
Database Query Processing Using
Finite Cursor Machines

Martin Grohe1 Yuri Gurevich2 Dirk Leinders3

Nicole Schweikardt1 Jerzy Tyszkiewicz4

Jan Van den Bussche3

1Humboldt-University Berlin
2Microsoft Research

3Hasselt University and Transnational University of Limburg
4University of Warsaw

Abstract

We introduce a new abstract model of database query processing,

finite cursor machines, that incorporates certain data streaming as-

pects. The model describes quite faithfully what happens in so-called

“one-pass” and “two-pass query processing”. Technically, the model

is described in the framework of abstract state machines. Our main

results are upper and lower bounds for processing relational algebra

queries in this model, specifically, queries of the semijoin fragment of

the relational algebra.

1 Introduction.

We introduce and analyze finite cursor machines, an abstract model of
database query processing. Data elements are viewed as “indivisible” ab-
stract objects with a vocabulary of arbitrary, but fixed, functions. Relational
databases consist of finitely many finite relations over the data elements.
Relations are considered as tables whose rows are the tuples in the relation.
Finite cursor machines can operate in a finite number of modes using an

1

internal memory in which they can store bit strings. They access each re-
lation through finitely many cursors, each of which can read one row of a
table at any time. The answer to a query, which is also a relation, can be
given through a suitable output mechanism. The model incorporates certain
“streaming” or “sequential processing” aspects by imposing two restrictions:
First, the cursors can only move on the tables sequentially in one direction.
Thus once the last cursor has left a row of a table, this row can never be
accessed again during the computation. Second, the internal memory is lim-
ited. For our lower bounds, it will be sufficient to put an o(n) restriction
on the internal memory size, where n is the size (that is, the number of
entries) of the input database. For the upper bounds, no internal memory
will be needed. The model is clearly inspired by the abstract state machine
(ASM) methodology [16], and indeed we will formally define our model using
this methodology. The model was first presented in a talk at the ASM 2004
workshop [29].

Algorithms and lower bounds in various data stream models have received
considerable attention in recent years both in the theory community (e.g.,
[1, 2, 5, 6, 13, 14, 18, 25]) and the database systems community (e.g., [3, 4,
7, 12, 15, 20, 26]). Note that our model is fairly powerful; for example, the
multiple cursors can easily be used to perform multiple sequential scans of the
input data. But more than that; by moving several cursors asynchronously
over the same table, entries in different, possibly far apart, regions of the
table can be read and processed simultaneously. This way, different regions
of the same or of different tables can “communicate” with each other without
requiring any internal memory, which makes it difficult to use communication
complexity to establish lower bounds. The model is also powerful in that it
allows arbitrary functions to access and process data elements. This feature
is very convenient to model “built in” standard operations on data types
like integers, floating point numbers, or strings, which may all be part of the
universe of data elements.

Despite these powerful features, the model is weak in many respects. We
show that a finite cursor machine with internal memory size o(n) cannot even
test whether two sets A and B, given as lists, are disjoint, even if besides
the lists A and B, also their reversals are given as input. However, if two
sets A and B are given as sorted lists, a machine can easily compute the
intersection. Aggarwal et al. [1] have already made a convincing case for
combining streaming computations with sorting, and we will consider an
extension of the model with a sorting primitive.

2

Our main results are concerned with evaluating relational algebra queries
in the finite cursor machine model. Relational algebra forms the core of the
standard query language SQL and is thus of fundamental importance for
databases. We prove that, when all sorted versions of the database relations
are provided as input, every operator of the relational algebra can be com-
puted, except for the join. The latter exception, however, is only because
the output size of a join can be quadratic, while finite cursor machines by
their very definition can output only a linear number of different tuples. A
semijoin is a projection of a join between two relations to the columns of one
of the two relations (note that the projection prevents the result of a semi-
join from getting larger than the relations to which the semijoin operation is
applied). The semijoin algebra is then a natural fragment of the relational
algebra that may be viewed as a generalization of acyclic conjunctive queries
[9, 22, 21, 30]. When sorted versions of the database relations are provided as
input, semijoins can be computed by finite cursor machines. Consequently,
every query in the semijoin fragment of the relational algebra can be com-
puted by a composition of finite cursor machines and sorting operations. This
is interesting because it models quite faithfully what is called “one-pass” and
“two-pass processing” in database systems [11]. The question then arises:
are intermediate sorting operations really needed? Equivalently, can every
semijoin-algebra query already be computed by a single machine on sorted
inputs? We answer this question negatively in a very strong way, and this is
our main technical result: Just a composition of two semijoins R n (S n T)
with R and T unary relations and S a binary relation is not computable by
a finite cursor machine with internal memory size o(n) working on sorted
inputs. This result is quite sharp, as we will indicate.

The paper is structured as follows: After fixing some notation in Section 2,
the notion of finite cursor machines is introduced in Section 3. The power
of O(1)-FCMs and of o(n)-FCMs is investigated in Sections 4 and 5. Some
concluding remarks and open questions can be found in Section 6.

2 Preliminaries.

Throughout the paper we fix an arbitrary, typically infinite, universe E of
“data elements”, and we fix a database schema S. I.e., S is a finite set of
relation names, where each relation name has an associated arity, which is
a natural number. A database D with schema S assigns to each R ∈ S a

3

finite, nonempty set D(R) of k-tuples of data elements, where k is the arity
of R. In database terminology the tuples are often called rows. The size of
database D is defined as the total number of rows in D.

A query is a mapping Q from databases to relations, such that the re-
lation Q(D) is the answer of the query Q to database D. The relational
algebra is a basic language used in database theory to express exactly those
queries that can be composed from the actual database relations by applying
a sequence of the following operations: union, intersection, difference, projec-
tion, selection, and join. The meaning of the first three operations should be
clear, the projection operator πi1,...,ik(R) returns the projection of a relation
R to its components i1, . . . , ik, the selection operator σp(i1,...,ik)(R) returns
those tuples from R whose i1th, . . . , ikth components satisfy the predicate
p, and the join operator R ./θ S (where θ is a conjunction of equalities of
the form

∧k
s=1 xis = yjs

) is defined as {(a, b) : a ∈ R, b ∈ S, ais = bjs
for

all s ∈ {1, . . . , k}}. A natural sub-language of the relational algebra is the
so-called semijoin algebra where, instead of ordinary joins, only semijoin op-
erations of the form Rnθ S are allowed, defined as {a ∈ R : ∃b ∈ S : ais = bjs

for all s ∈ {1, . . . , k}}.
To formally introduce our computation model, we need some basic no-

tions from mathematical logic such as (many-sorted) vocabularies, structures,
terms, and atomic formulas.

3 Finite Cursor Machines.

In this section we formally define finite cursor machines using the methodol-
ogy of Abstract State Machines (ASMs). Intuitively, an ASM can be thought
of as a transition system whose states are described by many-sorted first-
order structures (or algebras)1. Transitions change the interpretation of some
of the symbols—those in the dynamic part of the vocabulary—and leave the
remaining symbols—those in the static part of the vocabulary—unchanged.
Transitions are described by a finite collection of simple update rules, which
are “fired” simultaneously (if they are inconsistent, no update is carried out).
A crucial property of the sequential ASM model, which we consider here, is
that in each transition only a limited part of the state is changed. The de-

1Beware that “state” refers here to what for Turing machines is typically called “con-

figuration”; the term “mode” is used for what for Turing machines is typically called

“state”.

4

tailed definition of sequential ASMs is given in the Lipari guide [16], but our
presentation will be largely self-contained.
We now describe the formal model of finite cursor machines.

The Vocabulary: The static vocabulary of a finite cursor machine (FCM)
consists of two parts, Υ0 (providing the background structure) and ΥS (pro-
viding the particular input).

Υ0 consists of three sorts: Element, Bitstring, and Mode. Furthermore, Υ0

may contain an arbitrary number of functions and predicates, as long as the
output sort of each function is Bitstring. Finally, Υ0 contains an arbitrary but
finite number of constant symbols of sort Mode, called modes. The modes
init , accept , and reject are always in Υ0.

ΥS provides the input. For each relation name R ∈ S, there is a sort
RowR in ΥS . Moreover, if the arity of R is k, we have function sym-
bols attribute i

R : RowR → Element for i = 1, . . . , k. Furthermore, we have
a constant symbol ⊥R of sort RowR. Finally, we have a function symbol
nextR : RowR → RowR in ΥS .

The dynamic vocabulary ΥM of an FCM M contains only constant sym-
bols. This vocabulary always contains the symbol mode of sort Mode. Fur-
thermore, there can be a finite number of symbols of sort Bitstring, called
registers. Moreover, for each relation name R in the database schema, there
are a finite number of symbols of sort RowR, called cursors on R.

The Initial State: Our intention is that FCMs will work on databases.
Database relations, however, are sets, while FCMs expect lists of tuples as
inputs. Therefore, formally, the input to a machine is an enumeration of a
database, which consists of enumerations of the database relations, where an
enumeration of a relation is simply a listing of all tuples in some order. An
FCM M that is set to run on an enumeration of a database D then starts
with the following structure M over the vocabulary Υ0 ∪ ΥS ∪ ΥM : The
interpretation of Element is E; the interpretation of Bitstring is the set of all
finite bitstrings; and the interpretation of Mode is simply given by the set of
modes themselves. For technical reasons, we must assume that E contains
an element ⊥. For each R ∈ S, the sort RowR is interpreted by the set
D(R) ∪ {⊥R}; the function attribute i

R is defined by (x1, . . . , xk) 7→ xi, and
⊥R 7→ ⊥; finally, the function nextR maps each row to its successor in the
list, and maps the last row to ⊥R. The dynamic symbol mode initially is

5

interpreted by the constant init ; every register contains the empty bitstring;
and every cursor on a relation R contains the first row of R.

The Program of an FCM: A program for the machine M is now a
program as defined as a basic sequential program in the sense of ASM theory,
with the important restriction that all basic updates concerning a cursor c
on R must be of the form c := nextR(c).

Thus, basic update rules of the following three forms are rules: mode := t,
r := t, and c := nextR(c), where t is a term over Υ0 ∪ ΥS ∪ ΥM , and r
is a register and c is a cursor on R. The semantics of these rules is the
obvious one: Update the dynamic constant by the value of the term. Update
rules r1, . . . , rm can be combined to a new rule par r1 . . . rm endpar, the
semantics of which is: Fire rules r1, . . . , rm in parallel; if they are inconsistent
do nothing. Furthermore, if r1 and r2 are rules and ϕ is an atomic formula
over Υ0 ∪ ΥS ∪ ΥM , then also if ϕ then r1 else r2 endif is a rule. The
semantics is obvious.

Now, an FCM program is just a single rule. (Since finitely many rules can
be combined to one using the par. . . end construction, one rule is enough.)

The Computation of an FCM: Starting with the initial state, succes-
sively apply the (single rule of the FCM’s) program until mode is equal to
accept or to reject . Accordingly, we say that M terminates and accepts,
respectively, rejects its input.

Given that inputs are enumerations of databases, we must be careful to
define the result of a computation on a database. We agree that an FCM
accepts a database D if it accepts every enumeration of D. This already
allows us to use FCMs to compute decision queries. In the next paragraph
we will see how FCMs can output lists of tuples. We then say that an
FCM M computes a query Q if on each database D, the output of M on
any enumeration of D is an enumeration of the relation Q(D). Note that
later we will also consider FCMs working only on sorted versions of database
relations: in that case there is no ambiguity.

Producing Output: We can extend the basic model so that the machine
can output a list of tuples. To this end, we expand the dynamic vocabulary
ΥM with a finite number of constant symbols of sort Element, called output
registers, and with a constant of sort Mode, called the output mode. We

6

expand the static vocabulary Υ0 with a number of functions with output
sort Element, called output functions. These output functions can only be
used to update the output registers. The output registers can be updated
following the normal rules of ASMs. The output registers, however, can not
be used as an argument to a static function.

In each state of the finite cursor machine, when the output mode is equal
to the special value out , the tuple consisting of the values in the output
registers (in some predefined order) is output; when the output mode is
different from out , no tuple is output. In the initial state each output register
contains the value ⊥ and the output mode is equal to init . We denote the
output of a machine M working on a database D by M(D).

Space Restrictions: For considering FCMs whose bitstring registers are
restricted in size, we use the following notation: Let M be a finite cursor
machine and F a class of functions from N to N. Then we say that M is an
F-machine (or, an F-FCM) if there is a function f ∈ F such that, on each
database enumeration D of size n, the machine only stores bitstrings of length
f(n) in its registers. We are mostly interested in O(1)-FCMs and o(n)-FCMs.
Note that the latter are quite powerful. For example, such machines can
easily store the positions of the cursors. On the other hand, O(1)-machines
are equivalent to FCMs that do not use registers at all (because bitstrings of
constant length could also be simulated by finitely many modes).

Example 3.1. Consider a query Q defined on a ternary relation R(A, B, C)
over N that returns the sum of the A- and B-attributes for each row with a
C-attribute at least 100. Let E be the set of natural numbers N. Consider a
static vocabulary containing at least the predicate “> 100” and the output
function + on N. Then an FCM can compute query Q with a single cursor
and a single output register. The following FCM program computes Q.
if outputmode = out then

par

outputmode := init
c := nextR(c)

endpar

else

if attribute3
R(c) > 100 then

par

outputmode := out

7

out1 := attribute1
R(c) + attribute2

R(c)
endpar

else

c := nextR(c)
endif

endif

3.1 Discussion of the Model.

Storing Bitstrings instead of Data Elements: An important question
about our model is the strict separation between data elements and bitstrings.
Indeed, data elements are abstract entities, and our background structure
may contain arbitrary functions and predicates, mixing data elements and
bitstrings, with the important restriction that the output of a function is
always a bitstring. At first sight, a simpler way to arrive at our model
would be without bitstrings, simply considering an arbitrary structure on
the universe of data elements. Let us call this variation of our model the
“universal model”.

Note that the universal model can easily become computationally com-
plete. It suffices that finite strings of data elements can somehow be repre-
sented by other data elements, and that the background structure supplies
the necessary manipulation functions for that purpose. Simple examples are
the natural numbers with standard arithmetic, or the strings over some finite
alphabet with concatenation. Thus, if we would want to prove complexity
lower bounds in the universal model, while retaining the abstract nature of
data elements and operations on them, it would be necessary to formulate
certain logical restrictions on the available functions and predicates on the
data elements. Finding interesting such restrictions is not clear to us. In the
model with bitstrings, however, one can simply impose restrictions on the
length of the bitstrings stored in registers, and that is precisely what we will
do. Of course, the unlimited model with bitstrings can also be computation-
ally complete. It suffices that the background structure provides a coding of
data elements by bitstrings.

Element Registers: The above discussion notwithstanding, it might still
be interesting to allow for registers that can remember certain data elements
that have been seen by the cursors, but without arbitrary operations on
them. Formally, we would expand the dynamic vocabulary ΥM with a finite

8

number of constant symbols of sort Element, called element registers. It is
easy to see, however, that such element registers can already be simulated by
using additional cursors, and thus do not add anything to the basic model.

Running Time and Output Size: A crucial property of FCMs is that
all cursors are one-way. In particular, an FCM can perform only a linear
number of steps where a cursor is advanced. As a consequence, an O(1)-
FCM with output can output only a linear number of different tuples. On
the other hand, if the background structure is not restricted in any way,
arbitrary computations on the register contents can occur in between cursor
advancements. As a matter of fact, in this paper we will present a number
of positive results and a number of negative results. For the positive results,
registers will never be needed, and in particular, FCMs run in linear time. For
the negative results, arbitrary computations on the registers will be allowed.

Look-ahead: Note that the terms in the program of an FCM can contain
nested applications of the function nextR, such as nextR(nextR(c)). In some
sense, such nestings of depth up to d correspond to a look-ahead where the
machine can access the current cursor position as well as the next d positions.
It is, however, straightforward to see that every k-cursor FCM with look-
ahead ≤ d can be simulated by a (k×d)-cursor FCM with look-ahead 0. Thus,
throughout the remainder of this paper we will w.l.o.g. restrict attention to
FCMs that have look-ahead 0, i.e., to FCMs where the function nextR never
occurs in if-conditions or in update rules of the form mode := t or r := t.

The Number of Cursors: In principle we could allow more than con-
stantly many cursors, which would enable us to store that many data ele-
ments. We stick with the constant version for the sake of technical simplicity,
and also because our upper bounds only need a constant number of cursors.
Note, however, that our main lower bound result can be extended to a fairly
big number of cursors (cf. Remark 5.3).

4 The Power of O(1)-Machines.

We start with a few simple observations on the database query processing
capabilities of FCMs, with or without sorting, and show that sorting is really
needed.

9

Let us first consider compositions of FCMs in the sense that one machine
works on the outputs of several machines working on a common database.

Proposition 4.1. Let M1, . . . , Mr be FCMs working on a schema S, let S ′

be the output schema consisting of the names and arities of the output lists
of M1, . . . , Mr, and let M0 be an FCM working on schema S ′. Then there
exists an FCM M working on schema S, such that M(D) = M0(D

′), for each
database D with schema S and the database D′ that consists of the output
relations M1(D), . . . , Mr(D).

The proof is obvious: Each row in a relation Ri of database D′ is an
output row of a machine Mi working on D. Therefore, each time M0 moves
a cursor on Ri, the desired finite cursor machine M will simulate that part
of the computation of Mi on D until Mi outputs a next row.

Let us now consider the operators from relational algebra: Clearly, selec-
tion can be implemented by an O(1)-FCM. Also, projection and union can
easily be accomplished if either duplicate elimination is abandoned or the
input is given in a suitable order. Joins, however, are not computable by
an FCM, simply because the output size of a join can be quadratic, while
O(1)-FCMs can output only a linear number of different tuples.

In stream data management research [4], one often restricts attention to
sliding window joins for a fixed window size w. This means that the join
operator is successively applied to portions of the data, each portion consist-
ing of a number w of consecutive rows of the input relations. The following
example illustrates how an O(1)-FCM can compute a sliding window join.

Example 4.2. Consider a sliding window join of R(A, B) and S(C, D) with
condition B = C where the windows slide simultaneously on either relation
by the size of the windows, say w (on both R and S). A finite cursor machine
for this job has w cursors ci

R on R, and w cursors ci
S on S, for i = 1, . . . , w.

The machine begins by advancing the ith cursor i − 1 times on each of the
two relations. Then, all pairs of cursors are considered, and joining tuples
are output, using rules of the following form for 1 ≤ i, j ≤ w:

if mode = check i,j and attribute1
R(ci

R) = attribute1
S(cj

S) then

par

outputmode := out
out1 := attribute1

R(ci
R)

out2 := attribute2
R(ci

R)

out3 := attribute1
S(cj

S)

10

out4 := attribute2
S(cj

S)
mode := next-mode

endpar

endif

Next, all cursors are advanced w times. This continues until the end of the
relations. This machine has a large number of similar rules, which could be
automatically generated or executed from a high-level description.

Of course, the general case with relations of arbitrary arity, and arbitrary
join condition θ can be treated in the same way.

Using more elaborate methods, we can moreover show that even checking
whether the join is nonempty (so that output size is not an issue) is hard for
FCMs. Specifically, we will consider the problem whether two sets intersect,
which is the simplest kind of join. We will give two proofs: an elegant one
for O(1)-machines, using a proof technique that is simple to apply, and an
intricate one for more general o(n)-machines (Theorem 5.4). Note that the
following result is valid for arbitrary (but fixed) background structures.

Theorem 4.3. There is no O(1)-FCM that checks for two sets R and S
whether R ∩ S 6= ∅.

Proof. Let M be an O(1)-FCM that is supposed to check whether R∩S 6= ∅.
Without loss of generality, we assume that E is totally ordered by a predicate
< in Υ0. Using Ramsey’s theorem, we can find an infinite set V ⊆ E over
which the truth of the atomic formulas in M ’s program on tuples of data
elements only depends on the way these data elements compare w.r.t. <
(details on this can be found, e.g., in Libkin’s textbook [24, Section 13.3]).
Now choose 2n elements in V , for n large enough, satisfying a1 < a′

1 < · · · <
an < a′

n, and consider the run of M on R = {a1, . . . , an} (listed in that order)
and S = {a′

n, . . . , a′
1}. We say that a pair of cursors “checks” i if in some

state during the run, one of the cursors is on ai and the other one is on a′
i.

By the way the lists are ordered, every pair of cursors can check only one i.
Hence, some j is not checked. Now replace a′

j in S by aj. The machine will
not notice this, because aj and a′

j have the same relative order with respect
to the other elements in the lists. The intersection of R and S, however, is
now nonempty, so M is wrong.

Of course, when the sets R and S are given as sorted lists, an FCM can
easily compute R ∩ S by performing one simultaneous scan over the two

11

lists. Moreover, while the full join is still not computable simply because its
output is too large, the semijoin RnS is also easily computed by an FCM on
sorted inputs. Furthermore, the same holds for the difference R − S. These
easy observations motivate us to extend FCMs with sorting, in the spirit of
“two-pass query processing” based on sorting [11].

Formally, assume that E is totally ordered by a predicate < in Υ0. Then
a relation of arity p can be sorted “lexicographically” in p! different ways: for
any permutation ρ of {1, . . . , p}, let sortρ denote the operation that sorts a p-
ary relation ρ(1)-th column first, ρ(2)-th column second, and ρ(p)-th column
last. By an FCM working on sorted inputs of a database D, we mean an
FCM that gets all possible sorted orders of all relations of D as input lists.
We then summarize the above discussion as follows:

Proposition 4.4. Each operator of the semijoin algebra (i.e, union, inter-
section, difference, projection, selection, and semijoin) can be computed by
an O(1)-FCM on sorted inputs.

Corollary 4.5. Every semijoin algebra query can be computed by a compo-
sition of O(1)-FCMs and sorting operations.

Proof. Starting from the given semijoin algebra expression we replace each
operator by a composition of one FCM with the required sorting operations.

The simple proof of the above corollary introduces a lot of intermediate
sorting operations. In some cases, intermediate sorting can be avoided by
choosing in the beginning a particularly suitable ordering that can be used
by all the operations in the expression [28].

Example 4.6. Consider the query (R − S) nx2=y2 T , where R, S and T are
binary relations. Since the semijoin compares the second columns, it needs
its inputs sorted on second columns first. Hence, if R − S is computed
on sort(2,1)(R) and sort(2,1)(S) by some machine M , then the output of M
can be piped directly to a machine M ′ that computes the semijoin on that
output and on sort(2,1)(T). By compositionality (Proposition 4.1), we can
then even compose M and M ′ into a single FCM. A stupid way to compute
the same query would be to compute R − S on sort(1,2)(R) and sort(1,2)(S),
thus requiring a re-sorting of the output.

The question then arises: can intermediate sorting operations always be
avoided? Equivalently, can every semijoin algebra query already be computed

12

by a single machine on sorted inputs? We can answer this negatively. Our
proof applies a known result from the classical topic of multihead automata,
which is indeed to be expected given the similarity between multihead au-
tomata and FCMs.

Specifically, the monochromatic 2-cycle query about a binary relation
E and a unary relation C asks whether the directed graph formed by the
edges in E consists of a disjoint union of 2-cycles where the two nodes on
each cycle either both belong to C or both do not belong to C. Note that
this query is indeed expressible in the semijoin algebra as “Is e1 ∪ e2 ∪ e3

empty?”, where e1 := E − (E n
x2=y1
x1=y2

E), where e2 := E n
x2=y1
x1 6=y2

E, and where

e3 := (E n
x1=y1

C) n
x2=y1

((π1(E) ∪ π2(E)) − C)

(We use a nonequality in the semijoin condition, but that is easily incor-
porated in our formalism as well as computed by an FCM on sorted inputs.)

Before proving that the monochromatic 2-cycle query can not be com-
puted by an O(1)-FCM on sorted inputs, we recall the result on multihead
automata as a lemma.

One-way multihead deterministic finite state automata are devices with
a finite state control, a single read-only tape with a right endmarker $ and
a finite number of reading heads which move on the tape from left to right.
Computation on an input word w starts in a designated state q0 with all
reading heads adjusted on the first symbol of w. Depending on the internal
state and the symbols read by the heads, the automaton changes state and
moves zero or more heads to the right. An input word w is accepted if
a final state is reached when all heads are adjusted on the endmarker $.
A one-way multihead deterministic finite state automaton with k heads is
denoted by 1DFA(k). A one-way multihead deterministic sensing finite state
automaton, denoted by 1DSeFA(k), is a 1DFA(k) that has the ability to
detect when heads are on the same position. Formal definitions have been
given by Rosenberg [27].

For natural numbers n and f , consider the following formal languages
over the alphabet {a, b}:

Lf
n := {w1bw2b · · · bwfbw

′
fb · · · bw

′
2bw

′
1 |

∀i = 1, . . . , f : wi, w
′
i ∈ {a, b}∗ and |wi| = |w′

i| = n}

P f
n := {w1bw2b · · · bwfbw

′
fb · · · bw

′
2bw

′
1 ∈ Lf

n | ∀i = 1, . . . , f : wR
i = w′

i}

13

Lemma 4.7 (Hromkovič [19]). Let M be a one-way, k-head, sensing DFA,
and let f >

(

k
2

)

. Then for sufficiently large n, if M accepts all strings in P f
n ,

then M also accepts a string in Lf
n − P f

n .

Proof. On any string in P f
n , consider the pattern of “prominent” configura-

tions of M , where a prominent configuration is a halting one, or one in which
a head has just left a wi or a w′

i and is now on a b. If s is the number of
internal states of the automaton, there are at most s · (2f(n + 1))k different
configurations, of which at most 2fk are prominent, so there are at most

p(n) :=
(

s · (2f(n + 1))k
)2fk

different such patterns. As there are 2fn different strings in P f
n , there is a

group G of at least 2fn/p(n) different strings in P f
n with the same pattern.2

On any w1bw2b . . . bwfbw
R
f b . . . bwR

2 bwR
1 ∈ P f

n , we say that M “checks”
region i ∈ {1, . . . , f} if at some point during the run, there is a head in wi,
and another head in wR

i . Every pair of heads can check at most one i, so
since f >

(

k
2

)

, at least one i is not checked.
In our group G, the non-checked i is the same for all strings, because they

have the same pattern. If we group the strings in G further on their parts
outside wi and wR

i , there are at most 2(f−1)n different groups, so there is a
subgroup H of G of at least 2n/p(n) different strings that agree outside wi

and wR
i . For sufficiently large n, we have 2n/p(n) ≥ 2.

We have arrived at two strings in P f
n of the form

y1 = w1bw2b..bwib..bwnbwR
n b..bwR

i b..bwR
2 bwR

1

y2 = w1bw2b..bw
′
ib..bwnbwR

n b..bw′R
i b..bwR

2 bwR
1

with wi 6= w′
i, and with the same pattern. But then M will also accept the

following string y ∈ Lf
n − P f

n :

w1bw2b · · · bwib · · · bwnbwR
n b · · · bw′R

i b · · · bwR
2 bwR

1

Indeed, while M is in wi, no head is in wR
i and thus the run behaves as on

y1; while M is in w′R
i , no head is in wi and thus the run behaves as on y2.

Since y1 and y2 have the same pattern, y has that pattern as well and hence
y is accepted.

2We do not use the word “group” in the mathematical sense but in its sense as a normal

English word.

14

We are now able to prove:

Theorem 4.8. The monochromatic 2-cycle query is not computable by an
O(1)-FCM on sorted inputs.

Proof. The proof is via a reduction from the Palindrome problem. Note that
Lemma 4.7 still holds if we equip a 1DSeFA(k) with an arbitrary but finite
number of oblivious right-to-left heads that can only move from right to left
on the input tape sensing other heads, but not read the symbols on the tape.
Prominent configurations and checking a region i are then defined in terms
of the normal, non-oblivious left-to-right heads. As a corollary we have that
there is no 1DSeFA(k) with oblivious right-to-left heads that recognizes the
language P := {w ∈ {0, 1}∗ | w = wR} of palindromes.

Now let M be an O(1)-FCM that is supposed to solve the monochromatic
2-cycle query. Again using Ramsey’s theorem, we can find an infinite set
V ⊆ E over which the truth of the atomic formulas in M ’s program on tuples
of data elements only depends on the way these data elements compare w.r.t.
< (see Theorem 4.3). Hence, there is an O(1)-FCM M ′ with only < in its
rules that is equivalent to M over V . We now come to the reduction. Given
a string w = w1 · · ·wn over {0, 1}, we choose n values a1 < · · · < an ∈ V .
Then define relation E as {(ai, an−i+1) | 1 ≤ i ≤ n} and define relation C
as {ai | wi = 1}. It is clear that w is a palindrome if and only if E and C
form a positive instance to the monochromatic 2-cycle query. From FCM M ′

we can construct a 1DSeFA(k) with oblivious right-to-left heads that would
recognize P as follows:

• each cursor on E corresponds to a pair consisting of a “normal” left-
to-right head and an oblivious right-to-left head;

• each cursor on C corresponds to a normal head;

• the internal state of the automaton keeps track of the mode of the finite
cursor machine, together with the relative order of the elements seen
by all cursors;

• each time a cursor on E is advanced, the normal head of the corre-
sponding pair of heads is moved to the right and the oblivious head is
moved to the left, while sensing makes sure that the internal state of
the automaton is changed according to the new relative order;

15

• each time a cursor on C is advanced, the corresponding head is moved
to the next 1 on the input tape.

We conclude that FCM M can not exist.

An important remark is that the above proof only works if the set C
is only given in ascending order. In practice, however, one might as well
consider sorting operations in descending order, or, for relations of higher ar-
ity, arbitrary mixes of ascending and descending orders on different columns.
Indeed, that is the general format of sorting operations in the database lan-
guage SQL. We thus extend our scope to sorting in descending order, and
to much more powerful o(n)-machines, in the next section.

5 Descending Orders and the Power of o(n)-

Machines.

We already know that the computation of semijoin algebra queries by FCMs
and sortings in ascending order only requires intermediate sortings. So, the
next question is whether the use of descending orders can avoid intermediate
sorting. We will answer this question negatively, and will do this even for
o(n)-machines (whereas Theorem 4.8 is proven only for O(1)-machines).

Formally, on a p-ary relation, we now have sorting operations sortρ,f ,
where ρ is as before, and f : {1, . . . , p} → {1, %} indicates ascending or de-
scending. To distinguish from the terminology of the previous section, we
talk about an FCM working on AD-sorted inputs to make clear that both
ascending and descending orders are available.

Before we show our main technical result, we remark that the availability
of sorted inputs using descending order allows O(1)-machines to compute
more relational algebra queries. Indeed, we can extract such a query from
the proof of Theorem 4.8. Specifically, the “Palindrome” query about a
binary relation R and a unary relation C asks whether R is of the form
{(ai, an−i+1) | i = 1, . . . , n} with a1 < · · · < an, and C ⊆ {a1, . . . , an}
such that ai ∈ C ⇔ an−i+1 ∈ C. We can express this query in the relational
algebra (using the order predicate in selections). In the following proposition,
the lower bound was already shown in Theorem 4.8, and the upper bound is
easy.

16

Proposition 5.1. The “Palindrome” query cannot be solved by an O(1)-
FCM on sorted inputs, but can be solved by an O(1)-FCM on AD-sorted
inputs.

We now establish:

Theorem 5.2. The query RST := “Is R nx1=y1 (S nx2=y1 T) nonempty?”,
where R and T are unary and S is binary, is not computable by any o(n)-
FCM working on AD-sorted inputs.

Proof. For the sake of contradiction, suppose M is a o(n)-FCM computing
RST on sorted inputs. Without loss of generality, we can assume that M
accepts or rejects the input only when all cursors are positioned at the end
of their lists.

Let k be the total number of cursors of M , let r be the number of registers
and let m be the number of modes occurring in M ’s program. Let v :=

(

k
2

)

+1.
Choose n to be a multiple of v2, and choose 4n values in E satisfying

a1 < a′
1 < a2 < a′

2 < · · · < an < a′
n < b1 < b′1 < · · · < bn < b′n.

Divide the ordered set {1, . . . , n} evenly in v consecutive blocks, denoted
by B1, . . . , Bv. So, Bi equals the set {(i − 1)n

v
+ 1, . . . , in

v
}. Consider the

following permutation of {1, . . . , n}:

π : (i − 1)·n
v

+ s 7→ (v − i)·n
v

+ s

for 1 ≤ i ≤ v and 1 ≤ s ≤ n
v
. So, π maps subset Bi to subset Bv−i+1, and

vice versa.
We fix the binary relation S of size 2n for the rest of this proof as follows:

S :=
{

(a`, bπ`) : ` ∈ {1, . . , n}
}

∪
{

(a′
`, b

′
π`) : ` ∈ {1, . . , n}

}

.

Furthermore, for all sets I, J ⊆ {1, . . . , n}, we define unary relations R(I)
and T (J) of size n as follows:

R(I) := {a` : ` ∈ I} ∪ {a′
` : ` ∈ Ic}

T (J) := {b` : ` ∈ J} ∪ {b′` : ` ∈ Jc},

where Ic denotes {1, . . . , n} − I. By D(I, J), we denote the database con-
sisting of the lists sort1

(

R(I)
)

, sort%
(

R(I)
)

, sort1
(

T (J)
)

, sort%
(

T (J)
)

, and
all sorted versions of S. It is easy to see that the nested semijoin of R(I), S,
and T (J) is empty if, and only if, (π(I) ∩ J) ∪ (π(I)c ∩ Jc) = ∅. Therefore,
for each I, the query RST returns false on instance D(I, π(I)c), which we
will denote by D(I) for short. Furthermore, we observe for later use:

17

the query RST on D(I, π(J)c) returns true if and only if I 6= J. (∗)

To simplify notation a bit, we will in the following use R1 and T1 to

denote lists sort1
(

R(I)
)

and sort1
(

T (I)
)

sorted in ascending order, and we

use R% and T% to denote the lists sort%
(

R(I)
)

and sort%
(

T (I)
)

sorted in
descending order.

Consider a cursor c on list R1 of the machine M . In a certain state (i.e.,
configuration), we say that c is on position ` on R1 if M has executed `−1
update rules c := nextR1

(c). I.e., if cursor c is on position ` on R1, then c

sees value a` or a′
`. We use analogous notation for the sorted lists R%, T1,

and T%. I.e., if a cursor c is on position ` on R% (resp. T1, resp. T%), then c
sees value an−`+1 or a′

n−`+1 (resp. b` or b′`, resp. bn−`+1 or b′n−`+1).
Consider the run of M on D(I). We say that a pair of cursors of M

checks block Bi if at some state during the run

• one cursor in the pair is on a position in Bi on R1 (i.e., the cursor reads
an element a` or a′

`, for some ` ∈ Bi) and the other cursor in the pair
is on a position in Bv−i+1 on T1 (i.e., the cursor reads an element bπ`

or b′π`, for some ` ∈ Bi), or

• one cursor in the pair is on a position in Bv−i+1 on R% (i.e., the cursor
reads an element a` or a′

`, for some ` ∈ Bi) and the other cursor in the
pair is on a position in Bi on T% (i.e., the cursor reads an element bπ`

or b′π`, for some ` ∈ Bi).

Note that each pair of cursors working on the ascendingly sorted lists R1

and T1 or on the descendingly sorted lists R% and T%, can check at most

one block. There are v blocks and at most
(

k
2

)

< v cursor pairs. Hence,
there is one block Bi0 that is not checked by any pair of cursors working on
R1 and T1 or on R% and T%. In order to also deal with pairs of cursors
on R1 and T% or on R% and T1, we further divide each block Bi evenly

into v consecutive subblocks, denoted by B1
i , . . . , B

v
i . So, Bj

i equals the set
{(i − 1)n

v
+ (j − 1) n

v2 + 1, . . . , (i− 1)n
v

+ j n
v2 }. We say that a pair of cursors

of M checks subblock Bj
i if at some state during the run

• one cursor in the pair is on a position in Bj
i on R1 (thus reading an

element a` or a′
`, for some ` ∈ Bj

i) and the other cursor in the pair is
on a position in Bv−j+1

i on T% (thus reading an element bπ` or b′π`, for

some ` ∈ Bj
i), or

18

• one cursor in the pair is on a position in Bv−j+1
v−i+1 on R% (thus reading

an element a` or a′
`, for some ` ∈ Bj

i) and the other cursor in the pair
is on a position in Bj

v−i+1 on T1 (thus reading an element bπ` or b′π`, for

some ` ∈ Bj
i).

Note that each pair of cursors working either on R1 and T% or on R% and
T1, can check at most one subblock in Bi0 . There are v subblocks in Bi0 and

at most
(

k
2

)

< v cursor pairs. Hence, there is at least one subblock Bj0
i0

that
is not checked by any pair of cursors working either on R1 and T% or on R%

and T1. Note that, since the entire block Bi0 is not checked by any pair or

cursors working either on R1 and T1 or on R% and T%, the subblock Bj0
i0

is
thus not checked by any pair of cursors (on R1, R%, T1, T%).

We say that M checks subblock Bj
i if at least one pair of cursors of M

checks subblock Bj
i .

At this point it is useful to introduce the following terminology. By “block
Bj0

i0
on R”, we refer to the positions in Bj0

i0
of list R1 and to the positions

in Bv−j0+1
v−i0+1 of list R%, i.e., “block Bj0

i0
on R” contains values a` or a′

` where

` ∈ Bj0
i0

. By “block Bj0
i0

on T”, however, we refer to the positions in Bj0
v−i0+1

of list T1 and to the positions in Bv−j0+1
i0

of list T%, i.e., “block Bj0
i0

on T”

contains values bπ` where ` ∈ Bj0
i0

. Note that this terminology is consistent
with the way we have defined the notion of “checking a block”.

Consider then the set I of 2n instances, defined via I := {D(I) : I ⊆
{1, . . . , n}}. We argued before that on each instance in I, there is at least
one subblock Bj

i that M does not check. Because there are only v2 such
possible subblocks and 2n different instances in I, there exists a set I0 ⊆ I
of cardinality at least 2n/v2 and 2 indices i0 and j0, such that M does not
check subblock Bj0

i0
on any instance in I0.

Now we apply an averaging argument to fix all input elements outside
the critical block Bj0

i0
: We divide I0 into equivalence classes induced by the

following equivalence relation:

D(I) ≡ D(J) ⇔ I − Bj0
i0

= J − Bj0
i0

Since Bj0
i0

has n
v2 elements, there are at most 2n− n

v2 equivalence classes.
Thus, since I0 has at least 2n/v2 elements, there exists an equivalence class

I1 ⊆ I0 of cardinality at least 2n/v2

2
n−

n

v2
= 2

n

v2 /v2, such that for any D(I) and

19

D(J) in I1, we have I − Bj0
i0

= J − Bj0
i0

. Note that for larger and larger n,

2
n

v2 /v2 becomes arbitrarily large.
Let D(I) be an element of I1. Consider the run of M on D(I). Let c be a

cursor and let MI
c be the state of M in the run on D(I) when cursor c has just

left block Bj0
i0

on R or on T . Let MI be the k-tuple consisting of these states

MI
c for all cursors c. This tuple MI can have only 2k log m+k2 log 2n+k·r·o(n)

different values. To see this note that a state of the machine is completely
determined by the machine’s current mode (one out of m possible values),
the positions of each of the k cursors (where each cursor can be in one out of
at most 2n possible positions), and the contents of the r bitstring registers
(each of which has length o(n)). Hence, there are only m · (2n)k · 2r·o(n)

different states for M .
Since I1 has at least 2

n

v2 /v2 elements, there exists a set I2 ⊆ I1 of car-

dinality at least 2
n

v2 /v2

2k log m+k2 log 2n+k·r·o(n)
= 2

n

v2 −2 log v−k log m−k2 log 2n−k·r·o(n), such

that for any D(I) and D(J) in I2, we have MI = MJ . For large enough n,
we have at least two different instances D(I) and D(J) in I2.

We recall the crucial properties of D(I) and D(J):

1. The query RST returns false on D(I) and on D(J) (cf. (∗));

2. M does not check block Bj0
i0

on D(I), nor on D(J);

3. D(I) and D(J) differ on R and T only in block Bj0
i0

; and

4. For each cursor c, when c has just left block Bj0
i0

(on R or T) in the run
on D(I), the machine M is in the same state as when c has just left
block Bj0

i0
in the run on D(J).

Let V0,V1, . . . be the sequence of states in the run of M on D(I) and let
W0,W1, . . . be the sequence of states in the run of M on D(J). Let tIc and
tJc be the points in time when the cursor c of M has just left block Bj0

i0
in

the run on D(I) and D(J), respectively. Because of Property 4 above, VtIc

equals WtJc
for each cursor c. Note that the start states V0 and W0 are equal.

Now consider instance Derr := D(I, π(J)c). So, Derr has the same lists
R1, R% as D(I) and the same lists T1, T% as D(J). Consider M running

on Derr. As long as there are no cursors in block Bj0
i0

on R and on T , the
machine M running on Derr will go through the same sequence of states as
on D(I) and as on D(J). Indeed, M has not yet seen any difference between

20

Derr on the one hand, and D(I) and D(J) on the other hand (Property 3).
At some point, however, there may be some cursor c in block Bj0

i0
.

• If this is on R1 or R%, no cursor on T1 or T% will enter block Bj0
i0

as long
as c is in this block (Property 2). Therefore, M will go through some
successive states Vi (i.e., M thinks it is working on D(I)) until c has
just left block Bj0

i0
. At that point, M is in state VtIc

= WtJc
(Property 4)

and the machine now again goes through the same sequence of states
as on D(I) and as on D(J) (Property 3).

• If this is on T1 or T%, we are in a similar situation: No cursor on R1

or R% will enter block Bj0
i0

as long as c is in this block (Property 2).
Therefore, M will go through some successive states Wi (i.e., M thinks
it is working on D(J)) until c has just left block Bj0

i0
. At that point,

M is in state VtIc
= WtJc

(Property 4) and the machine now again
goes through the same sequence of states as on D(I) and as on D(J)
(Property 3).

Hence, in the run of M on Derr, each time a cursor c has just left block
Bj0

i0
, the machine is in state VtIc

. Let d be the last cursor that leaves block

Bj0
i0

. When d has just left this block, M is in state VtI
d

. After the last cursor

has left block Bj0
i0

, the run of M on Derr finishes exactly as the run of M on

D(I) after the last cursor has left block Bj0
i0

(and on D(J) for that matter).
In particular, M rejects Derr because it rejects D(I) (Property 1). This is
wrong, however, because due to (∗) the query RST returns true on Derr.
Finally, this completes the proof of Theorem 5.2.

Remark 5.3. (a) An analysis of the proof of Theorem 5.2 shows that we can
make the following, more precise statement: Let k, m, r, s : N → N such
that

k(n)6 · (log m(n)) · r(n) · max(s(n), log n) = o(n).

Then for sufficiently large n, there is no FCM with at most k(n) cursors,
m(n) modes, and r(n) registers each holding bitstrings of length at most s(n)
that, for all unary relations R, T and binary relations S of size n decides
if R nx1=y1 (S nx2=y1 T) is nonempty. (In the statement of Theorem 5.2,
k, m, r are constant.) This is interesting in particular because we can use
a substantial number of cursors, polynomially related to the input size, to
store data elements and still obtain the lower bound result.

21

(b) Note that Theorem 5.2 is sharp in terms of arity: if S would have been
unary (and R and T of arbitrary arities), then the according RST query
would have been computable on sorted inputs.
(c) Furthermore, Theorem 5.2 is also sharp in terms of register bitlength:
Assume data elements are natural numbers, and focus on databases with
elements from 1 to O(n). If the background provides functions for setting
and checking the i-th bit of a bitstring, the query RST is easily computed
by an O(n)-FCM.

By a variation of the proof of Theorem 5.2 we can also show the following
strengthening of Theorem 4.3:

Theorem 5.4. There is no o(n)-FCM working on enumerations of unary
relations R and S and their reversals, that checks whether R ∩ S 6= ∅.

Note that Theorems 5.2 and 5.4 are valid for arbitrary background struc-
tures.

6 Concluding Remarks.

A natural question arising from Corollary 4.5 is whether finite cursor ma-
chines with sorting are capable of computing relational algebra queries beyond
the semijoin algebra. The answer is affirmative:

Proposition 6.1. The boolean query over a binary relation R that asks if
R = π1(R)×π2(R) can be computed by an O(1)-FCM working on sort(1,2),(1,1)(R)
and sort(2,1),(1,1)(R).

Proof. The list sort(1,2),(1,1)(R) can be viewed as a list of subsets of π2(R),
numbered by the elements of π1(R). The query asks whether all these subsets
are in fact equal to π2(R). Using an auxiliary cursor over sort(2,1),(1,1)(R),
we check this for the first subset in the list. Then, using two cursors over
sort(1,2),(1,1)(R), we check whether the second subset equals the first, the
third equals the second, and so on.

Note that, using an Ehrenfeucht-game argument, one can indeed prove
that the query from Proposition 6.1 is not expressible in the semijoin alge-
bra [23].

We have not been able to solve the following:

22

Open Problem 6.2. Is there a boolean relational algebra query that cannot
be computed by any composition of O(1)-FCMs (or even o(n)-FCMs) and
sorting operations?

Under a plausible assumption from parameterized complexity theory [10,
8] we can answer the O(1)-version of this problem affirmatively for FCMs
with a decidable background structure.

There are, however, many queries that are not definable in relational al-
gebra, but computable by FCMs with sorting. By their sequential nature,
FCMs can easily compare cardinalities of relations, check whether a directed
graph is regular, or do modular counting—and all these tasks are not de-
finable in relational algebra. One might be tempted to conjecture, however,
that FCMs with sorting cannot go beyond relational algebra with counting
and aggregation, but this is false:

Proposition 6.3. On a ternary relation G and two unary relations S and
T , the boolean query “Check that G = π1,2(G)× (π1(G)∪π2(G)), that π1,2(G)
is deterministic, and that T is reachable from S by a path in π1,2(G) viewed
as a directed graph” is not expressible in relational algebra with counting and
aggregation, but computable by an O(1)-FCM working on sorted inputs.

Proof. (a): If this query was expressible in relational algebra with count-
ing and aggregation, then deterministic reachability would be expressible,
too. However, since deterministic reachability is a non-local query, it is not
expressible in first-order with counting and aggregation (see [17]).
(b): A finite cursor machine that solves this query can proceed as follows:
The first check follows by Proposition 6.1; the determinism check is easy.
The path can now be found using a cursor sorted on the third column of G,
which gives us n copies of the graph π1,2(G).

References

[1] G. Aggarwal, M. Datar, S. Rajagopalan, and M. Ruhl. On the streaming
model augmented with a sorting primitive. In Proceedings of the 44th
IEEE Symposium on Foundations of Computer Science, pages 540–549,
2004.

[2] N. Alon, Y. Matias, and M. Szegedy. The space complexity of ap-
proximating the frequency moments. Journal of Computer and System
Sciences, 58:137–147, 1999.

23

[3] M. Altinel and M. Franklin. Efficient filtering of XML documents for
selective dissemination of information. In Proceedings of the 26th Inter-
national Conference on Very Large Data Bases, pages 53–64, 2000.

[4] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models
and issues in data stream systems. In Proceedings of the 21st ACM
Symposium on Principles of Database Systems, pages 1–16, 2002.

[5] Z. Bar-Yossef, M. Fontoura, and V. Josifovski. On the memory require-
ments of XPath evaluation over XML streams. In Proceedings of the
23rd ACM Symposium on Principles of Database Systems, pages 177–
188, 2004.

[6] Z. Bar-Yossef, M. Fontoura, and V. Josifovski. Buffering in query eval-
uation over XML streams. In Proceedings of the 24th ACM Symposium
on Principles of Database Systems, pages 216–227, 2005.

[7] C.Y. Chan, P. Felber, M.N. Garofalakis, and R. Rastogi. Efficient fil-
tering of XML documents with XPath expressions. The VLDB Journal,
11:354–379, 2002.

[8] R.G. Downey and M.R. Fellows. Parameterized Complexity. Springer,
1999.

[9] R. Fagin. Degrees of acyclicity for hypergraphs and relational database
schemes. Journal of the ACM, 30:514–550, 1983.

[10] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer,
2006.

[11] H. Garcia-Molina, J.D. Ullman, and J. Widom. Database System Im-
plementation. Prentice Hall, 1999.

[12] T.J. Green, G. Miklau, M. Onizuka, and D. Suciu. Processing XML
streams with deterministic automata. In Proceedings of the 9th Inter-
national Conference on Database Theory, pages 173–189, 2003.

[13] M. Grohe, C. Koch, and N. Schweikardt. Tight lower bounds for query
processing on streaming and external memory data. In Proceedings of
the 31st International Colloquium on Automata, Languages and Pro-
gramming, pages 1076–1088, 2005.

24

[14] M. Grohe and N. Schweikardt. Lower bounds for sorting with few ran-
dom accesses to external memory. In Proceedings of the 24th ACM
Symposium on Principles of Database Systems, pages 238–249, 2005.

[15] A.K. Gupta and D. Suciu. Stream processing of XPath queries with
predicates. In Proceedings of the 22th ACM SIGMOD International
Conference on Management of Data, pages 419–430, 2003.

[16] Y. Gurevich. Evolving algebras 1993: Lipari guide. In E. Börger, edi-
tor, Specification and Validation Methods, pages 9–36. Oxford University
Press, 1995.

[17] L. Hella, L. Libkin, J. Nurmonen, and L. Wong. Logics with aggregate
operators. Journal of the ACM, 48(4):880–907, 2001.

[18] M. Henzinger, P. Raghavan, and S. Rajagopalan. Computing on data
streams. External Memory Algorithms. DIMACS Series In Discrete
Mathematics And Theoretical Computer Science, 50:107–118, 1999.

[19] J. Hromkovič. One-way multihead deterministic finite automata. Acta
Informatica, 19:377–384, 1983.

[20] Y-N. Law, H. Wang, and C. Zaniolo. Query languages and data models
for database sequences and data streams. In Proceedings of the 30th
International Conference on Very Large Data Bases, pages 492–503,
2004.

[21] D. Leinders and J. Van den Bussche. On the complexity of division
and set joins in the relational algebra. In Proceedings of the 24th ACM
Symposium on Principles of Database Systems, pages 76–83, 2005.

[22] D. Leinders, M. Marx, J. Tyszkiewicz, and J. Van den Bussche. The
semijoin algebra and the guarded fragment. Journal of Logic, Language
and Information, 14(3):331–343, 2005.

[23] D. Leinders, J. Tyszkiewicz, and J. Van den Bussche. On the expressive
power of semijoin queries. Information Processing Letters, 91(2):93–98,
2004.

[24] L. Libkin. Elements of Finite Model Theory. Springer, 2004.

25

[25] S. Muthukrishnan. Data Streams: Algorithms and Applications. Now
Publishers Inc, 2005.

[26] F. Peng and S.S. Chawathe. XPath queries on streaming data. In Pro-
ceedings of the 22th ACM SIGMOD International Conference on Man-
agement of Data, pages 431–442, 2003.

[27] A.L. Rosenberg. On multi-head finite automata. In Proceedings of the
6th IEEE Symposium on Switching Circuit Theory and Logical Design,
pages 221–228, 1965.

[28] D. Simmen, E. Shekita, and T. Malkemus. Fundamental techniques for
order optimization. In Proceedings of the 15th ACM SIGMOD Interna-
tional Conference on Management of Data, pages 57–67, 1996.

[29] J. Van den Bussche. Finite cursor machines in database query process-
ing. In Proceedings of the 11th International Workshop on Abstract State
Machines, 2004.

[30] M. Yannakakis. Algorithms for acyclic database schemes. In Proceedings
of the 7th International Conference on Very Large Data Bases, pages
82–94, 1981.

26

