Intra-Step Interaction™

Yuri Gurevich

Microsoft Research
One Microsoft Way, Redmond, WA 98052, USA

Abstract. For a while it seemed possible to pretend that all interaction
between an algorithm and its environment occurs inter-step, but not any-
more. Andreas Blass, Benjamin Rossman and the speaker are extending
the Small-Step Characterization Theorem (that asserts the validity of
the sequential version of the ASM thesis) and the Wide-Step Character-
ization Theorem (that asserts the validity of the parallel version of the
ASM thesis) to intra-step interacting algorithms.

1 Why Intra-Step Interaction

According to the Lipari guide [9], an abstract state machine interacts with the en-
vironment by means of external functions. “The computation steps of a program
are supposed to be atomic at an appropriate level of abstraction. A computa-
tion step is hardly atomic if during that step the [ASM] queries an oracle and
then, depending on the result, submits another query to the same or a different
oracle. Thus it seems reasonable to forbid nesting of external functions. Indeed,
the need to nest external functions has not arisen in applications so far. But we
withhold final judgment and wait for more experimentation.”

It was a good idea to withhold final judgment. Many things happened in the
meantime. Probably the most consequential — as far as intra-step interaction is
concerned — is the development of AsmL, the Abstract State Machine Language
[2]. Tt is not unusual for an AsmL program 7 to nest external functions. For
example, m may have a do-in-parallel form where one of the constituents calls
another agent a’, gets a callback from o', calls a’ again, etc. and thus executes
a nontrivial protocol, possibly involving additional agents. All this is done in
a single step. (And if you break the protocol into several steps then the do-in-
parallel structure is all messed up.)

One may pretend that every interaction between the algorithm and the environ-
ment is inter-step. That point of view is taken in [10]. But, as the amount of
intra-step interaction increases, it gets harder and less natural to maintain the
pretense Of course, an omniscient environment can know ahead of time what
external function calls the algorithm will generate during a step. It can thus
prepare the answers and store them, so that the algorithm would treat external

* Proc. ASM’2004, Springer Lecture Notes in Computer Science

functions as internal. But a typical environment is not omniscient. And if the
environment is omniscient, does it need our algorithm at all?

The time came to recognize the importance of intra-step communication and to
deal with it directly. Notice that we have been dealing with intra-step commu-
nication all along, albeit implicitly. Consider for example the import command
as in the Lipari guide.

import v
R(v)

endimport

What really happens here is that the program sends an import query to the envi-
ronment, and the environment returns a reserve element. The creation of objects
in object-oriented languages like C# [8] or Java [11] is similar (when viewed on
the abstraction level of the program). Here is another example involving one of
the AsmL choose constructs:

any ¢ | x in {1,2,3} where z >1

To evaluate this expression, the program sends out a choose query and provides
a parameter {2,3}. The environment replies with an element of {2, 3}.

In the rest of this extended abstract, an algorithm is intra-step interactive unless
the contrary is stated explicitly.

2 Terminology

We restrict attention to sequential time algorithms. Here sequential time means
that the computation proceeds in a sequence of discrete steps [10]. We recall
some useful terminology introduced recently in [4] and used already in [5].

Small-step algorithms We quote from [5]: “Small-Step Algorithms are character-
ized by two properties:

— (Step) The computation proceeds in a sequence of discrete steps.

— (Small) The amount of work done by the algorithm in any one step is
bounded; the bound depends only on the algorithm, not on the state, nor
on the input, nor on the actions of the environment.

Many authors call such algorithms sequential (for example the present authors
in [3,10]), but other authors use ‘sequential’ to mean only the first of these
properties (which we call sequential time). Because of this ambiguity, we now

r”

prefer the term ‘small-step’.

Wide-Step Algorithms We quote from [4]: “The term ‘parallel algorithm’ is used
for a number of different notions in the literature. We have in mind sequential-
time algorithms that can exhibit unbounded parallelism but only bounded se-
quentiality within a single step. Bounded sequentiality means that there is an
a priort bound on the lengths of sequences of events within any one step of
the algorithm that must occur in a specified order. To distinguish this notion
of parallel algorithms, we call such parallel algorithms wide-step. Intuitively the
width is the amount of parallelism. The ‘step’ in ‘wide-step’ alludes to sequential
time.”

Small-Step Characterization Theorem This is Theorem 6.13 in [10], according to
which every noninteractive small-step algorithm is behaviorally identical to some
noninteractive small-step abstract state machine. The notion of noninteractive
small-step algorithms is defined axiomatically. Noninteractive small-step ASMs
are the sequential ASMs of the Lipari guide without the import command. The
point of removing the import command is to make these ASMs noninteractive.
In a trivial way, the theorem generalizes to algorithms whose interaction with
the environment is purely inter-step.

Wide-Step Characterization Theorem This is Theorem 10.1 in [3] according to
which every noninteractive wide-step algorithm is behaviorally identical to some
noninteractive wide-step abstract state machine. The notion of noninteractive
wide-step algorithms is defined axiomatically. The notion of a noninteractive
wide-step ASM is a variant of the Lipari guide notion of parallel ASM. In a
trivial way, the theorem generalizes to algorithms whose interaction with the
environment is purely inter-step.

3 Ordinary Small-Step Algorithms

This section reflects joint work with Andreas Blass.

What happens if an external function of an ASM “stalls”? The Lipari guide
does not address the issue directly but the tradition has been that the ASM is
stuck waiting for the environment to deliver a reply to the query. Typically such
a behavior is correct. The algorithm may be waiting e.g. for a user to key in
necessary information.

However, it does not follow from first principles that, in order to finish a step,
an algorithm should wait for the replies to all queries. Consider for example the
following algorithm.

Start a step by posing Boolean queries a and 3. If both of them return
true then output 7, finish the step and halt. If at least one of them
returns false then output 11, finish the step and halt.

Breaking another assumption implicit in the Lipari guide, we can make the above
algorithm sensitive to the order in which the replies to « and 8 occur.

Start a step by posing Boolean queries a and 3. If both of them return
true and the reply to « precedes the reply to 8 then output 6, finish the
step and halt. If both of them return true but the reply to o does not
precede the reply to [(so that either the reply to 8 precedes the reply
to a or else the two replies occur simultaneously) then output 8, finish
the step and halt. If at least one of them returns false then output 11,
finish the step and halt.

On the other hand, we have yet to see applications violating either of the two
implicit assumptions. “Accordingly, we study in this paper”, we quote from [5],
“those algorithms, the ordinary ones, that

— never complete a step until all queries from that step have been answered
and

— use no information from the environment beyond the function assigning an-
swers to queries.

Here we count a time-out signal as an answer. A more explicit formulation of the
second aspect of ordinariness is that whatever the algorithm does is completely
determined by its program, its current state, and the answers the environment
has already provided for earlier queries.”

Ordinary small-step algorithms are axiomatized in [5]. In [6], we generalize the
Small-Step Characterization Theorem to ordinary small-step algorithms.

The ordinary small-step ASMs do not adhere to the Lipari guide completely.
They can nest external functions. And there is something else. The Lipari guide
interprets distinct invocations of the same external function with the same ar-
guments during the same step as the same query.

Think about an external function as a (dynamic) oracle. The [ASM]
provides the arguments and the oracle gives the result. The oracle need
not be consistent and may give different results for the same argument
at different times. ...

However, the oracle should be consistent during the execution of any
one step of the program. In an implementation, this may be achieved by
not reiterating the same question during a one-step execution. Ask the
question once and, if necessary, save the result and reuse it.

This interpretation is too narrow. Sometimes the opposite interpretation is ap-
propriate. For example, all invocations of the import command give rise to dis-
tinct queries. (Even though import was not treated as an external function in the
Lipari guide, such treatment is natural.) But neither of these two extreme inter-
pretations is appropriate in all cases. We need to be more flexible and general.
That issue is taken up in [6].

4 General Small-Step Algorithms

This section reflects joint work with Andreas Blass and Benjamin Rossman.

To deal with arbitrary (intra-step interactive) small-step algorithms, we take
advantage of the fact that a small-step algorithm presupposes the existence of a
single agent who is in charge of the algorithm’s execution. This key observation
allowed us to axiomatize general small-step algorithms [7]. The work on the gen-
eralization of the Small-Step Characterization Theorem to intra-step interactive
algorithms is in progress.

5 Wide-Step Algorithms

In order to generalize the Wide-Step Characterization Theorem to intra-step
interactive algorithms, we need to “marry” the advance on intra-step interaction,
sketched above, with the analysis of wide-step algorithms in [3]. Interestingly,
the analysis may be simplified in the following aspect. In [3], every proclet (a
small-step component of the wide-step process) can update its mailbox at most
once during any one step of the whole wide-step process. In the new framework
that allows intra-step communication, a proclet can update its mailbox several
times during a single step. This gives some technical benefits.

References

1. ASM Michigan Webpage, http://wuw.eecs.umich.edu/gasm/, maintained by
James K. Huggins.

2. The AsmL webpage, http://research.microsoft.com/foundations/AsmL/.

3. Andreas Blass and Yuri Gurevich, “Abstract state machines capture parallel
algorithms,” A. C. M. Trans. Computational Logic, 4:4 (2003), 578-651.

4. Andreas Blass and Yuri Gurevich, “Algorithms: A Quest for Absolute Defi-
nitions,” Bulletin of the European Association for Theoretical Computer Sci-
ence, Number 81 (October 2003), 195-225.

5. Andreas Blass and Yuri Gurevich, “Ordinary Interactive Small-Step Algo-
rithms, I”, Technical Report MSR-TR-2004-16, Microsoft Research, February
2004.

6. Andreas Blass and Yuri Gurevich, “Ordinary Interactive Small-Step Algo-
rithms, II”, in preparation.

7. Andreas Blass, Yuri Gurevich, and Benjamin Rossman, “General interactive
small-step algorithms” (tentative title), in preparation.

8. Anders Hejlsberg, Scott Wiltamuth and Peter Golde, “The C# Programming
Language”, Addison-Wesley, 2003.

9. Yuri Gurevich, “Evolving algebra 1993: Lipari guide,” in Specification and
Validation Methods, E. Borger, editor, Oxford University Press (1995), 9-36.

10. Yuri Gurevich, “Sequential abstract state machines capture sequential algo-
rithms,” A. C. M. Trans. Computational Logic 1:1 (2000), 77-111.

11. Bill Joy, Guy Steele, James Gosling and Gilad Bracha, “Java (TM) Language
Specification”, Addison-Wesley Pub, 2nd edition, 2000.

