f; a1; : : : ; aj); b) is in the update set of
rule R(c1; : : : ; ck) in state H+, as de�ned in [11]. (We use the symbol f in
our name for the formula dR wants to set f at x1; : : : ; xj to ye, but f need
not occur in the formula itself.)

37

� dSkip wants to set f at x1; : : : ; xj to ye is false.
� df(t1; : : : ; tj) := t0 wants to set f at x1; : : : ; xj to ye is

j^
i=1

dxi = tie ^ dy = t0e:

� dg(t1; : : : ; tk) := t0 wants to set f at x1; : : : ; xj to ye is false when g
is distinct from f .

� dif ' then R0 else R1 endif wants to set f at x1; : : : ; xj to ye is

(dtrue = 'e ^ dR0 wants to set f at x1; : : : ; xj to ye) _
(dfalse = 'e ^ dR1 wants to set f at x1; : : : ; xj to ye):

� ddo forall v 2 r; R enddo wants to set f at x1; : : : ; xj to ye is

9v (dv 2 re ^ dR wants to set f at x1; : : : ; xj to ye):

A rule may want to set f at x1; : : : ; xj to several values. We adopt the
standard ASM convention that if the program � contains such a conict,
then all the dynamic functions remain unchanged. The formal de�nitions
are as follows.

� d� clashese is_
f

9x1 : : : 9xj9y9z

(� wants to set f at x1; : : : ; xj to y) ^
(� wants to set f at x1; : : : ; xj to z) ^ y 6= z:

Of course, the arity j depends on f .

� d� sets f at x1; : : : ; xj to ye is

d� wants to set f at x1; : : : ; xj to ye ^ :d� clashese:

38

Finally, we de�ne the dynamic functions for the sequel state, that is, for
the state obtained from H+ by executing � once.

For a j-ary dynamic function f , we de�ne

dy = f(x1; : : : ; xj) in the sequele
to be

d� sets f at x1; : : : ; xj to ye _
(dy = f(x1; : : : ; xj)e ^ :9y0 d� sets f at x1; : : : ; xj to y

0e:

The preceding de�nitions provide most of the proof of the following result.

Proposition 11.1 For each BGS program �, for each natural number m,
and for each dynamic function symbol f , there is a �rst-order formula dy =
f(x1; : : : ; xj) at step me in the vocabulary f2;Atoms; Ag such that, for any
input structure hI; Ai, the tuples that satisfy dy = f(x1; : : : ; xj) at step me
in H = hHF (I);2; I; Ai constitute the graph of f in the mth state of the run
of � on hI; Ai. Furthermore, there exists a number B such that, for each
m, the number of variables occurring in dy = f(x1; : : : ; xj) at step me is at
most B.

It will be important that the bound B depends only on �, not on m. To
avoid possible confusion, we emphasize that variables can be re-used in these
formulas; thus the same variable may be bound many times and may occur
free as well.

Proof We construct the required formulas by induction onm, starting with
dy = f(x1 : : : ; xj) at step 0e, which can be taken to be dy = ;e because all
dynamic functions are initialized to be constant with value ;.

For the induction step from m to m + 1, we begin with the formula
dy = f(x1; : : : ; xj) in the sequele as constructed above. Then, for each dy-
namic function symbol g, we replace each occurrence of a subformula dt0 =
g(t1; : : : ; tk)e with dt0 = g(t1; : : : ; tk) at step me.

As for the bound B, the argument will be slightly easier if we do not allow
the same variable to be both free and bound, though we do allow variables to
be bound many times. Any bound B that works under this convention clearly
continues to work under the standard convention that allows free variables
to also occur bound.

39

We shall need the fact that, in the formulas dy = f(x1; : : : ; xj) in the sequele,
whenever a dynamic function symbol g occurs in an atomic subformula, that
subformula has the form t0 = g(t1; : : : ; tk) where all the terms ti are vari-
ables or constants. To prove this fact, just go through all the clauses in the
de�nitions leading up to dy = f(x1; : : : ; xj) in the sequele and notice that all
atomic formulas that ever get introduced have the required form. In partic-
ular, such an atomic subformula never has more than k + 1 free variables,
where k is the arity of g.

Let B be the maximum number of variables in any of the formulas
dy = f(x1; : : : ; xj) in the sequele as f ranges over all the dynamic function
symbols. This exceeds the number of variables in dy = ;e, so the bound is
obeyed when m = 0.

It continues to be obeyed for larger m. To see this, consider any one
of the substitutions involved in converting dy = f(x1; : : : ; xj) in the sequele
into dy = f(x1 : : : ; xj) at step m+1e, say a replacement of t0 = g(t1; : : : ; tk)
with dt0 = g(t1; : : : ; tk) at step me. The subformula being replaced is an
atomic formula with at most k+1 free variables, by virtue of our observations
above; the formula replacing it has, by induction hypothesis, at most B �
(k+1) bound variables (because dy = g(x1; : : : ; xk) at step me has k+1 free
variables and at most B variables altogether). So by using recycled variables
as the bound ones in dt0 = g(t1; : : : ; tk) at step me, we can avoid exceeding
the overall bound of B variables. �

Remark 11.2 For the purpose of proving Theorem 2.2, it is important that
the number of variables in the formulas dy = f(x1; : : : ; xj) at step me be
bounded independently of m, but it is not crucial that the formulas be �nite.
Formulas of the in�nitary language L1;! would serve as well. An alternate
approach to obtaining such formulas is to express dy = f(x1; : : : ; xj) at step ze
(with a variable z for the number of steps, numbers being viewed as von Neu-
mann ordinals) in �rst-order logic with the least-�xed-point operator, and
then to use the known translation from this logic into the in�nitary, �nite-
variable logic L!

1;! (see [8]). This is the approach used in [4]. Then, to get
the corresponding formulas for speci�c m in place of z, one only has to check
that each natural number m can be de�ned with a �xed number of variables,
independent of m. In fact, each natural number can be de�ned with just
three variables.

40

12 Supports

In this section, we describe the notion of symmetry with respect to partial
automorphisms that will, as explained in Section 5, apply to all objects in-
volved in a computation and lead to winning strategies for the duplicator
in certain Ehrenfeucht-Fra��ss�e games. Two numerical parameters will be
involved in this notion of symmetry, namely the size of the partial automor-
phisms and the number of atoms a symmetric object can depend on. The
appropriate values for these parameters will depend on the BGS program
and the polynomial bound on the number of active elements.

For the purposes of this section, let q � 1 and k � 4 be �xed integers.
When this material is applied in the proof of Theorem 2.2, q will be the degree
of a polynomial bounding the number of involved elements (obtainable from
� and the bound on active elements, via Proposition 14.10) and k will be
B+2V +4, where B is as in Proposition 11.1 and V is the number of variables
in �.

We assume that the input graph hI; Ai satis�es the extension axioms
EA3kq for up to 3kq parameters. (We don't need the strong extension axioms
yet.)

For brevity we adopt the conventions that in this section

� w; x; y; z (possibly with subscripts, superscripts, or accents) stand for
members of HF (I),

� a; b; c (possibly with subscripts, superscripts, or accents) stand for sets
of � q atoms, and we call such sets possible supports, and

� �; �; ; �; � (possibly with subscripts or superscripts) stand for partial
automorphisms of the graph hI; Ai whose domains have size � kq, and
we call such maps motions.

The inverse ��1 of a motion and the composite ��� of two motions are de�ned
in the obvious way. In particular, the domain of � � � is ��1(Dom(�)).

The extension axioms imply that, if � is a motion and s is a set of atoms
with jDom(�)j+ jsj � kq, then � can be extended to a motion whose domain
includes s. (In fact, the extension axioms imply considerably more, as they go
up to 3kq parameters, not just the kq�1 needed for the preceding statement.)

We next de�ne, by simultaneous recursion on the rank of x, the three
concepts \a supports x," \x is supported," and \�̂(x)," where the last of
these is de�ned if and only if Dom(�) includes some a that supports x.

41

De�nition 12.1 If x is an atom, then

� a supports x if and only if x 2 a,
� x is supported (always), and

� �̂(x) = �(x).

If, on the other hand, x is a set, then

� a supports x if and only if every y 2 x is supported and, for every y
of lower rank than x and every motion �, if � pointwise �xes a and if
Dom(�) includes some set supporting y, then

y 2 x () �̂(y) 2 x;

� x is supported if and only if some a supports x, and

� if a supports x and a � Dom(�), then �̂(x) is the set of all �̂(y) where
y 2 x, � � a = � � a, and Dom(�) includes some support of y.

The de�nition of �̂(x) when x is a set seems to depend on the choice of a
particular support a of x. The �rst part of the following lemma gets rid of that
apparent dependence; the rest of the lemma gives useful technical information
about supports and about the application of motions to supported sets.

Lemma 12.2 1. �̂ is well-de�ned. Speci�cally, if a1 and a2 both support
x and are both included in Dom(�), then �̂1(x) and �̂2(x), de�ned as
above using a1 and a2 respectively, are equal.

2. If a supports x and a � Dom(�) \ Dom(�) and � � a = � � a, then
�̂(x) = �̂(x).

3. If �̂(x) is de�ned then it has the same rank as x.

4. If � is an identity map, then so is �̂, i.e., �̂(x) = x whenever �̂(x) is
de�ned.

42

5. �̂ is a partial automorphism of the structure hHF (I);2; I; Ai. In other
words, �̂(I) = I and, whenever x and x0 have supports included in
Dom(�),

x0 = x () �̂(x0) = �̂(x)

x0 2 x () �̂(x0) 2 �̂(x)
x0Ax () �̂(x0)A�̂(x):

6. If a supports x and a � Dom(�) then �[a] supports �̂(x).

7. If �̂(x) is de�ned and a � Dom(�) and �[a] supports �̂(x), then a
supports x.

8. [� � � = �̂ � �̂ in the following sense: If[� � �(x) is de�ned then so is
�̂(�̂(x)) and they are equal.

Proof We prove all parts of the lemma by simultaneous induction on the
maximum of the ranks of x and x0. Observe �rst that �̂ always sends atoms to
atoms and sets to sets. Given this observation, the lemma is trivial whenever
x is an atom. So we assume from now on that x is a set.

Proof of (1) Let x; a1; a2; �; �̂
1; and �̂2 be as in (1). It su�ces to show that

every z 2 �̂1(x) is also in �̂2(x). Such a z has the form �̂1(y1) for some y1 2 x
and some �1 that extends � � a1 and has some support b1 of y1 included in
its domain. (By induction hypothesis, �̂1(y1) is well-de�ned.)

Let �2 be any motion extending � � (a1 [a2) with Range(�2) � �1[b1].
Such a �2 exists by the extension axioms. Set = �2

�1 � �1.
Since both �1 and �2 agree with � on a1, we know that �xes a1 pointwise.

Also, since �1[b1] � Range(�2), we have that Dom() includes a support b1
of y. Thus, by de�nition of \a1 supports x," we have

y1 2 x () ̂(y1) 2 x:
But y1 2 x, and therefore ̂(y1) 2 x. Set y2 = ̂(y1) and b2 = [b1]. Thus,
y2 2 x and b2 supports y2 by induction hypothesis (6). Furthermore, �2 was
chosen to extend � � a2 and its domain includes b2 (because, by de�nition
of , Range() � Dom(�2)). Therefore, by de�nition of �̂2(x), we have
�̂2(y2) 2 �̂2(x). But

�̂2(y2) = �̂2(̂(y1)) =\�2 � (y1)
= �̂1(y1) = z;

43

where the �rst line uses induction hypothesis (8) and the second uses induc-
tion hypothesis (2) as �2� agrees with �1 on b1 which supports y1. To justify
the use of induction hypothesis (8) here, we need to know that\�2 � (y1) is
de�ned; it is, because y1 has a support b1 included in the domain of �2 � .
In the future, such justi�cations for (8) will be given in the abbreviated form
\use support b1 for y1." The displayed equations above and the comment
immediately preceding them give z 2 �̂2(x), as required. �

Having proved (1), we can choose any support of x that is included in
Dom(�) to serve as the a in the de�nition of �̂(x). We shall make use of this
freedom without mentioning it explicitly.

Proof of (2) The de�nition of �̂(x) refers to � only in the context � � a. �

Proof of (3) All elements of �̂(x) have the form �̂(y) with y 2 x. Here y
has lower rank than x and, by induction hypothesis, so does �̂(y). Therefore,
rank(�̂(x)) � rank(x).

To complete the proof, we assume strict inequality, rank(�̂(x)) < rank(x),
and deduce a contradiction. The strict inequality implies that x has an el-
ement y of rank � rank(�̂(x)). By the extension axioms, there is a motion
� that agrees with � on a and also has a support of y included in its do-
main. Then �̂(y) 2 �̂(x). This is absurd since, by induction hypothesis,
rank(�̂(y)) = rank(y) � rank(�̂(x)). �

Proof of (4) Suppose � is an identity map and �̂(x) is de�ned, so some
support a of x is included in Dom(�). Given any y 2 x, say with support b,
let � be the identity map on a[b. By de�nition of �̂(x), we have �̂(y) 2 �̂(x).
By induction hypothesis, we have �̂(y) = y. Thus, all elements y of x are
also in �̂(x).

For the converse, consider any element of �̂(x), say �̂(y) where y 2 x and
� agrees with the identity map on a. Then, by de�nition of \a supports x,"
we have �̂(y) 2 x, as required. �

Proof of (5) Because �̂ sends atoms to atoms and sets to sets, because it
agrees with the partial automorphism � on atoms, and because the adjacency
relation A holds only between atoms, the third equivalence in (5) is trivial.
It also follows easily that I is supported by ; and �̂(I) = I for all motions
�.

For the rest of the proof, we �x supports a and a0 for x and x0, respectively,
both included in Dom(�).

44

We begin by proving the second equivalence,

x0 2 x () �̂(x0) 2 �̂(x):

We may assume that x0 has lower rank than x, for otherwise the left side
of the equivalence is clearly false and, by (3), so is the right side. If x0 2 x
then, in the de�nition of �̂(x), we can take y = x0 and � = � to conclude
�̂(x0) 2 �̂(x). So we have one direction of the desired equivalence.

For the converse, suppose �̂(x0) 2 �̂(x). So there exist y 2 x, a support
b of y, and a motion � such that

� � � a = � � a,

� b � Dom(�), and

� �̂(y) = �̂(x0).

Let be an extension of (� � (a [a0))�1 whose domain includes �[b]. From

�̂(y) = �̂(x0) we infer, using the induction hypothesis, that [� �(y) =
[� �(x0) = x0. (In more detail: Dom() includes �[b] and �[a0] which, by
induction hypothesis (6), support �̂(y) and �̂(x0). So we can say ̂(�̂(y)) =
̂(�̂(x0)). Apply induction hypothesis (8) to both sides of this, using supports
b for y and a0 for x0. Finally, observe that �� agrees with the identity map on
a0 which supports x0. So by induction hypotheses (2) and (4),[� �(x0) = x0.)
Because � agrees with � on a and extends (� � a)�1, � � pointwise �xes
a. Referring to the de�nition of \a supports x" and using that Dom(� �)
includes b which supports y, we �nd that

y 2 x () [� �(y) 2 x:

But y 2 x and[� �(y) = x0. So x0 2 x as required.
It remains to prove the �rst equivalence in (5), and here the left-to-right

implication is trivial (since we have proved (1)). So assume that �̂(x0) = �̂(x).
Observe that, thanks to (3), x and x0 have the same rank. We must show
that x = x0; it su�ces to consider an arbitrary element y of x and prove that
y 2 x0. Extend � � (a [a0) to a � whose domain includes a support of y.
Then, by de�nition of �̂(x), we have �̂(y) 2 �̂(x). Also, by (2), �̂(x0) = �̂(x0).
Thus, we have

�̂(y) 2 �̂(x) = �̂(x0) = �̂(x0):

45

By the second equivalence in (5), already proved above, we infer y 2 x0, as
required. �

Proof of (6) Let x, a, and � be as in (6). To show that �[a] supports
�̂(x), we must �rst check that all elements of �̂(x) are supported. But these
elements have the form �̂(y) with y 2 x. Here y is supported (as a supports
x) and therefore so is �̂(y), by induction hypothesis.

Now we verify the main clause in the de�nition of \�[a] supports �̂(x)."
Let y have lower rank than �̂(x), i.e., lower rank than x since we've proved
(3). Let � be a motion pointwise �xing �[a] and with domain including some
support b of y. We must prove

y 2 �̂(x) () �̂(y) 2 �̂(x):
Replace � by some extension of � � a whose range includes b[�[b]. This

a�ects neither �[a] nor (thanks to (2)) �̂(x), so there is no loss of generality
in assuming b [�[b] � Range(�).

Now d��1(y) is de�ned and is, by induction hypothesis (6), supported by
��1[b]. Furthermore, ��1[b] � Dom(��1 � � � �). (Indeed, a point in ��1[b]
would be mapped �rst into b by �; it then gets mapped into �[b]; and we
arranged for this to be in the domain of ��1.) Since ��1 � � � � pointwise

�xes a support a of x (because � pointwise �xes �[a]), and d��1(y) has lower
rank than x (by (3)) and has a support included in Dom(��1�� ��) (namely
��1[b]), we conclude, by de�nition of \a supports x," that

d��1(y) 2 x () \(��1 � � � �)(d��1(y)) 2 x:
Because ��1 � � � � � ��1 and ��1 � � agree on a support of y, namely b,
we obtain by induction hypotheses (8) (using support b for y) and (2) that
\(��1 � � � �)(d��1(y)) = d��1(�̂(y)). Therefore,d��1(y) 2 x () d��1(�̂(y)) 2 x:

By (5), we can apply �̂ to obtain

�̂(d��1(y)) 2 �̂(x) () �̂(d��1(�̂(y))) 2 �̂(x):
Finally, induction hypotheses (8) (again using support b for y) and (4) allow
us to simplify this to

y 2 �̂(x) () �̂(y) 2 �̂(x);

46

as required. �

Proof of (7) As �̂(x) is de�ned, x has a support included in Dom(�); in
particular, all elements of x are supported. So we need only check the main
clause in the de�nition of \a supports x."

Assume y has lower rank than x, � pointwise �xes a, and Dom(�) includes
a support b of y. We must show that y 2 x if and only if �̂(y) 2 x.

Replace � by its restriction to the union of a and some support of x,
and then extend the resulting motion to have both b and �[b] included in its
domain. None of this a�ects �[a] or �̂(x). So we may assume without loss of
generality that b[�[b] � Dom(�). (Here we use that k � 4, since we need a
motion with four supports in its domain.)

Now �̂(y) is de�ned and is supported by �[b], which is included in Dom(��
� ���1). Also, � � � ���1 pointwise �xes �[a] (because � pointwise �xes a),
and �̂(y) has lower rank than �̂(x) by (3). So, from the de�nition of \�[a]
supports �̂(x)," we conclude that

�̂(y) 2 �̂(x) () \(� � � � ��1)(�̂(y)) 2 �̂(x):
By induction hypothesis (including (8) justi�ed by using support b for y),
\(� � � � ��1)(�̂(y)) = �̂(�̂(y)). So we have

�̂(y) 2 �̂(x) () �̂(�̂(y)) 2 �̂(x):
Finally, by (5),

y 2 x () �̂(y) 2 x;
as required. �

Proof of (8) Assume that [� � �(x) is de�ned. So x has a support a �
Dom(� � �). Then a � Dom(�), so �̂(x) is de�ned. Furthermore, by (6),
�̂(x) is supported by �[a] � Dom(�), so �̂(�̂(x)) is de�ned.

To show that[� � �(x) = �̂(�̂(x)), consider �rst an arbitrary z 2 �̂(�̂(x)).
Then, by de�nition of the \hat" operation on motions, we have some w 2
�̂(x) and some motion � agreeing with � on �[a] such that z = �̂(w) (so in
particular some support of w is included in Dom(�)). Furthermore, we have
some y 2 x and some motion agreeing with � on a such that w = ̂(y)
and, in particular, some support b of y is included in Dom(). Extending � if
necessary, we can arrange that its domain includes [b]. Then we can apply
induction hypothesis (8) using the support b of y to obtain z = �̂(̂(y)) =

47

[� � (y). But � � agrees with � � � on the support a of x. Therefore,

z =[� � (y) 2[� � �(x). This proves the inclusion from right to left in the
desired equation.

For the converse inclusion, suppose z 2[� � �(x). So z = �̂(y) for some
y 2 x and some motion � that agrees with � � � on a and has a support b of
y included in its domain.

Extend � � a to a motion whose domain includes b. Then set � = ���1.
So Dom(�) includes both �[a] = [a] and [b]. Also � � agrees with � on
a [b (as is de�ned there). By induction hypotheses (2) and (8) (using

support b for y), z =[� � (y) = �̂(̂(y)). Now as extends � and y 2 x,
we have ̂(y) 2 �̂(x). And then, as � extends �, we have �̂(̂(y)) 2 �̂(�̂(x)).
That is, z 2 �̂(�̂(x)) as required. �

This completes the proof of Lemma 12.2. �

We record for future reference a fairly easy consequence of the lemma.

Corollary 12.3 If a supports x then a also supports
S
x.

Proof We �rst observe that every member of
S
x is a member of a member

of x and is therefore supported since x is. Now to verify the main clause in
the de�nition of \a supports x" let y be any object of lower rank than x
and let � be a motion that is the identity on a and has some support b of y
included in its domain. We must show that

y 2
[

x () �̂(y) 2
[

x:

Suppose �rst that y 2 S x, so y 2 z 2 x for some z. As a member of a
supported set x, z is also supported. Without loss of generality, restrict �
to a [b and then extend it so that its domain includes some support of z.
Then by part 5 of the lemma, �̂(y) 2 �̂(z) 2 �̂(x). But �̂(x) = x by parts 2
and 4 of the lemma. So �̂(y) 2 S x.

Conversely, suppose �̂(y) 2 S x, say �̂(y) 2 z 2 x. Again, z is supported.
Without loss of generality, restrict � to a [b and then extend it so that its
range includes a support of z. Thus, �̂�1(z) is de�ned. Furthermore, by
parts 2, 4, and 8 of the lemma, we have �̂�1(x) = x and �̂�1(�̂(y)) = y.
Therefore, by part 5 of the lemma applied to ��1, we have y 2 �̂�1(z) 2 x
and so y 2 S x. �

48

De�nition 12.4 S is the collection of supported objects in HF (I). We also
write S for the structure hS; I;2; Ai.

By the de�nition of supports, S is a transitive set containing all the atoms;
by (5) of Lemma 12.2, it also contains I. Furthermore, by (5) and (6) of that
lemma, each �̂ is a partial automorphism of S. In fact, as the following
lemma shows, the �̂'s are much better than just partial automorphisms,
because they �t together well. Recall that Lk

1;! is the part of the in�nitary
�rst-order language L1;! (allowing in�nite conjunctions and disjunctions)
consisting of formulas with at most k variables (free or bound, but the same
variable can be re-used). See [8] for more information about Lk

1;!, including
the Ehrenfeucht-Fra��ss�e criterion for Lk

1;!-equivalence. Recall also that k � 4
is �xed throughout this section.

Lemma 12.5 Let ' be a formula of Lk
1;! with j � k free variables. Let �

be a motion, and let x1; : : : ; xj be elements of S with supports included in
Dom(�). Then

S j= '(x1; : : : ; xj) () S j= '(�̂(x1); : : : ; �̂(xj)):

Proof We give a strategy for the duplicator in the Ehrenfeucht-Fra��ss�e
game for Lk

1;!. At any stage of the game, let ~y and ~z be the positions of
the pebbles on the two boards; so initially, yi = xi and zi = �̂(xi). The
duplicator's strategy is to arrange that there is, after each of his moves, a
motion � whose �̂ sends each yi to the corresponding zi. There is such a
� initially, namely �, and as long as he maintains such a � the duplicator
cannot lose, by (5) of Lemma 12.2. So we need only check that, if such a �
exists and then the spoiler moves, the duplicator can move so that again a
(possibly new) � does the job. Without loss of generality, suppose the spoiler
moves the �rst pebble on the left board from its position y1 to a new y01 2 S.
Restrict the old � to the union of supports of the yi for i 6= 1. There are
strictly fewer than k of these supports, hence at most (k � 1)q points in the
domain of the restricted �. So we can extend this motion to a new � having
in its domain some support of the new y01. The resulting �̂(y

0
1) is where the

duplicator should move the pebble from z1. The resulting board position and
the new � satisfy the speci�cation of the duplicator's strategy (thanks to (2)
of Lemma 12.2). So we have shown that the duplicator can carry out the
indicated strategy. �

49

We shall need variants of these results, dealing with two graphs and the
universes of hereditarily �nite sets built over them. Speci�cally, suppose
hI1; Ai and hI2; Ai are graphs satisfying the extension axioms for up to 3kq
parameters. (We've simpli�ed notation slightly by using the same name A
for the adjacency relations in both graphs Ii.) For i; j 2 f1; 2g, we de�ne
an i; j-motion to be a partial isomorphism of size at most kq from Ii to Ij.
Thus 1,1-motions and 2,2-motions are motions in the earlier sense for I1 and
I2, respectively. Note that the inverse of an i; j-motion is a j; i-motion and
that, if � is a j; k-motion and � is an i; j-motion, then ��� is an i; k-motion.

If � is a 1,2-motion, then we de�ne �̂(x) for all x 2 HF (I1) having
supports included in Dom(�). We do this in exact analogy with the earlier
de�nition: If x is an atom then �̂(x) = �(x). If x is a set with a support
a � Dom(�), then �̂(x) is the set of all �̂(y) where y 2 x, � is a 1,2-motion
extending � � a, and Dom(�) includes some support of y.

Similarly, we de�ne �̂(x) when � is a 2,1-motion and x 2 HF (I2) has a
support � Dom(�). These de�nitions together with the de�nitions already
available for 1,1- and 2,2-motions allow us to refer to �̂(x) 2 HF (Ij) when-
ever � is an i; j-motion and x 2 HF (Ii) has a support included in Dom(�).

We can now repeat the earlier arguments in this slightly more general
context. No conceptual changes or additions are needed, only a little book-
keeping to keep track of the four di�erent sorts of motions. For example,
the analog of Part 5 of Lemma 12.2 for 1,2-motions � would say that �̂ is a
partial isomorphism from hHF (I1);2; A; I1i to hHF (I2);2; A; I2i. It implies,
in particular, that �̂(I1) = I2.

We exhibit for future reference the 1,2-analog of Lemma 12.5. Let Si be
the collection of supported objects in HF (Ii); as before, we also write Si for
the structure hSi;2; Ii; Ai.

Lemma 12.6 Let ' be a formula of Lk
1;! with j � k free variables. Let �

be a 1,2-motion, and let x1; : : : ; xj be elements of S1 with supports included
in Dom(�). Then

S1 j= '(x1; : : : ; xj) () S2 j= '(�̂(x1); : : : ; �̂(xj)):

We omit the proof because it is the same as for Lemma 12.5.

50

Appendix

Item (8) in Lemma 12.2 treats the two sides of the equation[� � � = �̂ � �̂
asymmetrically, raising the obvious question: If �̂(�̂(x)) is de�ned, must
[� � �(x) also be de�ned? In this appendix, we provide an a�rmative answer.
This result will not be used elsewhere in the paper.

Most of the work in obtaining the a�rmative answer is in establishing
the special case where � and � are the identity functions on two di�erent
supports of x. Then �̂(�̂(x)) is de�ned and equal to x (by (4) of Lemma 12.2)

but for[� � �(x) to be de�ned we need to know that x is also supported by
the intersection of the two supports, for this is the domain of � � �.
Lemma 12.7 The intersection of any two supports of x is again a support
of x.

Proof The lemma is obvious if x is an atom, so we assume that x is a set.
Let the two supports of x be a[a1 and a[a2, where a is their intersection

and a1 and a2 are disjoint from a (and thus from each other). We must show
that, if y has lower rank than x, if � is a motion �xing a pointwise, and if y
has a support b � Dom(�), then

y 2 x () �̂(y) 2 x:
We intend to accomplish this by producing a �nite sequence of motions
�1; : : : ; �j such that

� Dom(�1 � � � � � �j) � b,

� �1 � � � � � �j � b = � � b, and

� each �i pointwise �xes either a [a1 or a [a2.
If we can do this then, using the assumption that both a [a1 and a [a2
support x, we �nd that

y 2 x () �̂j(y) 2 x
() �̂j�1(�̂j(y)) 2 x
() : : :

() �̂1(: : : (�̂j(y)) : : :) 2 x
() \(�1 � � � � � �j)(y) 2 x
() �̂(y) 2 x;

51

where at the last two steps we used (8) and (2) of Lemma 12.2. Therefore,
it su�ces to produce �i's with the properties listed above.

We shall do this �rst in an easy case, where both b and �[b] are disjoint
from a1 [a2. Enumerate b as fw1; : : : ; wrg. By the extension axioms, there
are atoms w0

1; : : : ; w
0
r =2 a1 [a2 such that

� wm 2 a! w0
m = wm (= �(wm)),

� wm =2 a! w0
m =2 a [a1 [a2,

� w0
lAw

0
m () wlAwm (() �(wl)A�(wm)),

� for all z 2 a [a1, w0
mAz () wmAz, and

� for all z 2 a [a2, w0
mAz () �(wm)Az.

The consistency of these requirements follows from the facts that � is a
partial automorphism �xing a pointwise and that a1, a2, and a are pairwise
disjoint. Let �2 be the identity on a [a1 and send each wm to w0

m. Let
�1 be the identity on a [a2 and send each w0

m to �(wm). Then our choice
of the w0's ensures that these are motions, and it is clear that they satisfy
our requirements above. So we have achieved our goal in the easy case that
b [�[b] is disjoint from a1 [a2.

To reduce the general case to this special case, we �rst observe that, by
composing a motion �xing a[a1 pointwise with one �xing a[a2 pointwise, we
can move b o� a1[a2. The �rst motion moves the elements of b�(a[a1) away
from a2 and the second leaves these in place while moving the elements of
b\a1 away from a1. The existence of such motions follows from the extension
axioms. Choose such motions and call their composite . Similarly, let � be a
composite of a motion �xing a[a1 pointwise and one �xing a[a2 pointwise,
such that �(�[b]) is disjoint from a1[a2. Apply the special case to the motion
� �� � �1, obtaining a composite of two motions, one �xing a[a1 pointwise
and one �xing a [a2 pointwise, and agreeing with � � � � �1 on [b]. Then
composing this with ��1 on the left and on the right, we get the required
composite of six morphisms | some �xing a [a1 pointwise, others �xing
a[a2 pointwise, and the composite extending � � b. (By being careful about
which motions �x which supports, one can reduce the six motions to four.)
�

Corollary 12.8 If �̂(�̂(x)) is de�ned, then so is[� � �(x).

52

Proof Since �̂(x) is de�ned, x has a support a � Dom(�). By (6) of
Lemma 12.2, �[a] supports �̂(x). Also, since �̂(�̂(x)) is de�ned, �̂(x) has
a support b � Dom(�). Applying the lemma just proved, we �nd that
�[a] \ b also supports �̂(x). Since this support is included in Range(�), we
can write it as �[c] for some c � Dom(�). By (7) of Lemma 12.2, c supports
a. Furthermore, not only is c � Dom(�) but �[c] � b � Dom(�). So

c � Dom(� � �) and therefore[� � �(x) is de�ned. �

The preceding corollary is all that is needed to improve (8) of Lemma 12.2
to the following symmetric version.

Corollary 12.9 [� � � = �̂ � �̂ in the sense that, if either of[� � �(x) and
�̂(�̂(x)) is de�ned, then so is the other and they are equal.

Finally, we note that Lemma 12.7 provides canonical supports for all
supported objects.

Corollary 12.10 Every supported x has a smallest support, i.e., a support
that is included in every support.

Proof Take a support a with the smallest possible cardinality. If there
were another support b not including a, then a \ b would be a support of
smaller cardinality than a, a contradiction. �

13 Tasks, Order, and Rank

To compute the value of a term or the update set of a rule, one needs a
structure (the state of the computation) and values for the variables free in
the term or rule. In most of our discussion, there will be a �xed structure
under consideration but many choices of values for variables. It will therefore
be convenient to push the structures into the background, often neglecting
even to mention them, and to work with pairs whose �rst component is a
term or rule and whose second component is an assignment of values to some
variables (including all the variables free in the �rst component). We shall
call such pairs \tasks" because we regard them as things to be evaluated in
the course of a computation.

The o�cial de�nition of tasks will di�er in two respects from this infor-
mal description. First, we shall always have a particular program � under

53

consideration, and we deal only with terms and rules occurring in �. Recall
in this connection our Convention 4.7, by which we are really dealing with
occurrences of terms and rules. Second, it will be convenient to include in
our tasks not only the obviously necessary values for free variables but also
values for certain additional variables, de�ned as follows.

De�nition 13.1 A variable v is pseudo-free in a term t or rule R if t or R
lies in the scope of v.

Because �, being a program, has no free variables, all the free variables
in a term or rule must also be pseudo-free in it. But there may be additional
pseudo-free variables. From a syntactic point of view, v is pseudo-free in t or
R if one could introduce v as a free variable in t or R without violating the
requirement that � have no free variables. From a computational point of
view, the pseudo-free variables of t or R are those variables to which speci�c
values have been assigned whenever one is about to evaluate t or R in the
natural algorithm for executing �.

De�nition 13.2 A term-task (relative to a program � and a state H+) is a
pair (t;~a) where t is a term in � and ~a is an assignment of values in H+ to
all the pseudo-free variables of t. Rule-tasks are de�ned similarly except that
the �rst component is a rule in �. Term-tasks and rule-tasks are collectively
called tasks.

Although the second component ~a of a task is o�cially a function assign-
ing values to the pseudo-free variables of the �rst component, we sometimes
view it as simply a tuple of values. This makes good sense provided we imag-
ine a �xed order for the pseudo-free variables. If, for example, the pseudo-free
variables of t0 are those of t plus one additional variable v, then we may write
tasks (t;~a) and (t0;~a; b) with the understanding that the additional value b
corresponds to the new variable v. We also sometimes write ~a � for the re-
striction of the function ~a to an appropriate subset of its domain; it will
always be clear from the context what the appropriate subset is.

When the �rst component of a task has no pseudo-free variables, we often
omit the empty second component and regard the �rst component by itself
as a task. In particular, the whole program � can be regarded as a task.

We write Val(t;~a) for the value of the term t in the structureH+ (assumed
�xed throughout the discussion) when the free variables are assigned values
according to ~a.

54

We shall need, for several purposes, a somewhat unusual ordering on
the set of all tasks. We call it the \computational order" because it seeks
to capture the intuition of one task being evaluated before another in the
execution of �.

De�nition 13.3 The computational order � is the smallest transitive rela-
tion on tasks satisfying the following conditions.

� (ti;~a) � (f(t1; : : : ; tj);~a) for 1 � i � j.

� (r;~a) � (fs : v 2 r : 'g;~a) and, for each b 2 Val(r;~a), all three of
(v;~a; b), (s;~a; b) and (';~a; b) are � (fs : v 2 r : 'g;~a).

� (ti;~a) � (f(t1; : : : ; tj) := t0;~a) for 0 � i � j.

� All three of (';~a), (R0;~a), and (R1;~a) are� (if ' then R0 else R1 endif;~a).

� (r;~a) � (do forall v 2 r; R enddo;~a) and, for each b 2 Val(r;~a), both
(v;~a; b) and (R;~a; b) are � (do forall v 2 r; R enddo;~a).

� If r is the range of a variable v pseudo-free in t or R, then (r;~a�) � (t;~a)
or (R;~a).

Except for the last clause, the de�nition assigns as the immediate pre-
decessors of a task simply the subterms or subrules of its �rst component,
equipped with suitable values for the variables. We observe that, in these
clauses, the lower task has values for either the same variables as the upper
or one additional variable if in passing to the subterm or subrule we moved
into the scope of an additional variable.

The last clause, however, is quite di�erent. The lower task involves fewer
variables than the upper, since every variable pseudo-free in the range r of
v is also pseudo-free in the whole term or rule binding v and therefore in all
terms or rules within the scope of v. Note also that in this last clause v is
among the pseudo-free variables of t or R but not among those of r. So in
this last clause, which we refer to as the range clause, the second component
of the lower task is a proper restriction of the second component of the upper
task. On the other hand, the �rst component r of the lower task may well
be much larger than the �rst component t or R of the upper task.

Intuitively, if one task precedes another in this computational ordering
then, in the natural calculation involved in the execution of �, the former

55

task would be carried out before the latter. In the range clause, the idea is
that, before attempting to evaluate t or R, we would have assigned a value
to v, and before that we would have evaluated the range in order to know
what the possible values for v are.

This intuition strongly suggests that the computational order should be
well-founded. In fact it is, but the proof is not trivial and will require de�ning
some rather strange-looking height functions. (Without the range-clause, the
proof would be trivial, since in all the other clauses, as one goes downward in
the ordering, the �rst component of the task gets strictly smaller.) To treat
term-tasks and rule-tasks simultaneously, we use X; Y; : : : to stand for either
terms t or rules R.

Proposition 13.4 There is a height function �, mapping terms and rules to
natural numbers, such that if (X;~a) � (Y;~b) then �(X) < �(Y).

Proof Let V be the number of variables occurring in �, and let D be the
maximum depth of nesting of terms and rules occurring in �.

We begin by �xing a numerical function � on the variables occurring in
�, such that if x is bound in the range of y then �(x) < �(y). (Recall
Convention 4.6 which ensures that every variable of � is bound exactly once
and has a well-de�ned range.) Such a � exists because, if x is bound in the
range of y then the term binding x is a proper subterm of the term or rule
binding y. So we can de�ne �(v) to be the size (i.e., number of symbols in)
the term or rule that binds v. (The depth of nesting of subterms could also
be used instead of the size.)

Next, we de�ne a preliminary version � of the desired height function.
Call a variable relevant to a term or rule X if it is either pseudo-free in X
or bound in X. In other words, the scope of v either includes or is included
in X. De�ne �(X) to be the sum of V �(v) over all variables relevant to X.

We analyze what can happen to � of the �rst component of a task as we
go down in the computational order, treating each clause in the de�nition of
� in turn.

When we go from f(t1; : : : ; tj) to any ti, the same variables remain pseudo-
free, and we may lose but cannot gain bound variables, so � cannot increase.

When we go from fs : v 2 r : 'g to r, � decreases because v loses its
relevance (as might some additional variables) and no new variables become
relevant.

56

When we go from fs : v 2 r : 'g to any of s, v, and ', the pseudo-free
variables remain pseudo-free, the bound variable v becomes pseudo-free, and
we may lose but cannot gain other bound variables, so � cannot increase.

Similarly, in any of the three non-range clauses governing rules, the only
change in relevant variables is that in general some bound variables might
lose their relevance, a bound variable might become pseudo-free, and in going
from do forall v 2 r; R enddo to r, v de�nitely loses its relevance. So in
this one case � decreases while in all cases � does not increase.

Finally, we come to the range clause, where we go from a term or rule X
to the range r of one of its pseudo-free variables. What variables are relevant
to r? First, there are the pseudo-free variables of r. Their scopes include
r, therefore include the whole term or rule binding v, and therefore include
X. So these variables are also pseudo-free in X and therefore relevant to X.
Furthermore, they are distinct from v, as the scope of v does not include its
range r. Second, there are the variables bound in r, which have nothing to
do with X. LetW be the number of these variables, and notice thatW < V .
Thus, as we go from X to r, the set of relevant variables has lost at least
one member, namely v, but it has gainedW others. These other members x,
being bound in the range of v, have �(x) < �(v). Therefore, the e�ect on �
is a decrease of at least V �(v) (from the loss of v) and an increase of at most
W � V �(v)�1 (from the gain of the other W variables). Because W < V , the
net e�ect is a decrease in �.

The preceding discussion shows that, at any downward step in the com-
putational ordering, either � of the �rst component of the task decreases, or
else it remains the same while the �rst component is replaced by a proper
subterm or subrule and therefore the depth of nesting in this term or rule
decreases.

Therefore, let us de�ne

�(X) = (D + 1)�(X) + depth(X)

where depth(X) means the depth of nesting of terms and rules in X. (So
depth(�) = D.) Then this �(X) decreases whenever �(X) does, because,
although depth(X) might increase, it cannot increase by more than the depth
D of the whole program. Also, �(X) decreases when �(X) stays the same
and depth(X) decreases. Therefore, �(X) decreases at every downward step
in the computational ordering. �

This proposition immediately implies that the computational order is a

57

strict partial order; it has no cycles. Since �nite partial orders are well-
founded, it is legitimate to do proofs by induction with respect to �. Such
proofs can also be regarded as ordinary mathematical induction on the height
�. Furthermore, induction on � is somewhat more powerful than induction
with respect to � because �-induction allows us, when proving a statement
for some task, to assume the same statement not only for all computation-
ally earlier tasks (X;~a) but also for all tasks (X;~b) having the same �rst
components as these. This is because � depends only on the �rst component.

The following lemma will be useful technically, and it also serves to clarify
the role of the range clause in the de�nition of the computational ordering.
The de�nition of this ordering � ensures that, if one task T precedes another
T 0 then there is a chain

T 0 = T0 � T1 � � � � � Tn = T

joining them, in which each two consecutive terms are related as in one of
the clauses in De�nition 13.3.

Lemma 13.5 If T 0 � T then there is a chain as above, in which the range
clause is used, if at all, only at the �rst step, from T0 to T1.

Proof We show, by induction on the length of a chain

T 0 = T0 � T1 � � � � � Tn = T

as above, that there is another chain, of the same length n or shorter, satis-
fying the conclusion of the lemma. If the range clause isn't used in the given
chain or is used only at the �rst step, we're done. There remain two cases to
consider.

Case 1: The range clause is used at the �rst step and again later.
Applying the induction hypothesis to the sub-chain from T1 to Tn, we

may assume that the only later use of the range clause is at the second
step, from T1 to T2. Then these two consecutive steps can be replaced by a
single step from T0 to T2 by the range clause. To see this, consider the �rst
components Xi of these Ti and notice that X1 is the range of a variable v
pseudo-free in X0 and X2 is the range of a variable w pseudo-free in X1. But
then w is pseudo-free in the whole term or rule Y binding v and is therefore
also pseudo-free in X0 which is part of Y . Thus, the range clause applied
to the variable w justi�es a step from T0 to T2. Now that the chain has

58

been shortened, we apply the induction hypothesis to arrange that the range
clause is used, if at all, only at the �rst step.

Case 2: The �rst use of the range clause occurs later than the �rst step.
Let this �rst use be at the step from Tk to Tk+1 (where k � 1). As before,

we use the notation Xi for the �rst component of Ti. So Xk+1 is the range
of a variable v pseudo-free in Xk. If this variable v is pseudo-free in some
earlier Xj, with j < k, then we can shorten our chain by going directly from
Xj to Xk+1. The induction hypothesis then completes the proof.

So we may assume that Xk is the �rst Xi in which v is pseudo-free. It
follows (since the step from Xk�1 to Xk didn't use the range clause) that
Xk�1 is the term or rule binding v. But then we can omit Tk from our
chain, going directly from Xk�1 to its sub-term Xk+1 (the range of v) by
a non-range clause. Again, we've shortened the chain, and the induction
hypothesis completes the proof. �

Corollary 13.6 If, in the situation of the lemma, the �rst component of T 0

has no pseudo-free variables (in particular if T 0 is �), then there is a chain
as above, in which the range clause is not used.

Proof By the lemma, we can arrange that the range clause is used, if at
all, only in the �rst step of the chain. But since there are no pseudo-free
variables in the �rst task, the range clause is not applicable at the �rst step.
�

14 Involved and Active Elements

Throughout this section, we assume that we are dealing with a �xed pro-
gram � and a �xed state arising during its execution on some input hI; Ai.
As before, we write H for the structure hHF (I);2; I; Ai. The state under
consideration is an expansion of H, interpreting the dynamic function sym-
bols as well as the other static function symbols. We write H+ for this state.
Notice that, by Proposition 11.1, the interpretations of the additional func-
tion symbols of H+ are all de�nable in H. The de�nitions of the dynamic
function symbols depend on the stage of the computation; the others do not.

The following de�nition is intended to capture the intuitive notion of an
element of HF (I) being \looked at" during the execution of a task T . It

59

doesn't quite ful�ll this intention, for it includes too many elements, pre-
tending for example that execution of an if : : : then : : : else : : : includes
execution of both the consitituent rules regardless of the truth value of the
guard. Nevertheless, it serves our purposes because (1) it includes all the el-
ements that are really needed (see Proposition 14.9 below) and (2) it doesn't
include too many additional elements (see Proposition 14.10 below).

De�nition 14.1 An element c 2 HF (I) is involved in a task (X;~a) (with
respect to a program � and a state H+) if either it is active in (H+;~a) or it
is the value in H+ of some term-task � (X;~a).

The rest of this section is devoted to establishing the properties of involved
elements that will be needed in the proof of the zero-one law.

We begin with the trivial observation that any element involved in a task
is also involved in any task that is higher in the computational ordering.

Proposition 14.2 The set of elements involved in a task (X;~a) is transitive.

Proof We proceed by induction on (X;~a) with respect to the computational
order �. The de�nition of \involved" and the fact that � is a transitive
relation imply that the set of elements involved in (X;~a) is the union of
three parts:

� the set of active elements,

� the set of elements involved in term-tasks � (X;~a), and

� fVal(X;~a)g if X is a term.

The �rst of these sets is transitive by de�nition of \active" and the second by
induction hypothesis (since the union of a collection of transitive sets is again
transitive). So it remains to show that, when X is a term, every element d of
Val(X;~a) is in one of the �rst two sets. We consider the various possibilities
for the term X.

If X is a variable vi, then d 2 ai. Since ai is critical, d is active.
If X is ft(v) : v 2 r : '(v)g, then d = Val(t;~a; b) for some b 2 Val(r;~a).

Then d is involved in (t;~a; b) � (X;~a).
There remains the possibility that X has the form f(t1; : : : ; tj). If f is

a predicate or Atoms or ; or a dynamic function symbol, then Val(X;~a) is
critical, and so d is active. There remain three possibilities for f , namely

S
,

60

TheUnique, and Pair. We can ignore TheUnique, for whenever it produces
a set (as it must since d is to be a member) it coincides with

S
.

If X is
S
t, then d 2 e for some e 2 Val(t;~a). Then, by induction

hypothesis, d is involved in (t;~a) � (X;~a).
Finally, ifX is Pair(t1; t2), then d = Val(ti;~a) is involved in (ti;~a) � (X;~a)

for i = 1 or 2. �

Proposition 14.3 Suppose a rule R, when executed in pebbled state (H+;~a),

updates a dynamic function f at arguments ~b, giving f(~b) the value c. Then c

and all components of ~b are involved in the task (R;~a) (with respect to H+).

Proof We proceed by induction on (R;~a) with respect to the computational
ordering. The hypothesis implies that R has one of the forms

� f(t1; : : : ; tj) := t0,

� if ' then R0 else R1 endif,

� do forall v 2 r; R0(v) enddo.

In the �rst case, c and the components of ~b are Val(ti;~a); they are involved
in (R;~a) because (ti;~a) � (R;~a).

In the second case, the update in question comes from one of the Ri, and
so c and all components of ~b are involved in (Ri;~a) by induction hypothesis.
But then they are also involved in (R;~a) because (Ri;~a) � (R;~a).

Finally, in the third case, the update in question comes from R0(d) for

some d 2 Val(r;~a), and so c and all components of ~b are involved in (R0;~a; d)
by induction hypothesis. But then they are also involved in (R;~a) because
(R0;~a; d) � (R;~a). �

We remark for future reference that the preceding proof applies also if
the rule \wants to" update f(~b) to c, in the sense of Section 11's \wants to
set" formulas, even if a clash prevents the update from actually taking place.

Corollary 14.4 Any object that is not active in a state H+ but is active in
its sequel with respect to � must be involved in the task � with respect to H+.

Proof In view of the de�nition of \active" and of Proposition 14.2, it
su�ces to consider the critical elements of the sequel that were not critical
in H+. These elements are among the values c and components of tuples ~b

61

such that �, executed in state H+, updates some dynamic f at ~b to have
value c. By the proposition, they are involved in � with respect to H+. �

Our next goal is to show that the set-theoretic de�nitions in Section 11
retain their meaning when all quanti�ers are interpreted as ranging only over
elements involved in the terms or rules. In particular, the dynamic functions
at any stage of the computation can be de�ned, as in Proposition 11.1, in
the substructure of H consisting of only the elements involved in � at some
stage of the computation.

We shall use here the notation of Section 11: H+ denotes a state; H =
hHF (I);2; I; Ai is its reduct to the vocabulary containing only 2, Atoms,
and the adjacency symbol A; and HD is the intermediate structure in which,
in addition to 2, Atoms, and A, the dynamic function symbols are inter-
preted as in H+. We also use the notations d'e for various statements ', as
introduced in Section 11.

If C is a subset of HF (I) that contains I, true, and false (as members)
and is closed under the dynamic functions of HD, then we write CD for the
substructure of HD determined by C; its base set is C and its functions
are the restrictions to C of the functions of HD. We shall be concerned
exclusively with the case where C is a transitive set; in this case we refer to
CD as a transitive substructure of HD.

De�nition 14.5 Let H+ be a state and CD a transitive substructure of
HD. Let '(~y) be a �rst-order formula in the vocabulary of HD, having free
variables among ~y and possibly also containing (names for) some elements
of C as parameters. Then '(~y) is absolute for C if, for all choices of values
~c 2 C for the variables ~y,

CD j= '(~c) () HD j= '(~c):

Lemma 14.6 Let t = t(~v) be any term with pseudo-free variables ~v, let ~a
be an assignment of values to those variables, and let CD be a transitive
substructure of HD containing all elements involved in the task (t;~a) with
respect to H+. Then the formulas dy 2 t(~a)e and dy = t(~a)e are absolute for
C.

Proof Notice �rst that C contains I, the truth values, the components of
~a, and all the values of dynamic function symbols in HD, for all of these are
active in (H+;~a) and therefore involved in (t;~a) and therefore is in C. So CD

62

makes sense. Notice also that Val(t;~a) is also involved in (t;~a) and therefore
is in C.

To prove the lemma, we inspect all the clauses in the de�nitions of dy 2
t(~a)e and dy = t(~a)e in Section 11 and check that the meanings of these
formulas are the same whether quanti�ers are interpreted as ranging over all
of HF (I) or only over C. That means, in the case of existential quanti�ers,
if a witness exists in HF (I), then one should exist in C; in the case of
universal quanti�ers it means that, if a counterexample exists in HF (I),
then one should exist in C. The veri�cation of this is very similar for many
of the clauses, so we present it explicitly for only a few clauses (including the
most di�cult ones) and leave the rest to the reader.

First, consider the transitions connecting dy = te and dy 2 te. Given
the former, we produced the latter as 9z (dz = te ^ y 2 z). The existential
quanti�er here has (when t is replaced with t(~a) as in the statement of the
lemma) Val(t;~a) as its only witness, and this lies in C because it is involved
in (t;~a). Conversely, given dy 2 te, we produced dy = ze as

y =2 Atoms ^ 8z(z 2 y $ dz 2 te):

The only possible counterexamples for the universal quanti�er here are the
members of Val(t;~a) and the members of y. The former are in C because they
are involved in (t;~a) by Proposition 14.2, and the latter will, when we apply
the de�nition of absoluteness, be in C also because y will be instantiated as
an element c 2 C and C is transitive.

Now we proceed by induction on terms, looking at some typical clauses
in the recursive de�nitions of dy = te and dy 2 te.

If t is f(t1; : : : ; tj) for some dynamic function symbol f , then dy = te was
de�ned as

9z1 : : :9zj

j^
i=1

dzi = tie ^ y = f(z1; : : : ; zj)

!
:

The only witnesses for the existential quanti�ers 9zi are the corresponding
Val(ti;~a), which are involved in (t;~a) because (ti;~a) � (t;~a). In addition,
we need to know that each of the subformulas dzi = tie means the same in
CD as in HD (when the pseudo-free variables ~v of t are instantiated by ~a).
This follows from the induction hypothesis, because all elements involved in
(ti;~a) are also involved in the higher (in �) task (t;~a) and because the only
relevant value of zi was already seen to be in C.

63

If t is
S
t1 then dy 2 te was de�ned as

9z (y 2 z ^ dz 2 t1e):

The witnesses for 9z here are the members of Val(t1;~a), and these are in C
because (t1;~a) � (t;~a) and C is transitive. In addition, dz 2 t1e is absolute
for C by induction hypothesis.

If t is ft1(v) : v 2 r : '(v)g then dy 2 te was de�ned as

9v (dv 2 re ^ dtrue = '(v)e ^ dy = t1(v)e):

The possible witnesses for 9v here are the members b of Val(r;~a), and these
are in C because (r;~a) � (t;~a) and C is transitive. In addition, the subfor-
mulas of the form d: : : e are absolute by induction hypothesis because, for
each b 2 Val(r;~a), both (';~a; b) and (t1;~a; b) are � (t;~a).

The three clauses we have treated here are typical; the remaining eleven
require no new ideas, so we leave them to the reader. �

Lemma 14.7 Let R = R(~v) be any rule with pseudo-free variables ~v, let
~a be an assignment of values to those variables, and let CD be a transi-
tive substructure of HD containing all elements involved in the task (R;~a)
with respect to H+. Then, for each dynamic function symbol f , the formula
dR(~a) wants to set f at x1; : : : ; xj to ye is absolute for C.

Proof Consider �rst an update rule involving the relevant function symbol;
say R(~v) is f(t1; : : : ; tj) := t0. Then dR(~a) wants to set f at x1; : : : ; xj to ye
was de�ned to be

j^
i=1

dxi = tie ^ dy = t0e:

This is absolute because, by the preceding lemma,the subformulas dxi = tie
and dy = t0e are absolute. This application of the preceding lemma requires
that C contain all elements involved in any of the tasks (ti;~a), but this
requirement is satis�ed since all these tasks are � (R;~a).

IfR is do forall v 2 r; R1 enddo then dR(~a) wants to set f at x1 : : : ; xj to ye
was de�ned to be

9v (dv 2 re ^ dR1 wants to set f at x1; : : : ; xj to ye):

64

The possible witnesses for 9v here are the elements of Val(r;~a), and these are
in C just as in the ft1(v) : v 2 r : '(v)g case of the preceding lemma. And the
subformula dR1 wants to set f at x1; : : : ; xj to ye is absolute by induction
hypothesis, since, for each b 2 Val(r;~a) we have (R1;~a; b) � (R;~a).

If R is a conditional rule if ' then R0 else R1 endif, then the induc-
tion hypothesis applied to R0 and R1 immediately gives the result. The
remaining two cases, Skip and an update rule for a dynamic function other
than f are trivial, since false is always absolute. �

Lemma 14.8 Let CD be a transitive substructure of HD containing all el-
ements involved in the task �, our whole program. Then d� clashese is ab-
solute for C, and so are d� sets f at x1; : : : ; xj to ye and dy = f(x1; : : : ; xn) in the sequele
for each dynamic function symbol f .

Proof Again, we inspect the de�nitions in Section 11. d� clashese was
de�ned as_

f

9x1 : : : 9xj9y9z

(� wants to set f at x1; : : : ; xj to y) ^
(� wants to set f at x1; : : : ; xj to z) ^ y 6= z:

The witnesses for the existential quanti�ers here are either components of
locations where � wants to update f or the new values that � wants to give
f at these locations. By Proposition 14.3 and the observation immediately
following its proof, all these elements are involved in � and are therefore
in C. Furthermore, for such values of the variables, the two \wants to set"
subformulas in d� clashese are absolute by the preceding lemma; therefore
so is d� clashese.

The formula d� sets f at x1; : : : ; xj to ye is absolute because it was de-
�ned as a propositional combination of subformulas which we've already
proved absolute.

Finally, dy = f(x1; : : : ; xn)in the sequele was de�ned as

d� sets f at x1; : : : ; xj to ye _
(dy = f(x1; : : : ; xj)e ^ :9y0 d� sets f at x1; : : : ; xj to y

0e:
Here the possible witnesses for 9y0 are in C thanks to Proposition 14.3, and
with such a value for y0 all the subformulas are absolute by the preceding
two lemmas. �

65

Proposition 14.9 Let C be a transitive substructure of H. Consider a
run of �, and assume that C contains all elements that are involved in
� with respect to states H+ occurring in this run. Then, for every dy-
namic function symbol f and every natural number m, the formula dy =
f(x1; : : : ; xj) at step me is absolute for C.

Recall that the formulas dt0 = g(t1; : : : ; tk) at step me are in the vocab-
ulary of H, not HD, i.e., they do not involve the dynamic function symbols.
That is why the proposition refers to absoluteness for C rather than CD.

Proof We proceed by induction on m, following the construction of dy =
f(x1; : : : ; xj) at step me in the proof of Proposition 11.1. The basis of the in-
duction is trivial, as dy = ;e is certainly absolute. At the induction step, dy =
f(x1; : : : ; xj) at step m+1e was formed from dy = f(x1; : : : ; xj) in the sequele
by replacing atomic subformulas dt0 = g(t1; : : : ; tk)e involving dynamic func-
tion symbols with dt0 = g(t1; : : : ; tk) at step me. This last formula, dt0 =
g(t1; : : : ; tk) at step me, is absolute for C by induction hypothesis. That
means that, if we use this formula, in C, to de�ne interpretations of the
dynamic function symbols, the result is a substructure CD of HD. Then
the preceding lemma can be applied to these structures, since C contains
the elements involved in any state H+ of the run, to infer that, with these
interpretations, dy = f(x1; : : : ; xj) in the sequele has the same meaning in C
as in H. But that means that dy = f(x1; : : : ; xj) at step m+ 1e is absolute.
�

Observe for future reference that the proof of the proposition would re-
main correct if we assumed only that C contains all elements involved in �
with respect to states occurring at or before step m. Later states were not
involved in the argument for absoluteness at step m.

The �nal property of involved elements that we shall need is that there
are not too many of them.

Proposition 14.10 For any state H+ and any task (X;~a), the number of
elements involved in (X;~a) is bounded by a polynomial function of the number
of active elements in (H+;~a). The polynomial depends only on the term or
rule X.

Proof We proceed by induction on the task (X;~a) with respect to the
computational order. Notice that the elements involved in (X;~a) are of three
sorts:

66

1. active elements,

2. elements involved in tasks immediately preceding (X;~a) in the compu-
tational order, and

3. Val(X;~a) if X is a term.

Here \immediately preceding (X;~a)" means explicitly listed as preceding
it in De�nition 13.3, without using the transitivity of �. We need not con-
cern ourselves with tasks strictly but not immediately preceding (X;~a), since
anything involved in them is also involved in a task immediately preceding
(X;~a).

We must associate to every term or rule X a polynomial pX(n) such
that, when there are n active elements then at most pX(n) elements can be
involved in (X;~a) for any ~a. Referring to the list above, we see that there
are n elements of sort 1 and at most one element of sort 3, so it su�ces to
bound the number of elements of sort 2.

Notice that the range clause in De�nition 13.3 produces only a �xed �nite
number of immediate predecessors (independent of H+) for any (X;~a), since
X has only �nitely many pseudo-free variables and each of these has only
one range.

When X is a variable or the rule Skip, there are no other immediate
predecessors. When X is a term of the form f(t1; : : : ; tj) or an update rule
or a conditional rule, then there are only a �xed �nite number of other imme-
diate predecessors. In any of these cases, the required bound on the number
of elements of sort 2 can be obtained simply by summing the polynomials
associated to the �xed family of immediate predecessors.

There remain two cases, a term of the form ft(v) : v 2 r : '(v)g and a
parallel combination rule. Consider �rst the case that X is ft(v) : v 2 r :
'(v)g. The immediate predecessors of (X;~a) are those given by the range
clause, (r;~a), and for each b 2 Val(r;~a) the three tasks (v;~a; b), (t(v);~a; b),
and ('(v);~a; b). Since all elements of Val(r;~a) are involved in (r;~a), we can
bound the number of elements of sort 2 produced by a rule other than the
range rule by

pr(n) + pr(n) � (pv(n) + pt(n) + p'(n)):

Adding �nitely many polynomials to account for elements of sort 2 produced
by the range rule, and adding n+1 to account for elements of sorts 1 and 3,
we obtain the required polynomial for ft(v) : v 2 r : '(v)g.

67

The case of a parallel combination is very similar. LetX be do forall v 2
r; R(v) enddo. The immediate predecessors of (X;~a) are those given by
the range rule, (r;~a), and for each b 2 Val(r;~a) the two tasks (v;~a; b) and
(R(v);~a; b). Since all elements of Val(r;~a) are involved in (r;~a), we can bound
the number of elements of sort 2 produced by a rule other than the range
rule by

pr(n) + pr(n) � (pv(n) + pR(n)):

Adding �nitely many polynomials to account for elements of sort 2 produced
by the range rule, and adding n+1 to account for elements of sorts 1 and 3,
we obtain the required polynomial for do forall v 2 r; R(v) enddo. �

15 Combinatorics

In this section, we prove the main combinatorial lemma needed for the proof
of the main theorem. As in the preceding sections, the parameters q and k
will be �xed here. The graph hI; Ai of atoms will be assumed to satisfy the
strong extension axioms for up to 3kq parameters.

By a polymer we mean a sequence of at most kq atoms. (The reason for
the terminology is that, in [4], we used \molecule" for a one-to-one listing
of a support; here that would be a sequence of length � q. A polymer is
essentially the concatenation of up to k molecules. It gives the supports for
up to k objects.) The con�guration of a polymer consists of the following
information: which components are equal and which are adjacent in the
graph hI; Ai of atoms. If the polymer has length l, then its con�guration
could be viewed as the combination of an equivalence relation on f1; 2; : : : ; lg
(telling which components are equal) and an irreexive symmetric relation
on the quotient set (telling which components are adjacent). By the joint
con�guration of two (or more) polymers, we mean the equality and adjacency
information about all components of both (or all) of the polymers. It could
be viewed as the con�guration of the concatenation of the polymers, except
for the technicality that the concatenation may be too long to count as a
polymer.

We shall be concerned with equivalence relations of the following sort.

De�nition 15.1 A con�guration-determined equivalence (cde for short) is
an equivalence relation E with the following two properties.

68

� Its domain consists of all polymers of one speci�ed con�guration.

� Whether two polymers � and � of this con�guration are related by E
depends only on their joint con�guration.

When dealing with polymers � of a speci�ed con�guration (e.g., those
in the domain of a cde), we can simplify their presentation by omitting any
repetitions of components in �. Notice that the con�guration of � tells us
where the repetitions must occur, so, knowing the con�guration, we can
recover � from its compressed version. Notice also that the con�guration
of the compressed version is entirely determined by that of �. Also, if �
and � both have the speci�ed con�guration, then their joint con�guration
determines and is determined by the joint con�guration of their compressed
versions. Because of this tight correspondence between the polymers � and
their compressed versions, we can con�ne our attention to the compressed
versions; that is, we can assume that we deal only with polymers that are
one-to-one sequences.

Now we are ready to state the theorem that is the combinatorial heart of
the zero-one law.

Theorem 15.2 Assume that SEA3kq holds and that jAtomsj � kq23kq+1.
Let E be a con�guration-determined equivalence with fewer than

1

(q + 1)!

� jAtomsj
23kq+1

�q+1

equivalence classes. Let l be the common length of the polymers in the domain
of E. There exists a set u � f1; 2; : : : ; lg of size at most q, and there exists
a group G of permutations of u such that, for any � and � in the domain of
E,

�E� () (9� 2 G) (8i 2 u) �i = ��(i):

Notice that, although l can be as large as kq, the theorem requires u to
be relatively small, of size at most q.

The conclusion of the theorem completely describes E in terms of u and
G. It says that the E-equivalence class of � consists of those polymers (of
the right con�guration) obtainable from � by

� permuting the components indexed by u, using a permutation from G,
and

69

� changing the other components completely arbitrarily.

In particular, the equivalence class of � depends only on the �i for i 2 u.
The hypothesis of the theorem involves a complicated bound on the num-

ber of equivalence classes. Most of the complication disappears if one remem-
bers that q and k are �xed, so the bound is, up to a constant factor, just
jAtomsjq+1. When we apply the theorem, the cde's of interest will be such
that the number of equivalence classes is bounded by a polynomial in jAtomsj
of degree at most q. So the bound will automatically be satis�ed once the
number of atoms is large enough.

Proof Let E be a cde satisfying the hypotheses of the theorem. All poly-
mers mentioned below are assumed to be of the right con�guration so that
they are in the domain of E.

Since the theorem requires u to be small and since the components �i of a
polymer for i =2 u must be irrelevant to its E-equivalence class, we shall have
to obtain some strong \irrelevance of components" results. The following is a
�rst step in that direction, giving, under certain circumstances, one irrelevant
component.

Lemma 15.3 Suppose �E� and suppose a certain component �r of � does
not occur in �. Then r is irrelevant in the sense that, if � and � 0 agree except
in position r, then �E� 0.

Proof Fix � and � as in the hypothesis of the lemma, and build a sequence
of polymers, �0; �1; : : : ; �L such that:

� L = l!, where l is the length of the polymers.

� �0 = � and �1 = �.

� Every two consecutive polymers �m and �m+1 in the sequence have the
same joint con�guration as � and �.

� Any atom in �m+1 that isn't in �m isn't in � either.

Such a sequence exists because the extension axioms allow us to choose the
�m by induction on m. Notice in this connection that the constraints on
�m+1 involve only the immediately previous �m and the �rst �, so extension
axioms up to 3kq parameters su�ce.

70

We remark that each two consecutive polymers in our list areE-equivalent,
since they have the same joint con�guration as the E-equivalent pair �; � and
E is con�guration-determined. Of course it follows that the entire list lies in
a single E-equivalence class.

Because of our convention of using compressed polymers (i.e., tuples with-
out repetitions), there is a one-to-one partial function � from f1; 2; : : : ; lg to
itself telling us where to �nd components of � in �. That is,

�i = ��(i) if i 2 Dom(�)

�i doesn't occur in � if i =2 Dom(�):

We claim that the mth iterate �m similarly tells us where to �nd components
of � in �m. Indeed, if i 2 Dom(�m) then, because all pairs of consecutive
polymers in our list have the same joint con�guration as �; �,

�i = ��(i) = �1�(i) = �2�2(i) = � � � = �m�m(i):

What if i =2 Dom(�m)? Then there is a unique j < m such that i 2 Dom(�j)�
Dom(�j+1). Then, as in the computation above, �i = �j

�j(i)
and, since �j(i) =2

Dom(�), ��j(i) doesn't occur in �. But �j and �j+1 have the same joint

con�guration as � and �. So �j
�j(i)

= �i doesn't occur in �
j+1. By the �nal

requirement in our choice of the sequence of polymers, �i cannot occur in any
polymer after �j+1 in our sequence. In particular, it doesn't appear in �m.
This completes the veri�cation of our claim about �m:

�i = �m�m(i) if i 2 Dom(�m)

�i doesn't occur in �
m if i =2 Dom(�m):

We apply the preceding information with m = L = l!. Then �L is the
identity function on its domain. To see this, recall that � is a one-to-one
partial function from f1; 2; : : : ; lg to itself, and visualize it as a directed
graph, with vertex set f1; 2; : : : ; lg and with arcs (i; �(i)). The connected
components of this graph are some directed paths leading to points =2 Dom(�)
and some directed cycles (because � is one-to-one). On any of the paths, since
there are at most l vertices, if we iterate � at least l times we get a totally
unde�ned function; in particular, �L is unde�ned at all points in the paths.
As for the cycles, their lengths are also � l and therefore divide L. So �L is
the identity function on the cycles.

71

Summarizing the preceding discussion, we have that �E�L and that any
any atom occurring as a component in both � and �L must occur in the same
position in both and must also occur (though not necessarily in the same
position) in �. Recall that � and � were chosen to satisfy, with a certain r,
the hypothesis of the lemma. So �r does not occur in � and therefore does
not occur in �L either.

Now suppose � and � 0 agree except at position r. Since we deal with
one-to-one polymers, �r does not occur in �

0 and � 0r does not occur in �. To
complete the proof of the lemma, we must show that �E� 0.

The extension axioms provide a polymer � (of the right con�guration to
be in the domain of E) such that both pairs (�; �) and (� 0; �) have the same
joint con�guration as (�; �L). To see this, consider �rst those positions i
where �i = �Li . As noted above, r is not such a position, so �i = � 0i and
we can (indeed we must) take �i = �i = � 0i. For all other positions j, �Lj
doesn't occur in �, so the �j we seek should not occur in � or in � 0, but it
should satisfy certain adjacencies and non-adjacencies with the components
of � and � 0 and the other components of �. The extension axioms allow us
to choose the desired �j's one after the other; at each step, the constraints
on the desired �j are consistent because any common component of � and � 0

(which might threaten to give two constraints) occurs in the same position
in both of these polymers (because this is the case for � and �L), so it gives
merely two occurrences of the same constraint.

Because �E�L and because E is con�guration-determined, we have both
�E� and � 0E�. Therefore �E� 0, and the proof of the lemma is complete. �

Returning to the proof of the theorem, we proceed to de�ne the required
u and G. Let

u = fi 2 f1; 2; : : : ; lg : Whenever �E� then �i occurs in �g:

We record for future reference that the preceding lemma gives us part of
the information about u required in the theorem.

Corollary 15.4 If � and � are polymers in the domain of E and if �i = �i
for all i 2 u, then �E�.

Proof We �rst reduce the problem to the case where � and � are disjoint
except on u, i.e., �i 6= �i0 for all i; i

0 =2 u. To do this, we use a polymer � in
the domain of E that agrees on u with � (and therefore with �) but is disjoint

72

from both of them except on u. Such an � can easily be found by using the
extension axioms to produce it one component at a time. If the corollary
holds for polymers disjoint except on u, then we have �E� and �E�, and so
�E�, as required.

So from now on we assume that � and � are disjoint except on u (and of
course agree on u). The idea for the proof in this situation is to connect � and
� by a sequence of polymers, each di�ering from the next in just one position,
that position being outside u. Then the lemma will tell us that consecutive
polymers in this sequence are E-equivalent; therefore so are the ends � and
� of the sequence. In order to apply the lemma, however, we must make sure
that all the polymers in our sequence are in the domain of E, i.e., that they
have the right con�guration. This means that we cannot, in general, form our
sequence by simply replacing the unwanted components of � one at a time
by the corresponding components of �. Instead, we go from � to � via an
intermediate polymer � that agrees on u with � and �, is disjoint from them
except on u, and is chosen so that the domain of E contains all the polymers
obtained by replacing the unwanted components of � one by one (say in left to
right order) with those of � and then replacing these (in the opposite order)
with the corresponding components of �. These requirements on � trivially
determine its components on u. Its remaining components are subject to
certain constraints to ensure disjointness and especially to ensure that all
the polymers in our sequence have the same con�guration and are therefore
in the domain of E. These constraints require, for each non-u component of
�, certain adjacency or non-adjacency relationships with the u components
of �, with the earlier (i.e. farther left) components of �, and with the later
components of � and �. These required relationships cannot contradict each
other because � and � are disjoint except on u. So the extension axioms allow
us to �nd the desired components of � one at a time. �

For each pair �; � of E-equivalent polymers, let � = ��;� be the one-to-one
partial function as in the proof of the lemma, i.e.,

�i = ��(i) if i 2 Dom(�)

�i doesn't occur in � if i =2 Dom(�):

We de�ne
G = f��;� � u : �E�g:

It is clear from the de�nition of u that the domain of each ��;� includes u.

73

We check next that each � = ��;� maps u into itself. Indeed, suppose i 2 u
but �(i) =2 u. So there exist polymers �E� such that ��(i) does not occur
in �. Since all polymers under consideration have the same con�guration,
the extension axioms provide a polymer � such that the pair (�; �) has the
same joint con�guration as (�; �). Therefore �E� because E is con�guration-
determined, and �i = ��(i). But that means that �i doesn't occur in �, yet
� and � are E-equivalent as both are equivalent to �. This contradicts i 2 u
and thus completes the proof that each member of G maps u into itself.

As each � is one-to-one and as u is �nite, we now know that G is a set of
permutations of u. It contains the identity permutation (as ��;�) and inverses
of all its members (for ��1�;� = ��;�). To see that G is closed under compo-
sition, consider any two of its members, say ��;� and ��0;�0 where �E� and
�0E�0. Since all four polymers here have the same con�guration, extension
axioms provide � such that (�; �) has the same con�guration as (�0; �0) and
no components of � are in � except for ones also in �. Then �E�E� and
��;� = ��0;�0 . Therefore (omitting for brevity the restriction to u that should
accompany each �)

��;� � ��0;�0 = ��;� � ��;� = ��;� 2 G:
Thus G is a group of permutations of u. We check next that E can

be de�ned in terms of u and G as in the statement of the theorem. One
direction of that equivalence is trivial, for if �E� then ��;� � u serves as the
required � 2 G. For the other direction, suppose (8i 2 u) �i = ��(i), where
� = ��;� for some �E�. The extension axioms provide a polymer � (with
the same con�guration as all the others) such that the joint con�guration
of (�; �) matches that of (�; �). So for all i 2 u we have �i = ��(i) = �i, so
the corollary of the lemma tells us that �E�. Furthermore, as �E� and E is
con�guration-determined, we have �E�. Therefore �E�, as desired.

All that remains in the proof of the theorem is to show that juj � q.
(A priori, u could be as large as l, which in turn could be as large as kq,
the maximum length for a polymer.) Suppose, toward a contradiction, that
juj � q + 1. Let us abbreviate

jAtomsj
23kq+1

as z:

Then the hypothesis of the theorem ensures that z � kq.
Also, the strong extension axioms ensure that every type with at most kq

parameters is realized at least z times. This allows us to estimate the number

74

of E-equivalence classes. To build a polymer � (of the right con�guration
to be in the domain of E), we �rst choose, in succession, its components
at positions in u; at each step there are at least z choices satisfying all the
constraints imposed by the con�guration, so there are at least zjuj possibilities
for � � u. Extend each of these to a polymer � of the right con�guration. Note
that, among the zjuj polymers so obtained, two are E-equivalent if and only
if one is transformed to the other by a permutation (of component positions)
from G. Now G, being a group of permutations of u, has order at most juj!,
and so each E-equivalence class of our chosen polymers has size at most juj!.
Therefore, there are at least zjuj=juj! equivalence classes.

As a function of m, zm=m! is non-decreasing as long as m remains � z.
Indeed,

zm�1

(m� 1)!
� zm

m!
() m � z:

Since we know juj � kq � z and since we are assuming q+1 � juj, it follows
that zm=m! is a non-decreasing function of m in the interval from q + 1 up
to juj. In particular, zq+1=(q + 1)! � zjuj=juj!. Therefore, the number of
E-equivalence classes, as estimated above, is at least zq+1=(q + 1)!. That
contradicts the hypothesis of the theorem. �

16 Involved Objects Are Supported

In this section, we assemble most of the preceding work to show that, for
a run of a BGS program with a polynomial bound on the number of active
elements, all elements involved in the program, with respect to any state of
the run, are supported. Once this is established, it will be easy to deduce
Theorem 2.2, from which the zero-one law, Theorem 2.1, is an immediate
consequence.

Fix a BGS program � and a polynomial bound �(n) on the number of
active elements (in terms of the cardinality n of the input graph). Consider
any run of �, on input graph hI; Ai, or any initial segment of such a run,
in which the number of active elements never exceeds �(n) where n = jIj.
By Proposition 14.10, the number of elements involved in � at any state
in the run is bounded by a polynomial function p� of the number of active
elements and therefore by a polynomial function p�(�(n)) of the input size n.
Increasing this last polynomial if necessary, we may assume that the number
of involved elements is bounded by Cnq for certain positive integers C and

75

q. Notice that the proof of Proposition 14.10 provides an explicit calculation
of a suitable polynomial p�. Since � is also given explicitly, we can compute
C and q e�ectively from � and �.

In all our previous discussions of supports, starting in Section 12, we
assumed that the parameters q � 1 and k � 4 had been �xed arbitrarily. We
now give them the following speci�c values: q gets the value described at the
end of the last paragraph, the exponent in the bound Cnq. The value of k is
to be the sum of

� twice the number of variables in �,

� the bound B from Proposition 11.1, and

� 4.

Henceforth, all references to supports, motions, and related concepts are to
be understood with these values of q and k. Also, we assume the strong
extension axioms for up to 3kq parameters in our input graph.

The main result of this section is that, under the assumptions above,
involved elements in su�ciently large graphs are supported.

Proposition 16.1 Let �, �, C, q, and k be as above. Let hI; Ai be a graph
satisfying the strong extension axiom SEA3kq. Consider a run or an initial
segment of a run of � on input hI; Ai in which each state has at most �(jIj)
active elements. If jIj is large enough, then, in every state of the run, every
element involved in � is supported.

After giving the proof, we shall extract an explicit estimate of how large
jIj should be.

Proof We prove the proposition by induction on the steps of the run (or
partial run). More precisely, we prove the following two properties for each
state H+ occurring in the run.

� Every active element is supported.

� Every element involved in � is supported.

(Of course the second of these, the one we are really interested in, subsumes
the �rst, but it is convenient to consider the �rst separately.) In the initial
state, all dynamic functions are constant with value ;, and so the only active

76

elements are the atoms, the set I of atoms, and the two truth values. All
these are supported (see Lemma 12.2 for the atoms and the set of atoms; the
truth values ; and f;g are trivial to check directly). Furthermore, if both our
claims are true at some state in the run, then the �rst claim, that all active
elements are supported, will be true in the next state, by Corollary 14.4. So
to complete the induction, it su�ces to show, for each state H+ in the run,
that if every active element is supported then so is every element involved in
�.

For the rest of the proof, we work with a �xed state H+ that occurs, in
a (possibly partial) run of �, in which the input is a su�ciently large graph
satisfying SEA3kq, and in which the number of active elements never exceeds
�(jIj). We assume that all active elements of this state H+ are supported,
and we must prove that all elements involved in � with respect to H+ are
also supported. In view of the de�nition of \involved," it su�ces to prove
that Val(t;~a) is supported for every term-task (t;~a) � �.

This proof will be carried out by induction on the height �(t) of t, where
� is de�ned as in Proposition 13.4. By that proposition, we know that, when
we are proving that Val(t;~a) is supported, we may assume the same property
for all predecessors of (t;~a) in the computational order and also for all tasks
having the same �rst components as such predecessors.

To facilitate carrying out the induction, we strengthen the statement
being proved, as follows. We shall show, by induction on �(t), that all term-
tasks (t;~a) � � have the following three properties.

1. All the ai are supported.

2. If � is a motion whose domain includes supports of all the ai, then
(t; �̂(~a)) � �.

3. Given any supports for the components ai of ~a, their union includes a
set that supports Val(t;~a).

In Assertion 2, �̂(~a) means the result of applying �̂ to each component ai of
~a. Assertions 1 and 3 together imply that Val(t;~a) is supported, which was
our goal.

For the proofs of Assertions 1 and 2, it will be useful to �rst invoke
Corollary 13.6 to obtain a chain S of tasks

(t;~a) � � � � � �

77

in which each two consecutive tasks are related as in one of the �rst �ve
clauses in De�nition 13.3, i.e., not using the range clause. This means in
particular that, of any two tasks in S,

� the �rst component of the earlier task is a subterm or subrule of the
�rst component of the later task, and

� the second component of the later task is a restriction of the second
component of the earlier task

(We've displayed the chain here in the opposite order from Lemma 13.5, so
that words like \predecessor" will have the same meaning in the display as
in the ordering �.)
Proof of Assertion 1 Consider any ai, and let (s;~b; ai) be the last task in S
in which ai appears. Let r be the range of the variable vi (that has the value
ai in ~a), and notice, by inspection of the non-range clauses in De�nition 13.3,

that ai 2 Val(r;~b). Because (r;~b) � (t;~a) by the range clause, our induction

hypothesis ensures that Val(r;~b) is supported. Therefore, so is its element
ai. This establishes Assertion 1 . �

Proof of Assertion 2 Apply �̂ to the second component of every task in
S; this makes sense because, as noted above, these second components are
restrictions of ~a, all of whose components have supports included in the
domain of �. We claim that, in the resulting sequence of tasks, each is still
an immediate predecessor of the next in the ordering � (and still without
using the range clause). This claim will clearly su�ce to establish Assertion 2.
Inspection of the relevant (i.e., non-range) clauses in De�nition 13.3 shows
that the claim is trivial except when a pseudo-free variable disappears, i.e.,
when we have (s;~c; b) or (v;~c; b) or (';~c; b) as an immediate predecessor
of fs : v 2 r : 'g or when we have (v;~c; b) or (R;~c; b) as an immediate
predecessor of do forall v 2 r; R enddo. In these cases, we have b 2 Val(r;~c)
and we need to know that �̂(b) 2 Val(r; �̂(~c)) in order to know that we still
have an immediate predecessor relationship after applying �̂.

Fortunately, (r;~c) � (t;~a) by the range clause. So we know, by induction
hypothesis, that the values of (r;~c) and of all its �-predecessors are sup-
ported. Since all active elements are supported, we know that every element
involved in the task (r;~c) is supported. Therefore, the class S of supported
objects satis�es the hypotheses of Lemma 14.6 for the task (r;~c). This allows
us to argue as follows.

78

Since b 2 Val(r;~c), the formula db 2 r(~c)e is true in HD. (Recall from
Section 11 that HD is the reduct of H+ in which only 2, Atoms, A, and the
dynamic function symbols are interpreted. Recall also that H is the further
reduct, omitting the interpretations of the dynamic function symbols.) By
Lemma 14.6, db 2 r(~c)e is also true in SD, the substructure ofHD whose base
set is the set S of supported elements. (The requirement in Lemma 14.6 that
SD be a substructure, i.e., that S be closed under the dynamic functions, is
satis�ed because values of dynamic functions are active and are therefore in
S.)

Let H+
� be the state immediately preceding H+ in our run of � and recall

that, since the proposition is being proved by an induction along the run,
all elements involved in � with respect to H+

� are supported. Therefore,
Lemma 14.8 provides de�nitions in H, absolute for S, of the dynamic func-
tions in the sequel of H+

� , i.e., in the state H+. Inserting these de�nitions
for the dynamic functions into db 2 r(~c)e, we obtain a formula, true in H
and absolute for S, expressing that b 2 Val(r;~c) in H+. Since this formula
is true in S, it remains true in S if we apply �̂ to b and to all components of
~c, by Lemma 12.5.

Now we reverse the preceding steps to obtain �̂(b) 2 Val(r; �̂(~c)). In
order to do this, we need to know that the task (r; �̂(~c)) has, like (r;~c), the
property that all elements involved in it (with respect to H+) are supported.
Although (r; �̂(~c)) need not be � (t;~a) (as (r;~c) is), it has the same �rst
component, and this su�ces since (1) we are proceeding by induction on
�(t), which depends only on the �rst component and (2) (r; �̂(~c)) � � by
Assertion 2 for (r;~c).

This completes the proof that �̂(b) 2 Val(r; �̂(~c)), which su�ces to com-
plete the proof of Assertion 2. �

Before proceeding to the proof of Assertion 3, it will be useful to give
a short name to the main part of the preceding proof, because it will be
needed again. We are referring to the argument leading from b 2 Val(r;~c) to
�̂(b) 2 Val(r; �̂(~c)). We shall refer to this argument as \applying the motion
� via S." Notice that this argument required that the domain of � includes
supports of b and all components of ~c and that everything involved in the
tasks (r;~c) and (r; �̂(~c)) is supported. Notice also that the same argument
would apply to statements of the form b = Val(r;~c).

Proof of Assertion 3 This proof splits into cases depending on the nature
of the term t. If t is a variable vi, then Val(t;~a) = ai and the assertion is

79

trivially true.
Consider next the hardest case, namely where t is fs : v 2 r : 'g. Choose

supports for all the ai and let �0 be a polymer in which all those supports
are listed. (Note that, by our choice of k, the number of variables in � is less
than 1

2
(k�4); since supports have size at most q, the length of �0 is less than

1
2
(k � 4)q, well below the length bound kq in the de�nition of \polymer.")

For any other polymer � of the same con�guration as �0, let � be the motion
sending �0 to �. Thus, �̂(ai) is de�ned for all i. Write t(�) for Val(t; �̂(~a)). In
particular, t(�0) is the object Val(t;~a) that we hope to prove to be supported
by a subset of the range of �0.

De�ne an equivalence relation E on the set of polymers of the same
con�guration as �0 by

�E�0 () t(�) = t(�0):

We claim that this E is con�guration-determined. To prove this claim, sup-
pose �E�0 and suppose another pair �; �0 has the same joint con�guration
as �; �0; we must show �E�0. Let � be (as above) the motion �0 7! �, and
similarly, let �0 : �0 7! �0. Also, let � be the motion sending � 7! � and
�0 7! �0. (Such a � exists because the joint con�gurations agree and because
� and �0 together involve fewer than (k� 4)q elements, well below the bound
kq for the size of the domain of a motion.) Of course then the compos-
ite motions � � � and � � �0 send �0 to � and �0, respectively. In view of
the de�nition of E, we know Val(t; �̂(~a)) = Val(t; �̂0(~a)) and we must de-
duce Val(t; �̂ � �̂(~a)) = Val(t; �̂ � �̂0(~a)) (where we've also used part (8) of
Lemma 12.2).

To prove the desired equation, it su�ces, by symmetry, to establish
the inclusion in one direction. So we consider an arbitrary element z 2
Val(t; �̂ � �̂(~a)) and we try to prove z 2 Val(t; �̂ � �̂0(~a)). Since t is fs :
w 2 r : 'g, we have z = Val(s; �̂�̂(~a); b) for some b 2 Val(r; �̂�̂(~a �)) with
true = Val('; �̂�̂(~a); b). (As usual, ~a � here denotes the restriction of ~a to
the variables pseudo-free in r.)

By induction hypothesis, b is supported. Extend �, if necessary, so that
its range includes a support of b. (The extension axioms provide a partial
isomorphism, and it is a motion because its domain still has cardinality
less than (k � 3)q.) Since the range of � includes supports of b and of all
components of �̂ � �̂(~a) (see Lemma 12, part 6), another application of the
induction hypothesis gives that the range of � supports z = Val(s; �̂�̂(~a); b).
Applying motion ��1 via S to the formulas at the end of the preceding

80

paragraph, we obtain

� c��1(z) = Val(s; �̂(~a); c��1(b)),
� c��1(b) 2 Val(r; �̂(~a�)), and

� true = Val('; �̂(~a); c��1(b)).
The support information needed for this application of a motion via S follows
from the induction hypothesis, because s, r, and ' all have lower height

than t. The three displayed formulas imply that c��1(z) 2 Val(t; �̂(a)) =
Val(t; �̂0(~a)).

So we can �x b0 2 Val(r; �̂0(~a �)) such that c��1(z) = Val(s; �̂0(~a); b0) and
true = Val('; �̂0(~a); b0). Extend � again, if necessary, so that its domain
includes a support of b0. (Its domain still has size smaller than (k � 2)q, so
it is a motion.) Using the induction hypothesis again to get the necessary
support information, apply the motion � via S to the three formulas at the
beginning of this paragraph. The results are

� �̂(b0) 2 Val(r; �̂ � �̂0(~a�)),
� z = Val(s; �̂ � �̂0(~a); �̂(b0)), and
� true = Val('; �̂ � �̂0(~a); �̂(b0)).

These facts say that z 2 Val(t; �̂�̂0(~a)), as desired. This completes the proof
that �E�0 and thus that E is con�guration determined.

We wish to apply the combinatorial Theorem 15.2 to the con�guration
determined equivalence relation E. For this purpose, we must bound the
number of atoms from below and bound the number of equivalence classes
from above. The lower bound is no problem, since the proposition we are
proving includes the hypothesis that I is \large enough." As for the upper
bound, notice that the number of equivalence classes is, by de�nition of
E, just the number of di�erent elements of the form t(�) = Val(t; �̂(~a)) as �
ranges over polymers of the same con�guration as �0. By Assertion 2, already
proved, all the tasks (t; �̂(~a)) are � �, so their values are involved in � (with
respect to the current state H+). Then, by our choice of C and q, the number
of these elements is bounded above by CjIjq. For su�ciently large jIj, this
polynomial of degree q is smaller than the polynomial of of degree q + 1

1

(q + 1)!

� jIj
23kq+1

�q+1

81

occurring in Theorem 15.2. So this theorem can be applied to E. We thus
see that t(�) depends only on the restriction of � to a certain set u of size at
most q. We shall show that the range of �0 � u supports Val(t;~a); in view of
the de�nition of �0, this will complete the proof of Assertion 3 for terms of
the form fs : v 2 r : 'g.

The �rst part of the de�nition of support requires that all elements of
Val(t;~a) are supported. But these elements are of the form Val(s;~a; b) for
suitable b, so they are supported, thanks to the induction hypothesis applied
to s.

To verify the main clause in the de�nition of support, suppose that z has
lower rank than Val(t;~a) and that � is a motion, �xing the alleged support
�0(u) pointwise, and having a support of z included in its domain. We must
prove that

z 2 Val(t;~a) () �̂(z) 2 Val(t;~a):

Since � �xes �0(u) pointwise, �0E(� � �0), which means, by de�nition of E,
that Val(t;~a) = Val(t; �̂(~a)). So what we must prove is that

z 2 Val(t;~a) () �̂(z) 2 Val(t; �̂(~a)):

Notice that we cannot simply apply motion � via S to obtain this equivalence,
for one of the support conditions that would be required is that everything
involved in (t;~a) is supported; in particular, we would need to know that
Val(t;~a) is supported, which is part of what we are trying to prove. Therefore,
we take an indirect approach, very similar to the argument showing that E
is con�guration determined.

We assume that z 2 Val(t;~a) and prove that �̂(z) 2 Val(t; �̂(~a)); the
converse is proved the same way, using ��1 in place of �. The assumption
z 2 Val(t;~a) means, in view of the form of t, that

� z = Val(s;~a; b),

� b 2 Val(r;~a�), and

� true = Val(';~a; b)

for some b. Now the induction hypothesis (applied to s, to r, and to ')
provides the support conditions needed to apply � via S. We thus obtain

� �̂(z) = Val(s; �̂(~a); �̂(b)),

82

� �̂(b) 2 Val(r; �̂(~a)�), and

� true = Val('; �̂(~a); �̂(b)).

But these facts mean that �̂(z) 2 Val(t; �̂(~a)), as required.
This completes the proof of that �0(u) supports Val(t;~a), and so it com-

pletes the proof of Assertion 3 for terms of the form fs : v 2 r : 'g.
It remains to prove Assertion 3 when t has the form f(t1; : : : ; tk). The

proof splits into subcases depending on the function symbol f . If f is a
predicate symbol or ; or Atoms, then Val(t;~a) is true or false or I, all of
which are supported by the empty set.

If f is
S
, so t =

S
t1, then Corollary 12.3 tells us that Val(t;~a) =S

Val(t1;~a) is supported by any set that supports Val(t1;~a). Since t1 has
lower height than t, the induction hypothesis completes the proof.

Suppose next that f is TheUnique, so t is TheUnique(t1). If the value
of t is a set, then TheUnique could be replaced with

S
, and we would be

back in the situation of the preceding paragraph. So assume that Val(t;~a) is
an atom c. Therefore Val(t1;~a) = fcg. By induction hypothesis, fcg has a
support s included in the union of any given supports of the ai. Unraveling
the de�nition of \s supports fcg," (specializing the y in the de�nition to
be c), we �nd that, for every motion � �xing s pointwise and de�ned at c,
�(c) 2 fcg, i.e., every such � �xes c. This requires that c 2 s, for otherwise
� could interchange c with some other atom outside s. But from c 2 s, we
obtain that s supports c, as required.

Suppose next that f is Pair, so t is Pair(t1; t2). The argument in this case
is similar to (but a little simpler than) the one for fs : v 2 r : 'g. Again,
let �0 be a polymer in which supports of all the ai are listed, and de�ne
an equivalence relation �E�0 on polymers of the same con�guration as �0 by
t(�) = t(�0), where t(�) is de�ned as Val(t; �̂(~a)) for any motion � sending
�0 to �. As before, we claim that E is con�guration determined. To prove
this, consider �, �0, �, �0, �, �0, and � as in the previous argument. That is,
� : �0 7! �, � : �0 7! �0, � : �; �0 7! �; �0, and �E�0. We must prove �E�0, i.e.,

Val(t; �̂ � �̂(~a)) = Val(t; �̂ � �̂0(~a)):

By symmetry, it su�ces to prove one inclusion, so consider any element
z 2 Val(t; �̂ � �̂(~a)). So z = Val(tj; �̂ � �̂(~a)) for j = 1 or 2. By induction
hypothesis, we have the necessary support information to apply ��1 via S;
for example, since (the range of) �0 supports ~a, Lemma 12.2 implies that �

83

supports �̂(~a) and then that the range of � supports �̂ � �̂(~a) and therefore
supports z. The result of applying ��1 via S is that �̂�1(z) = Val(tj; �̂(~a)). So

�̂�1(z) is a member of Val(t; �̂(~a)) = Val(t; �̂0(~a)), where this equation comes
from the assumption that �E�0. So �̂�1(z) = Val(tj; �̂(~a)) for some j = 1
or 2 (not necessarily the same j as above). Again, the induction hypothesis
provides the support information needed to apply � via S and conclude that
z = Val(tj; �̂ � �̂0(~a)) 2 Val(t; �̂ � �̂0(~a)), as desired. This completes the proof
that E is con�guration determined.

The same argument as in the case of t = fs : v 2 r : 'g shows that the
combinatorial Theorem 15.2 applies to E. We thus �nd that the equivalence
class of �, and thus the value of t(�), depend only on � � u for a certain u of
size at most q. We shall show that �0(u) supports Val(t;~a). The elements of
Val(t;~a) are the Val(tj;~a) for j = 1 and 2; these are supported by induction
hypothesis.

It remains to check the main clause in the de�nition of \support." So
consider any z of lower rank than Val(t;~a) and any motion that �xes �(u)
pointwise and is de�ned on a support of z. As in the earlier argument, we
must prove

z 2 Val(t;~a) () �̂(z) 2 Val(t; �̂(~a)):

(The second �̂ on the right is justi�ed by �0E(� � �0) as before.) We prove
the left-to-right implication, the converse being similar with ��1 in place
of �. Any z satisfying z 2 Val(t;~a) must satisfy z = Val(tj;~a) for j = 1
or 2. But, after checking that the induction hypothesis gives the necessary
support information, we can apply � via S to get �̂(z) = Val(tj; �̂(~a)), which
immediately gives �̂(z) 2 Val(t; �̂(~a)), as desired. This completes the proof
for the subcase where f is Pair.

There remains only the subcase that f is a dynamic function symbol.
Then Val(t;~a) is critical, hence active, and hence supported. But we need to
make sure it has a support included in the union of any supports of the ai.
For this purpose, we apply once more the combinatorial Theorem 15.2; the
argument follows the same general lines as in the cases where t is fs : v 2
r : 'g or Pair(t1; t2), but it is considerably simpler because we already know

that Val(t;~a) and indeed Val(t;~b) for any ~b are supported.
As in the two earlier arguments, introduce a polymer �0 whose range in-

cludes supports for all the ai; we'll complete the proof by �nding a support
of the form �0(u) for Val(t;~a). For this purpose de�ne, as before, an equiv-
alence relation on polymers of the same con�guration as �0 by letting �E�0

84

mean t(�) = t(�0), where t(�) = Val(t; �̂(~a)) for any motion sending �0 to �.
We claim that E is con�guration determined. To prove this, suppose �E�0

and suppose the pair of polymers �; �0 have the same joint con�guration as
�; �0; we must show �E�0. Introduce the motions � : �0 7! �, �0 : �0 7! �0,
and � : �; �0 7! �; �0 as in the previous arguments. Let z = Val(t; �̂(~a)).
Since �E�0, we also have z = Val(t; �̂0(~a)). Extend � if necessary so that
its domain includes a support of z. The domain of � also includes supports
for �̂(~a) and �̂0(~a), namely the ranges of � and �0 (by Lemma 12.2). Also,
everything involved in the tasks (t; �̂(~a)) and (t; �̂0(~a)) is supported. Indeed,
we observed earlier that the values of these tasks are supported (being criti-
cal and therefore active); the rest of the involved elements are, by de�nition,
either active (and thus supported) or values of tasks � the ones under con-
sideration (and thus supported by induction hypothesis). These observations
about supports provide the information needed to apply � via S to the two
equations about z. We obtain that �̂(z) equals both Val(t; �̂ � �̂(~a)) and
Val(t; �̂ � �̂(~a)). Therefore �E�0, as desired. This completes the proof that E
is con�guration determined.

Estimating the number of equivalence classes exactly as in the earlier
arguments, we obtain from Theorem 15.2 a set u of cardinality at most q,
such that t(�) depends only on � � u. We shall show that �0(u) supports
Val(t;~a). Since we already know that this value is supported, all we need to
check is the main clause in the de�nition of \support." Consider, therefore,
any z of lower rank than Val(t;~a) and any motion � that pointwise �xes �0(u)
and that has a support of z included in its domain. We must show

z 2 Val(t;~a) () �̂(z) 2 Val(t;~a):

By our choice of u, �0E(� � �0), and so what we must show is equivalent to

z 2 Val(t;~a) () �̂(z) 2 Val(t; �̂(~a)):

Extend � if necessary, so that its domain includes supports for all the ai. This
domain also includes a support for z by hypothesis. And, as we saw above,
everything involved in the tasks (t; �̂(~a)) and (t; �̂0(~a)) is supported. Thus,
we have the support information needed to apply � via S to the formula
z 2 Val(t;~a), and this gives the left-to-right half of the desired equivalence.
The other half is proved analogously, applying ��1. This completes the last
subcase of the last case of Assertion 3. �

This completes the induction on tasks and thus completes the proof of
Proposition 16.1. �

85

Remark 16.2 The proof of the preceding proposition allows us to be quite
explicit about the \su�ciently large" in the statement of the proposition.
Speci�cally, there were four places where we needed n = jIj to be su�ciently
large. First, SEA3kq includes the requirement that n � 3kq. The use of
Theorem 15.2 presupposes the second requirement

n � kq � 23kq+1

and the third

1

(q + 1)!

� n

23kq+1

�q+1
� number of E-classes:

Finally, in the subcase where t = TheUnique(t1), we said that a motion
\could interchange c with some other atom outside s," which presupposes
that there is such an atom, i.e., that n � q+2 (since s, being a support, has
size at most q). This fourth requirement and the �rst are obviously subsumed
by the second, so we ignore them. In the third requirement, the number of
equivalence classes with respect to E was at most the number of involved
elements, which was bounded above by Cnq. Thus, the third requirement
will be satis�ed provided

1

(q + 1)!
� nq+1

2(3kq+1)(q+1)
� Cnq;

which simpli�es to
n � C � 2(3kq+1)(q+1)(q + 1)!:

An easy calculation shows that this version of the third requirement subsumes
the second. Therefore, we can take \su�ciently large" in the proposition to
mean at least C � 2(3kq+1)(q+1)(q + 1)!.

It should also be pointed out that the two requirements, SEA3kq and
\su�ciently large" could be combined into one, since SEAm was de�ned as
including the statement that the graph has at least m vertices. Thus, the
requirements follow from SEAm where m is chosen to be at least the bound
calculated above

At last, we are in a position to prove the main result, Theorem 2.2, from
which the zero-one law follows immediately.

Proof of Theorem 2.2 Given a BGS program � with Boolean output and
given a polynomial �, de�ne C, q, and k as at the beginning of this section.

86

Let C be the class of graphs that are su�ciently large (in the sense of Propo-
sition 16.1 and Remark 16.2) and satisfy SEA3kq. Then C has asymptotic
probability one, by Proposition 6.1. We shall produce m and v such that
the remaining requirement of Theorem 2.2 is also satis�ed: For each input
hI; Ai 2 C either � on input hI; Ai halts after exactly m steps with output
value v and without exceeding the bound �(jIj) on the number of active ele-
ments, or else � on input hI; Ai either exceeds the bound on active elements
by step m or fails to ever halt.

We may assume that there is at least one input hI; Ai 2 C on which �
halts without exceeding the bound on active elements, for otherwise we can
take arbitrary m and v and obtain the last option in the conclusion of the
theorem | � on any input hI; Ai 2 C fails to ever halt.

So �x an input hI1; A1i 2 C on which � halts, say after m steps and
with output v. We shall complete the proof by showing that, on any other
input hI2; A2i 2 C, � either halts after the same number m of steps with
the same output v or else exceeds the bound on active elements by step m.
We consider an arbitrary input hI2; A2i 2 C for which � has not exceeded
the bound on active elements by step m, and we compare the run of � on
input hI1; A1i with the possibly partial run of m steps on input hI2; A2i. The
fact that the former run halts at step m with output v means that the three
formulas

dtrue = Halt at step me;
dfalse = Halt at step m� 1e; and
dv = Output at step me

are satis�ed in HF (I1). By Propositions 14.9 and 16.1, the same formulas
are satis�ed in S1, the sub-universe of supported sets over hI1; A1i. But then,
by Lemma 12.6, these formulas also hold in S2, the universe of supported sets
over hI2; A2i. Since the m-step partial run of � on this input was assumed
to obey the bound on active elements, we can again apply Propositions 14.9
and 16.1, obtaining that the same formulas are true in HF (I2). But that
means that this partial run has reached a halting state at step m (and not
yet at step m� 1), with output v, as claimed. �

87

17 Counting

It was proved in [4] (and it also follows from the zero-one law) that, when
the input is a set with no structure, the parity of the number of atoms is not
~CPTime computable. Since this parity is easy to compute | for example by
a PTime algorithm that uses an ordering (or, equivalently, arbitrary choices)
but produces a result independent of the ordering | it is reasonable to
enlarge the complexity class ~CPTime to include such problems. We briey
discuss two such extensions in this section.

The weaker of the two extensions is ~CPTime + InputSize. It is de�ned
exactly like ~CPTime except that there is one additional, nullary, static func-
tion symbol, InputSize, whose value in any initial state (and therefore in
any state occurring in a run) is the von Neumann ordinal for the number
of atoms. Since it is easy to compute in ~CPTime the parity of this ordinal,
using the program (with one dynamic nullary symbol c in addition to the
always present Halt and Output)

if c = InputSize

then Halt := true

else do in parallel

c := S(c)
Output := :Output

enddo

endif

(where S is the successor function on von Neumann ordinals, S(x) = x[fxg
or in primitive notation

S
(Pair(x;Pair(x; x)))) there cannot be a zero-one

law for ~CPTime + InputSize. Nevertheless, we have the following theorem
analogous to Theorem 2.2, which seems to be as close as one could hope to
get to a zero-one law in this situation.

Theorem 17.1 Let � be a BGS program in which InputSize is allowed to
occur, and let a polynomial bound for the number of active elements be given.
There exists a class C of undirected graphs, and there exist, for each pos-
itive integer n, a number m(n) and an output value v(n) such that C has
asymptotic probability one and such that, for each hI; Ai 2 C, either

� � on input hI; Ai halts after exactly m(jIj) steps with output value
v(jIj) and without exceeding the given bound on active elements, or

88

� � on input hI; Ai either never halts or exceeds the bound on active
elements.

This di�ers from Theorem 2.2 only in that m and v depend on the input size,
as the parity example shows they must.

Proof The only change needed in the proof of Theorem 2.2 is that part 5 of
Lemma 12.2 will need to include that �̂ maps InputSize to itself. Although
this is true (�̂ �xes all von Neumann ordinals), it does not generalize to
1,2 motions unless InputSize has the same value in both structures. Thus
we need to assume, when comparing BGS + InputSize computations on two
graphs, that they have equal numbers of vertices. This accounts for the
dependence on n in the present theorem. �

A stronger and more natural extension of ~CPTime is ~CPTime + Card,
obtained by adding to the vocabulary a static, unary function symbol Card,
to be interpreted as sending any set in HF (I) to its cardinality (represented
as a von Neumann ordinal). In this context, we lose even the weak \one size
at a time" version of the zero-one law that we had for ~CPTime + InputSize.
To see this, just apply the following lemma and notice that Card allows us
to compute the parity of the number of edges in a graph.

Lemma 17.2 For any n � 2, the probability that a random n-vertex graph
has an even number of edges is 1

2
.

Proof This amounts to a well known binomial coe�cient identity. For
a simple, direct proof, �x one potential edge e and de�ne a bijection from
graphs with an even number of edges to graphs with an odd number of edges
as follows. Remove e from any graph that contains it, and add e to any graph
that doesn't contain it. �

18 Total Functions and Extension Axioms

We saw in Proposition 7.1 that the ordinary extension axioms EAk do not
su�ce to decide the almost sure behavior of polynomially bounded BGS
programs. The program exhibited in the proof of this proposition, while
producing output true on some inputs and false on others satisfying any
speci�ed extension axioms, produces no output at all on almost all graphs.

89

Indeed, for almost all n-vertex graphs with distinguished vertex d, the num-
ber of neighbors of d will be approximately n=2 and the maximum size of a
clique containing d will be larger than logn. So the program in question will
activate all sets of neighbors of d of size � logn, a non-polynomial number
of sets.

It is reasonable to ask whether strong extension axioms are still needed if
one considers only those polynomially bounded BGS programs that always
produce an output, without exceeding their bounds. The purpose of this
section is to present a proof, due to Shelah (unpublished), that under this
restriction the ordinary extension axioms su�ce.

Theorem 18.1 Let a BGS program � with Boolean output and a polynomial
bound for the number of active elements be given. Assume that, on every
input graph hI; Ai, � halts without exceeding the bound on active elements.
Then there exist numbers m and s and an output value v such that � halts
after exactly m steps with output v on all su�ciently large graphs satisfying
EAs.

Proof Let k and q be as in Section 16. By the results of that section,
including the proof of Theorem 2.2, we obtain a number m and an output v
such that � halts in m steps with output v and without exceeding its bound
on active elements whenever the input is a su�ciently large graph hI1; A1i
satisfying SEA3kq. These values of m and v will be the ones required in the
present theorem; the value of s will be speci�ed later, but it will be at least
3kq.

Fix a graph hI1; A1i as in the preceding paragraph and also satisfying
EAs (for the yet to be chosen s). Also, consider any su�ciently large graph
hI2; A2i satisfying EAs (but not necessarily satisfying any strong extension
axioms). Thus we know that � on input hI1; A1i produces output v in exactly
m steps, and we wish to show that the same occurs when the input is hI2; A2i.
For this purpose, we use the argument in the last paragraph of the proof of
Theorem 2.2, at the end of Section 16. The only part of this argument that
might fail, because hI2; A2i doesn't satisfy strong extension axioms, is the
application of Proposition 16.1 to hI2; A2i. Speci�cally, the only thing that
can go wrong is that, at step m or earlier, some non-supported element has
become involved in �.

We consider the �rst step where this happens, and we look back into
the proof of Proposition 16.1 to see how such a situation could arise. That

90

proof was an induction on the steps of the computation, and since we are
looking at the �rst troublesome step we know that all active elements are
supported (since they were involved at a previous step, just as in the proof
of Proposition 16.1). So something must go wrong with the argument for
Assertions 1{3, which led to the result that all involved elements are sup-
ported. Looking for uses of the strong extension axioms here, we �nd that
they occur only in the proof of Assertion 3. (More precisely: Ordinary exten-
sion axioms su�ce everywhere else in the proof.) Three of the cases in the
proof of Assertion 3, namely the cases where t has the form fs : v 2 r : 'g or
Pair(t1; t2) or f(t1; : : : ; tj) with f dynamic, required the use of Theorem 15.2,
whose proof used the strong extension axiom. So our task is now to show
that, even though hI2; A2i doesn't satisfy the strong extension axiom, these
three cases in the proof of Assertion 3 still work. Suppose not, and consider a
failure involving a task (t;~a) for which the height �(t) is as small as possible.
Thus, we are in the same situation as in the proof of Assertion 3 insofar as
all three assertions are true for all tasks of lower height; the only di�erence
now is that we cannot invoke Theorem 15.2.

Actually, a signi�cant part of Theorem 15.2 is still available even in our
present situation without SEA3kq. Inspection of the proof of Theorem 15.2
shows that only ordinary extension axioms EA3kq (which are available for
hI2; A2i since s � 3kq) were needed to de�ne the set u and the group G and
to show that the equivalence relation E is de�ned in terms of u and G as
in the statement of Theorem 15.2. The only thing missing is that we don't
know that juj � q. All we can say is juj � kq, since polymers have length at
most kq.

Bringing this information back into the three potentially troublesome
cases in the proof of Assertion 3 in Proposition 16.1, we �nd that we have
sets u as needed there except that juj may be bigger than q. We suppose
that this actually happens, and we seek to deduce a contradiction.

Looking at the de�nition of u in terms of E (in the proof of Theorem 15.2)
and the de�nition of E in terms of (t;~a) (in the proof of Assertion 3), we
can formulate our supposition as follows, using the same notation as in the
proof of Assertion 3. There are more than q values of i such that, whenever
Val(t; �̂(~a)) = Val(t; �̂(~a)) then there is j such that �(�0(i)) = �(�0(j)). Here
�0 is a polymer listing supports of all components of ~a, and � and � range
over motions de�ned on (at least) all components of �0. (We've written i
and j as argument s rather than subscripts of �0 in the hope of improving
readability by avoiding double subscritps.)

91

At this point, the argument proceeds di�erently for the three possible
forms of t. We give the proof for the case that t is fs : v 2 r : 'g. The other
two cases are similar but easier.

The equation Val(t; �̂(~a)) = Val(t; �̂(~a)) occurring above can be refor-
mulated, in view of the form of t, as: For every b 2 Val(r; �̂(~a)) with
Val('; �̂(~a); b) = true, there is b0 2 Val(r; �̂(~a)) with Val('; �̂(~a); b0) = true

and Val(s; �̂(~a); b) = Val(s; �̂(Val(a)); b0). The advantage of this rather awk-
ward reformulation is that the terms whose values occur here are of lower
height than t, so these values are known to be supported. (A similar re-
formulation works when t is Pair(t1; t2). No reformulation is needed when
t begins with a dynamic function symbol, as in this case the value of t is
already known to be supported; the only issue in this case of Assertion 3 was
�nding a support inside the range of �0.)

Let us take our supposition, as formulated three paragraphs ago, and
replace the equation Val(t; �̂(~a)) = Val(t; �̂(~a)) by the reformulation from
the last paragraph. The result, which we refrain from writing out in full,
but which we shall continue to call \our supposition," is not entirely about
supported objects; the polymer �0 can involve as many as kq atoms and the
motions � and � can involve as many as 2kq atoms each (the members of
their domains and ranges).

By virtue of Proposition 11.1, our supposition can be written as a set-
theoretic statement about the structure hHF (I);2; I; Ai. Let k+ be larger
than k and larger than the number of variables occurring in any such state-
ment (for any term t occurring in �). Notice that, just as in Proposition 11.1,
the number of variables needed here does not depend on the step of the com-
putation of �. So k+ is well-de�ned; it depends only on the program �. Also
de�ne q+ = 2kq. We shall need to use concepts like \motion" and \support,"
previously de�ned using k and q, but now with the larger numbers k+ and
q+. To avoid confusion with the previous concepts, we shall systematically
use superscripts + when referring to the new concepts. Thus, for example, a
motion+ is a partial automorphism with domain of size � k+q+. Supports+

are de�ned exactly as in Section 12 only with k+ in place of k and q+ in place
of q; they are sets of size � q+.

We shall need to know that the old and new concepts are coherent. Specif-
ically, if a supports x then a also supports+ x. Also, if � is a motion de�ned
on a support of x (and thus is also a motion+ de�ned on a support+ of x),
then �̂(x) is the same in both senses. (So we need not attach + superscripts
to the hats over motions.) These facts are easily proved by induction on the

92

rank of x.
De�ne s to be 3k+q+. Then the extension axiom EAs is adequate for

all the work in Section 12 as applied to the new concepts of support+ and
motion+.

Returning to our supposition, we see that, although the objects mentioned
in it are not all supported, they are all supported+; indeed, q+ was chosen
precisely to be big enough for this purpose. The supposition itself is a set-
theoretic statement about hHF (I);2; I; Ai with at most k+ variables (k+

having been chosen precisely to achieve this). So, by Lemma 12.6+, it is
preserved by any 2,1 motion+. Such a motion exists because both hI1; A1i and
hI2; A2i satisfy EAs. (Recall, from the beginning of this proof, that hI1; A1i
was a large graph satisfying both SEA3kq and EAs.) Thus, our supposition
holds also for the computation of � on input hI1; A1i. That is, at a certain
stage (m or earlier) in this computation, the argument for Assertion 3 in the
proof of Proposition 16.1 encounters a set u of size > q. But this is absurd;
since hI1; A1i satis�es SEA3kq, the argument for Assertion 3 in Section 16
applies, and it shows that the relevant u's are never bigger than q. This
contradiction completes the proof that our situation cannot actually occur.
�

Remark 18.2 The hypothesis, in Theorem 18.1, that the computation of �
succeeds on all input graphs can be weakened. The same proof would work
if we assumed only that the asymptotic probability of success is 1. In fact,
all that we really needed in the proof was that, for every natural number k,
� succeeds on at least one graph satisfying SEAk.

References

[1] Andreas Blass and Yuri Gurevich, Choiceless Polynomial Time Com-
putation and the Zero-One Law, in Computer Science Logic 2000, edi-
tors Peter Clote and Helmut Schwichtenberg, Springer Lecture Notes in
Computer Science 1862 (2000) 18{40.

[2] Andreas Blass and Yuri Gurevich, A new zero-one law and strong exten-
sion axioms, to appear in Bull. European Assoc. Theoret. Comp. Sci.,
October, 2000.

93

[3] Andreas Blass, Yuri Gurevich, and Dexter Kozen, A zero-one law for
logic with a �xed-point operator, Information and Control 67 (1985) 70{
90.

[4] Andreas Blass, Yuri Gurevich, and Saharon Shelah, Choiceless polyno-
mial time, Ann. Pure Applied Logic 100 (1999) 141{187.

[5] Andreas Blass and Frank Harary, Properties of almost all graphs and
complexes, J. Graph Theory 3 (1979) 225{240.

[6] B�ela Bollob�as, Random graphs, Academic Press, 1985.

[7] H. Cherno�, A measure of asymptotic e�ciency for tests of a hypothesis
based on the sum of observations, Ann. Math. Statist. 23 (1952) 493{507.

[8] Heinz-Dieter Ebbinghaus and J�org Flum, Finite Model Theory,
Springer-Verlag (1995).

[9] Ron Fagin, Probabilities on �nite models, J. Symbolic Logic 41 (1976)
50{58.

[10] Y. V. Glebskii, D. I. Kogan, M. I. Liogonkii, and V. A. Talanov, Range
and degree of realizability of formulas in the restricted predicate calculus,
Cybernetics 5 (1969) 142{154.

[11] Yuri Gurevich, Evolving algebras 1993: Lipari guide, in Speci�cation
and Validation Methods, ed. E. B�orger, Oxford University Press (1995)
pp. 9{36. See also the May 1997 draft of the ASM guide, Tech Re-
port CSE-TR-336-97, EECS Dept., Univ. of Michigan, 1997. Found at
http : ==www:eecs:umich:edu=gasm=.

[12] Phokion Kolaitis and Moshe Vardi, 0-1 laws for in�nitary logics, Proc.
5th IEEE Symposium on Logic in Computer Science (1990) 156{167.

[13] Phokion Kolaitis and Moshe Vardi, 0{1 laws and decision problems for
fragments of second-order logic, Information and Computation 87 (spe-
cial issue for the 3rd IEEE Symp. on Logic in Computer Science, 1988)
(1990) 302{339.

[14] M. Lo�eve, Probability Theory, Van Nostrand 1955.

94

[15] Saharon Shelah, Choiceless polynomial time logic: inability to express
[paper number 634], in Computer Science Logic 2000, editors Peter Clote
and Helmut Schwichtenberg, Springer Lecture Notes in Computer Sci-
ence 1862 (2000) 72{125.

[16] V. A. Talanov and V. V. Knyazev, The asymptotic truth of in�nite
formulas, Proceedings of All-Union Seminar on Discrete Mathematics
and Its Applications (Moscow 1984) (1986) 56{61.

95

