Yuri
 Gurevich
 Intuitionistic Logic with Strong Negation

Introduction

A Kripke model of intuitionistic predicate logic can be described (see [1]) as a quadruple $\mathscr{K}=\langle M, \leqslant, \delta, \tau\rangle$ where $\langle M, \leqslant\rangle$ is a poset (partially ordered set), δ is a non-decreasing function associating a set of individual constants with each $X \in M$, and for each $X \epsilon M$ and each formula $A, \tau_{X} A$ is equal to either "true" or "uncertain". The details can be found in § 3 below. In particular, $\tau_{X}(\neg A)=$ "true" iff for each $Y \geqslant X, \tau_{Y} A \neq$ "true".

In the spirit of Grzegorczyk's paper [2] \mathscr{K} may be interpreted as a scheme of a scientific research. Elements of M are the stages of the research, \leqslant is the precedence relation, $\delta(X)$ is the set of objects involved in the research at stage X. For an atomic formula $A, \tau_{X} A$ is a product of experiment. "The compound sentences are not a product of experiment" - writes Grzegorczyk - "They arise from reasoning. This concerns also negations: we see that the lemon is yellow, we do not see that it is not blue".

This paper is a reaction for this remark of Grzegorczyk. In many cases the falsehood of a simple scientific sentence can be ascertained as directly (or indirectly) as its truth. An example: a litmus-paper is used to verify sentence "The solution is acid". We regard a generalizations of Kripke models when $\tau_{X} A$ can be equal to "false", "uncertain" or "true". That gives rise to a conservative extension of the intuitionistic logic which is nicer at least in one aspect: it is more symmetric, it satisfies very natural duality laws.

We use the strong negation to formalize the arising logic. The propositional intuitionistic logic with strong negation was regarded in [5], [7], [8] and [10]. We use here Vorob'ev's calculus in [10]. Thomason developed in [9] semantics, which is very close to ours, and the corresponding calculus $\boldsymbol{C F}$. Unfortunately $\boldsymbol{C F}$ is not a conservative extension of the ordinary intuitionistic logic. For example formula $\forall x(A \vee C) \supset(\forall x A \vee C)$, where x does not occur in C, is provable in $\boldsymbol{C F}$. It seems that even in the propositional case the duality laws of intuitionistic logic with strong negation were not mentioned before.

In $\S 1$ we introduce a Hilbert-type calculus $\overline{\boldsymbol{H}}$ formalizing intuitionistic logic with strong negation. In § $2 \overline{\boldsymbol{H}}$ is interpreted in the ordinary intuition-
istic calculus \boldsymbol{H} and it is proved that $\overline{\boldsymbol{H}}$ extends \boldsymbol{H} conservatively. In $\S 3$ Kripke models of $\overline{\boldsymbol{I}}$ are defined. In § 4 the completeness theorem is proved. In $\S 5$ duality laws are proved. In $\S 6$ complete and independent systems of logical operators for $\overline{\boldsymbol{I}}$ and for the propositional part of $\overline{\boldsymbol{I}}$ are presented. In $\S 7$ a 3 -valued logic associated with $\overline{\boldsymbol{H}}$ is discussed. In $\S 8$ a Gentzen-type calculus corresponding to $\overline{\boldsymbol{H}}$ is considered.

The paper was written in Russian in 1972 and translated into English in 1976. Discussions with Leo Esakia were very usefull to the author.

Note: Metalogic of this paper is classic.

§ 1. Predicate calculus

In this section we define a calculus $\overline{\boldsymbol{H}}$ formalizing intuitionistic logic with strong negation.

Let II be the intuitionistic predicate calculus of [3] enriched by a denumerable list of individual constants. Recall that $A \sim B$ abbreviates $(A \supset B) \&(B \supset A) . \overline{\boldsymbol{H}}$ is obtained from \boldsymbol{H} by adding a new unary propositional connective " -" (called strong negation or minus) and the following axiom schemata:

1. $-(A \supset B) \sim A \&-B$,
․ $\quad-(A \& B) \sim-A \vee-B$,
2. $-(A \vee B) \sim-A \&-B$,
3. $\quad-\neg A \sim A$,
‥ $\quad-\quad A \sim A$,
4. $\quad-\exists x A \sim \forall x-A$,

न. $\quad-\forall x A \sim \exists x-A$,
$\overline{5} . \quad$ (for atomic A 's only) $-A \supset \neg A$.
Here and below minus and other unary logical operators bind closer than any binary connective. Here and below A and B range over the $\overline{\boldsymbol{H}}$-formulae if the contrary is not said explicitly. In this section the sign + means provability and deducibility on $\overline{\boldsymbol{H}}$.

Clearly $\overline{\boldsymbol{H}}$ satisfies the Deduction Theorem.
Theorem 1.1. $\vdash-A \supset(A \supset B)$.
Proof. It is enough to deduce B from A and $-A$ without variation of variables. If A is atomic use \bar{B}. In the other cases use $\overline{1}, \ldots, \overline{\overline{7}}$ respectively. \#

Hence $\vdash-A \supset \neg A$ for all A 's, not only for atomic one's.
In order to prove replacement theorems fix an $\overline{\boldsymbol{H}}$-formula C and a propositional letter p. Let C_{A} be the result of replacing all occurrences of p in C by A. Let V_{A} be the set of individual variables x such that x
occurs free in A and some occurrence of p in C lies in the scope of $\exists x$ or $\forall x$.

Theorex 1.2. (Replacement property of equivalence). If the minus does not occur in C then $A \sim B+C_{A}^{A} \sim C_{B}$ where the variables of $V_{A} \cup V_{B}$ are varied.

Proof. See proof of the Replacement Theorem (Theorem 14) in [3]. \# Let $A \equiv B$ abbreviate $(A \sim B) \&(-A \sim-B)$ (the strong equivalence).
Lemma 1.3.
(i) $A \equiv B \vdash,-A \equiv-B$, and the same for $ᄀ$;
(ii) $\quad A_{1} \equiv B_{1}, \quad A_{2} \equiv B_{2}+A_{1} \supset A_{2} \equiv B_{1} \supset B_{2}, \quad$ and the same for \& and \vee;
(iii) $A \equiv B+\forall x A \equiv \forall x B$ where x is varied, and the same for \exists.

Proof is clear. \#
Theorem 1.4. (Replacement property of the strong equivalence). $A \equiv B+C_{A} \equiv C_{B}$ where the variables of $V_{A} \cup V_{B}$ are varied.
Proof by induction on C. The induction step uses Lemma 1.3. \#

§ 2. Reduced formulae

Here we interpret $\overline{\boldsymbol{H}}$ in \boldsymbol{H} and prove that $\overline{\boldsymbol{H}}$ extends \boldsymbol{H} conservatively.
A is called reduced (cf. [10]) iff the scope of each occurrence of minus in A is an atomic formula. An $\overline{\boldsymbol{H}}$-proof $\left(A_{1}, \ldots, A_{n}\right)$ is called reduced iff the formulas A_{1}, \ldots, A_{n} are reduced. The reduction operation r is defined inductively:

$$
\begin{aligned}
& r A=A \quad \text { and } \quad r(-A)=-A \quad \text { if } A \text { is atomic; } \\
& r(\neg A)=r(A) ; \\
& r(A \supset B)=r(A) \supset r(B), \text { and the same for } \& \text { and } \vee ; \\
& r(\forall x A)=\forall x(r A), \text { and the same for } \exists ; \\
& r(-(A \supset B))=r A \&(-r B) ; \\
& r(-(A \& B))=(-r A) \vee(-r B) \text { and } \\
& r(-(A \vee B))=(-r A) \&(r-B) ; \\
& r(-\forall x A)=\exists x(-r A) \text { and } \\
& r(-\exists x A)=\forall x(-r A) ; \\
& r(-\neg A)=r(--A)=r A .
\end{aligned}
$$

Theorems 2.1 and 2.2 below generalize the analoguous results in [10].
Theorem 2.1. r A is reduced and the formula $A \sim r(A)$ is provable in $\overline{\boldsymbol{H}}$.
Proof. Easy induction on A. \#
Theorem 2.2. If A is provable in $\overline{\boldsymbol{H}}$ then there exists a reduced proof of $r \boldsymbol{A}$ in $\overline{\boldsymbol{H}}$.

Proof. Easy induction on the length of an \boldsymbol{H}-proof of A. \#
Theorem 2.3. Let $P_{1}, \ldots, P_{k}, Q_{1}, \ldots, Q_{k}$ be different predicate letters where P_{i} and Q_{i} are m_{i} - ary ; $E=\bigwedge_{i} \forall x_{1} \ldots x_{m_{i}}\left(Q_{i} x_{1} \ldots x_{m_{i}} \supset \neg P x_{1} \ldots x_{m_{i}}\right)$; A range over the $\overline{\boldsymbol{H}}$-formulae with predicate letters among $P_{1}, \ldots, P_{k} ; q A$ be the result of replacing $-P_{1}, \ldots,-P_{k}$ in $r A$ by Q_{1}, \ldots, Q_{k}.

Then A is provable in $\overline{\boldsymbol{H}}$ iff $E \supset q A$ is provable in. \boldsymbol{H}.
Proof. Suppose that A is provable in $\overline{\boldsymbol{H}}$. By Theorem 2.2 there exists a reduced proof $\left(A_{1}, \ldots, A_{n}\right)$ of $r A$. Without loss of generality all predicate letters occurring in this proof are among P_{1}, \ldots, P_{k}. Then ($q A_{1}, \ldots, q A_{n}$) is a deduction of $q A$ in \boldsymbol{H} from hypothesises of the form $Q_{i} t_{1} \ldots t_{m_{i}} \supset \neg P_{i} t_{1} \ldots t_{n_{i}}$ which are deducible in \boldsymbol{I} from E.

Now let (B_{1}, \ldots, B_{n}) be an \boldsymbol{I}-proof of $E \supset q A$. Without loss of generality all predicate letters occurring in this proof are among $P_{1}, \ldots, P_{k}, Q_{1}, \ldots, Q_{k}$. Let A_{1}, \ldots, A_{n} and D be the results of replacing Q_{1}, \ldots, Q_{k} by $-P_{1}, \ldots,-P_{k}$ in B_{1}, \ldots, B_{n} and E respectively. Then $\left(A_{1}, \ldots, A_{n}\right)$ is an \boldsymbol{I}-proof of $D \supset r A$ and D is provable in $\overline{\boldsymbol{H}}$. By Theorem 2.1, A is provable in $\overline{\boldsymbol{H}}$. \#

Let wA be the result of replacing the strong negation in A by the ordinary one.

Lenma 2.4. Let A be reduced. If A is provable in $\overline{\boldsymbol{H}}$ then wa is provable in \boldsymbol{I}.

Proof. Easy induction on the length of a reduced $\overline{\boldsymbol{H}}$-proof of A. \#
Theorem 2.5. Let A be an \boldsymbol{H}-formula. If A is provable in $\overline{\boldsymbol{H}}$ then A is provable in \boldsymbol{H}.

Proof. Use Lemma 2.4. \#

§ 3. Kripke models

We recall here Kripke models of \boldsymbol{I} (according to [1]) and define Kripke models of $\overline{\boldsymbol{H}}$.

Let $C n(A)$ be the set of individual constants occuriing in A. A Kripke model of \boldsymbol{I} (respectively $\overline{\boldsymbol{H}}$) is a quadruple $\mathscr{K}=\langle M, \leqslant, \delta, \tau\rangle$ where: $\langle M, \leqslant\rangle$ is a poset (the poset of stages of $\mathscr{K}) ; \delta$ associates a set of individual constants with each stage in such a way that $X \leqslant Y$ implies $\delta X \subseteq \delta Y$; and $\tau: M \times$ (the set of H-sentences) $\rightarrow\{0,1\}$ (resp. $\tau: M \times$ (the set of \boldsymbol{H}-sentences) $\rightarrow\{-1,0,1\}$) satisfies the following conditions 3.1-3.7 (resp. 3.1-3.14):
3.1 If A is atomic, $\tau_{X} A \neq 0$ and $X \leqslant Y$ then $C n(A) \subseteq \delta X$ and $\tau_{1} A=\tau_{X} A$;
3.2

$$
\tau_{X}(A \& B)=1 \quad \text { iff } \quad \min \left\{\tau_{X} A, \tau_{X} B\right\}=1 ;
$$

$3.3 \quad \tau_{X}(A \vee B)=1$ iff $C n(A \vee B) \subseteq \delta X$ and $\max \left\{\tau_{X} A, \tau_{X} B\right\}=1$;
$3.4 \quad \tau_{X}(\neg A)=1 \quad$ iff $\quad C n(A) \subseteq \delta X$ and for each $Y \geqslant X, \tau_{Y} A<1$;
3.5
3.6
3.7
3.8
3.9
3.10
3.11
$3.12 \quad \tau_{X} \forall x A(x)=-1$ iff there exists $c \in \delta X$ such that $\tau_{X} A(c)=-1$;
$3.13 \quad \tau_{X} \exists x A(x)=-1$ iff for every $Y \geqslant X$ and $c \in \delta Y, \tau_{1^{-}} A(c)=-1$;
$3.14 \quad \tau_{X}(-A)=-\tau_{X} A$.
Lemma 3.1. For each formula A, if $\tau_{\mathrm{X}} A \neq 0$ and $X \leqslant Y$ then $C n(F) \subseteq \delta X$ and $\tau_{Y} A=\tau_{X} A$.

Proof. Easy induction on A. \#
Lemma 3.2. Let M, \leqslant and δ be as above and $\tau^{0}: M \times($ the set of atomic \boldsymbol{H}-formulae $) \rightarrow\{0,1\}\left(\right.$ resp. $\tau^{0}: M \times($ the set of atomic $\overline{\boldsymbol{H}}$-formulae $\left.) \rightarrow\{-1,0,1\}\right)$ satisfy condition 3.1 then. Then there exists a unique extension τ of τ^{0} such that $\mathscr{K}=\langle M, \leqslant, \delta, \tau\rangle$ is a Kripke model of $\boldsymbol{H}($ resp. of $\overline{\boldsymbol{H}})$.

Proof is clear. \#
Definition. Let $\mathscr{K}=\langle M, \leqslant, \delta, \tau\rangle$ be a Kripke model of \boldsymbol{H} (resp. $\overline{\boldsymbol{H}}$). A is defined (resp. true) at stage X iff $C n(A) \subseteq \delta X$ (resp. $\tau_{X} A=1$). A is defined in \mathscr{K} iff A is defined at some stage of \mathscr{K}. A is true in \mathscr{K} iff A is defined in \mathscr{K} and it is true at each stage of \mathscr{K} where it is defined.

Theorem 3.3. (Correctness Theorem). If \boldsymbol{A} is provable in \boldsymbol{H} (resp in $\overline{\boldsymbol{H}})$ then it is true in all Kripke models of $\boldsymbol{I}($ resp. of $\overline{\boldsymbol{H}})$ where it is defined.

Proof. Easy induction on the length of a formal proof of A. \#
Corollary 3.4. Let \mathscr{K} be a model of $\overline{\boldsymbol{H}}$ and X be a stage of \mathscr{K}. Suppose that $\operatorname{Cn}(A)=\operatorname{Cn}(B)$. If $(A \sim B)$ is provable in $\overline{\boldsymbol{I}}$ then $\tau_{X} A=1$ iff $\tau_{X} B=1$. If $(A \equiv B)$ is provable in $\overline{\boldsymbol{H}}$ then $\tau_{X} A=\tau_{X} B$.

Theorem 3.5. (Completeness Theorem for H, see [1] or [4]). If an \boldsymbol{H}-sentence A is not provable in \boldsymbol{H} then there exists a Kripke model of \boldsymbol{H} where A is defined but not true.

§4. Completeness Theorem

Theorem 4.1. Let A be an $\overline{\boldsymbol{H}}$-sentence. If A is not provable in $\overline{\boldsymbol{H}}$ then there exists a Kripke model of $\overline{\boldsymbol{H}}$ where A is defined but not true.

Proof. Without loss of generality A is reduced in the sense of $\S 2$, see Theorem 2.1 and Corollary 3.4. We use notation of Theorem 2.3.

Suppose that A is not provable in $\overline{\boldsymbol{H}}$. By Theorem $2.3, E \supset q A$ is not provable in \boldsymbol{H}. By Theorem 3.5 there exists a Kripke model $\mathscr{K}=\langle M, \leqslant$, $\delta, \sigma\rangle$ of \boldsymbol{I} where A is defined but not true. Without loss of generality E is true in \mathscr{K}. For, $(E \supset q A)$ is defined but not true at some stage X of \mathscr{K}. Hence there exists $Y \geqslant X$ such that $\tau_{Y} B=1 \neq \tau_{Y}(q A)$. Take the submodel of \mathscr{K} with the set $\{Z \in M: Z \geqslant Y\}$ of stages.

For every formula $P_{i} c_{1} \ldots c_{m_{i}}$ and stage X of \mathscr{K} define:

$$
\tau_{X}^{0} P_{i} c_{1} \ldots c_{m_{i}}= \begin{cases}1 & \text { if } \quad \sigma_{X} P_{i} c_{1} \ldots c_{m_{i}}=1 \\ -1 & \text { if } \\ \sigma_{X} Q_{i} c_{1} \ldots c_{m_{i}}=1 \\ 0 & \text { otherwise }\end{cases}
$$

The definition is correct since E is true in \mathscr{K}. By Lemma 3.2 there exists a unique model $\mathscr{L}=\langle M, \leqslant, \delta, \tau\rangle$ of $\overline{\boldsymbol{H}}$ such that τ extends τ^{0}. By induction on a subformula B of A it is easy to check that at each stage $X, \tau_{X} B=1$ implies $\sigma_{X}(q B)=1$. Hence A is not true in \mathscr{L}. \#

Corollary 4.2. (Adequacy Theorem for $\overline{\boldsymbol{H}}$). A is provable in $\overline{\boldsymbol{I}}$ iff it is true in each model of $\overrightarrow{\boldsymbol{H}}$ where it is defined.

§ 5. Duality

Here we prove that an inessential extension of $\overline{\boldsymbol{H}}$ satisfies very natural duality laws.

Let calculus $\boldsymbol{H} 1$ be obtained from $\overline{\boldsymbol{H}}$ by adding a unary propositional connective α, binary propositional connective β and the following axiom schemas:

$$
\begin{aligned}
a A & \equiv-\neg-A, \\
(A \beta B) & \equiv-(-A \supset-B) .
\end{aligned}
$$

$\boldsymbol{I I}$-formulae can be regarded as abbreviations of $\overline{\boldsymbol{H}}$-formulae.
Now we define duality of the logical operators:

$$
\begin{array}{ll}
\& & \text { is dual to } v \text { and vice versa, } \\
\forall & \text { is dual to } \exists \text { and vice versa, } \\
7 & \text { is dual to } \alpha \text { and vice versa, } \\
\partial & \text { is dual to } \beta \text { and vice versa, } \\
- & \text { is dual to itself. }
\end{array}
$$

Below in this section s range over the logical operators of $\boldsymbol{H 1}, \bar{s}$ is the operator dual to s, A and B range over the $H 1$-formulas and the sign + means provability and deducibility in H1.

Lemma 5.1.

$$
\begin{aligned}
& \vdash--A \equiv A \\
& \vdash-s A \equiv \bar{s}(-A) \quad \text { where } s \text { is }\urcorner \text { or } a
\end{aligned}
$$

$$
\begin{aligned}
& \vdash-(A s B) \equiv(-A) \bar{s}(-B) \text { where } s \text { is } \mathbb{E}, \vee, \supset \text { or } \beta ; \\
& \vdash-s x A \equiv \bar{s} x(-A) \quad \text { where } s \text { is } \forall \text { or } \exists .
\end{aligned}
$$

Proof is cloar. \#
Corollary 5.2. There exists an algorithm $A \Rightarrow A^{\circ}$ which associates a formula A° with each formula A in such a way that $A \equiv A^{\circ}$, and the scope of each occurrence of minus in A° is atomic, and a logical operator s occurs in A^{0} iff s or \bar{s} occurs in A.

Below in this section:
A^{\prime} is the result of replacing each logical operator in A by the dual operator; \bar{A} is the result of replacing each atomic formula in A by its strong negation; $A^{*}=\bar{A}^{\prime}$.

Theorem 5.3. $\vdash A^{*} \equiv A$.
Proof by induction on A. \#
Let $A \rightarrow B$ abbreviates $(A \supset B) \&(-B \supset-A)$ (the strong implication).
Theorem 5.4. If $\vDash A \rightarrow B$ then $\vdash B^{\prime} \rightarrow A^{\prime}$.
Proof. Let $\left(A_{1}, \ldots, A_{n}\right)$ be a proof of $A \rightarrow B$. Then $\left(\bar{A}_{1}, \ldots, \bar{A}_{n}\right)$ is a proof of $\bar{A} \rightarrow \bar{B}$. Now $\bar{A} \rightarrow \bar{B} \vdash-\bar{B} \rightarrow-\bar{A} \vdash \bar{B}^{*} \rightarrow \bar{A}^{*} \vdash B^{\prime} \rightarrow A^{\prime}$. \#

Corollary 5.5. If $\vdash A \equiv B$ then $\vdash A^{\prime} \equiv B^{\prime}$.
Note. Calculus H1 can be conservatively extended in such a way that the duality statements 5.3-5.5 remain true. For example, H1 can be enriched by the connective \rightarrow and the connective dual to \rightarrow.

§6. Propositional logic

Here we prove Adequacy Theorem for the propositional part of $\overline{\boldsymbol{H}}$ and present complete and independent systems of logical operators for $\overline{\boldsymbol{H}}$ and its propositional part.

Let $\boldsymbol{P} \overline{\boldsymbol{I}}$ be the propositional part of $\overline{\boldsymbol{H}}$. Formulae of $\boldsymbol{P} \overline{\boldsymbol{H}}$ are those of $\overline{\boldsymbol{H}}$ built from propositional letters by propositional connectives. Axioms of $\boldsymbol{P} \overline{\boldsymbol{I}}$ are those of $\overline{\boldsymbol{H}}$ which are $\boldsymbol{P} \overline{\boldsymbol{H}}$-formulae. Modus ponens is the only inference rule of $\boldsymbol{P} \overline{\boldsymbol{H}}$.

In this section A, B range over the $\boldsymbol{P} \overline{\boldsymbol{I}}$-formulae, F range over the $\widetilde{\boldsymbol{H}}$-formulae.

Leviva 6.1. Let $\left(F_{1}, \ldots, F_{n}\right)$ be an $\overline{\boldsymbol{H}}$-proof, p be a propositional letter and for each $i=1, \ldots, n, A_{i}$ be obtained from F_{i} by (i) omitting all $\forall x$ and $\exists x$, and (ii) replacing all atomic formulae which are not propositional letters by p. Then $\left(A_{1}, \ldots, A_{n}\right)$ is a P $\overline{\boldsymbol{H}}$-proof.

Proof is clear. \#
Hence a $\boldsymbol{P} \overline{\boldsymbol{H}}$-formula provable in $\overline{\boldsymbol{H}}$ is provable in $\boldsymbol{P} \overline{\boldsymbol{H}}$.

A triple $\mathscr{K}=\langle M, \leqslant, \tau\rangle$ will be called a Kripke model of $\boldsymbol{P} \overline{\boldsymbol{H}}$ iff $\langle M, \leqslant\rangle$ is a poset and $\tau: M \times($ the set of $\boldsymbol{P H}$-sentences $) \rightarrow\{-1,0,1\}$ satisfies the relevant conditions among 3.1-3.14. A is true in \mathscr{K} iff for every $X \in M, \tau_{X} A=1$.

Lemma 6.2. Let M and \leqslant be as above and $\tau^{0}: M \times($ the set of atomic $\boldsymbol{P} \overline{\boldsymbol{H}}$-sentences $) \rightarrow\{-1,0,1\}$ satisfies condition 3.1. Then there exists a unique extension τ of τ^{0} such that $\langle M, \leqslant, \tau\rangle$ is a Kripke model of $\boldsymbol{P} \overline{\boldsymbol{H}}$.

Proof is clear. \#
From Adequacy Theorems for $\overline{\boldsymbol{H}}$ follows
Theorem 6.3. (Adequacy Theorem for $\boldsymbol{P} \overline{\boldsymbol{H}}$). A is provable in $\boldsymbol{P} \overline{\boldsymbol{H}}$ iff it is true in all Kripke models of $\boldsymbol{P} \overline{\boldsymbol{H}}$.

Formulae F_{1} and F_{2} are called strongly equivalent iff ($F_{1} \equiv F_{2}$) is provable in $\overline{\boldsymbol{H}}$. According to Corollary 3.4 strongly equivalent formulae can be considered to have the same meaning. It is worth while to study formulae modulo strong equivalence.

Formula $\neg A \equiv(A \supset-A)$ is provable in $\boldsymbol{P} \overline{\boldsymbol{H}}$ (see [10]). This fact can be easily checked. Conjuction and disjunction are mutually expressible using minus (Lemma 5.1). So we proved

Theorem 6.4. $\{-, \&, \supset\}$ and $\{-, \vee, \supset\}$ are complete systems of cone nectives of $\boldsymbol{P} \overline{\boldsymbol{H}}$.

Lemma 6.5. System $\urcorner, \&, \vee, \supset\}$ is not complete in $\boldsymbol{P} \overline{\boldsymbol{H}}$.
Proof by induction to absurdity.
Suppose that ($\neg p \equiv A$) is provable in $\boldsymbol{P} \overline{\boldsymbol{H}}$ where minus does not occur in A. Without loss of generality p is the only propositional letter of A. Let \mathscr{K} be a one-stage model of $\boldsymbol{P} \overline{\boldsymbol{H}}$. Then $(A \sim p)$, or $(A \sim \neg p)$, or $(A \sim(p \& \neg p))$, or $(A \sim(p \vee \neg p))$ is true in \mathscr{K}. If p is true in \mathscr{K} then formulae $(-p \equiv p)$ and $(-p \equiv(p \vee \neg p))$ are not true in \mathscr{K}. If p is uncertain in \mathscr{K} then formulae ($-p \equiv \neg p)$ and $(-p \equiv(p \& \neg p)$) are not true in \mathscr{K}. \#

Lemma 6.6. System $\{-, \supset\}$ is incomplete in $\boldsymbol{P} \overline{\boldsymbol{H}}$.
Proof. Consider the Kripke model of Figure 1 where $1<2,1<3$, $\tau_{1} p=0, \tau_{2} p=1$ and $\tau_{3} p=-1$. Let A be built from p using connectivesand \supset only.

Figure 1

If $\tau_{2} A=\tau_{3} A$ then $\tau_{1} A=\tau_{2} A$. We prove this fact by induction. Cases $A=p$ and $A=-B$ are clear. Let $A=B \supset C$. If $\tau_{2} A=\tau_{3} A=\varepsilon<1$ then $\tau_{2} B=\tau_{3} B=1=\tau_{1} B, \tau_{2} C=\tau_{3} C=\varepsilon=\tau_{1} C$ and $\tau_{1} A=\varepsilon$. Let $\tau_{2} A=\tau_{3} A=1$. We have to prove that $\tau_{X} B=1 \mathrm{implies} \tau_{X} C=1$ for each $X \geqslant 1$. It is clear for $X=2,3$. If $\tau_{1} B=1$ then $\tau_{2} B=\tau_{3} B=1$ $=\tau_{2} C=\tau_{3} C$ and by the induction hypothesis $\tau_{1} C=1$.

Now check that $\tau_{2}(p \vee-p)=\tau_{3}(p \vee-p)=1$ but $\tau_{1}(p \vee-p)=0$. \#
Lemma 6.7. System $\{-, \neg, \&, \vee\}$ is not complete in $\boldsymbol{P} \breve{\boldsymbol{H}}$.
Proof. Suppose that $p \supset q$ is strong equivalent in $\boldsymbol{P} \overline{\boldsymbol{H}}$ to a formula A built from p and q without \supset. Then $p \supset q$ in equivalent to $r A$ (see $\S 2$) and \supset does not occur in $r A$. Let B be obtained from $r A$ by replacing - by $ᄀ$. By Lemma 2.4 formula $(p \supset q) \sim B$ is provable in $\overline{\boldsymbol{H}}$ which contradicts [6]. \#

Theorem 6.8. Systems $\{-, \&, \supset\}$ and $\{-, \vee, \supset\}$ are complete and independent in $\boldsymbol{P} \overline{\boldsymbol{H}}$. Moreover, they are the only complete and independent systems of connectives in $\boldsymbol{P H}$.

Proof. See Theorem 6.4 and Lemmae 6.5-6.7. \#
Corollary 6.9. $\{-, \vee, \supset, \exists\}$ is a complete and independent system of logical operators in $\overline{\boldsymbol{H}}$.

Proof. The completeness follows from Theorem 6.4 and the fact that $+\forall x A \equiv-(\exists x-A)$ in $\overrightarrow{\boldsymbol{H}}$. Independence of \exists is clear. If $-p$ is strongly equivalent in $\overline{\boldsymbol{H}}$ to a formula A built without minus then according to Lemma 6.1 minus is expressible through \vee and \supset in $\boldsymbol{P} \overline{\boldsymbol{H}}$ which contradicts to Lemma 6.5. Independence of \vee and \supset is proved analogously. \#

All other complete and independent systems of logical operators of $\overline{\boldsymbol{H}}$ can be obtained from the system of Lemma 6.9 by changing \vee for \& and/or changing \exists by \forall.

§ 7. A 3-valued logic

Let $\overline{\boldsymbol{C}}$ be the calculus obtained from $\overrightarrow{\boldsymbol{H}}$ by adding a new axiom schema $\neg \neg A \supset A$. A function τ associating $-1,0$ or 1 with each sentence of $\overline{\boldsymbol{C}}$ will be called a model of $\overline{\boldsymbol{C}}$ iff there exists a one-stage Kripke model $\langle\{0\}, \leqslant, \delta, \sigma\rangle$ of $\overline{\boldsymbol{H}}$ such that $\delta 0$ is the set of all individual coustants and $\sigma_{0}=\tau$. Formula A is true in τ iff $\tau A=1$. From the Adequacy Theorem for $\overline{\boldsymbol{H}}$ follows

Theoren 7.1. A sentence A is provable in $\overline{\boldsymbol{C}}$ iff it is true in all models of $\overline{\boldsymbol{C}}$.

It is not difficult to check that $\{-, \supset, \exists\}$ and $\{-, \supset\}$ are complete and independent systems of logical operators for $\overline{\boldsymbol{C}}$ and the propositional part of $\overline{\boldsymbol{C}}$ respectively.

§ 8. Gentzen-type calculus

A Gentzen-type intuitionistic predicate calculus $\boldsymbol{G 1}$ is described in [3]. Let calculus $\overline{\boldsymbol{G}}$ be obtained from $\boldsymbol{G 1}$ by the following changes. Remove logical operators $7, \&, \forall$ and the correspondent logical rules of inference, and add minus (the strong negation) and the following rules (in notation of [3]):

$$
\begin{array}{ccc}
\frac{A, \Gamma \rightarrow \Theta}{-(A \supset B), \Gamma \rightarrow \Theta} & \frac{-B, \Gamma \rightarrow \Theta}{-(A \supset B), \Gamma \rightarrow \Theta} & \frac{\Gamma \rightarrow A \Gamma \rightarrow-B}{\Gamma \rightarrow-(A \supset B)} \\
\frac{-A, \Gamma \rightarrow \Theta}{-(A \vee B), \Gamma \rightarrow \Theta} & \frac{-B, \Gamma \rightarrow \Theta}{-(A \vee B), \Gamma \rightarrow \Theta} & \frac{\Gamma \rightarrow-A ; \Gamma \rightarrow-B}{\Gamma \rightarrow-(A \vee B)} \\
\frac{-A(t), \Gamma \rightarrow \Theta}{-\exists x A(x), \Gamma \rightarrow \Theta} & \frac{\Gamma \rightarrow-A(y)}{\Gamma \rightarrow-\exists x A(x)} \\
(y \text { does not occur in } A(x) \\
\hline A, \Gamma \rightarrow \Gamma & \frac{\Gamma \rightarrow A}{\Gamma \rightarrow-A} & \frac{\Gamma \rightarrow A}{-A, \Gamma \rightarrow}
\end{array}
$$

Theorem 8.1. If $\Gamma \vdash E$ in $\overline{\boldsymbol{I}}$ with all variables held constant than $\vdash \Gamma \rightarrow E$ in \bar{G}, and vice versa.

Proor imitates the corresponding proof in [3]. \#
Theorem 8.2. Given a proof in $\overline{\boldsymbol{G}}$ of a sequent in which no variable occurs both free and bound, another proof in $\overline{\boldsymbol{G}}$ of the same sequent can be found which contains no out.

Proof imitates the corresponding proof in [3]. \#
Corollary 8.3. In $\overline{\boldsymbol{H}}$
if $\vdash A \vee B$ then $\vdash A$ or $+B$,
(ii) if $\vdash-(A \& B)$ then $\vdash-A$ or $\vdash-B$,
(iii) if $\vdash \exists x A(x)$ then $\vdash \forall x A(x)$ or $\vdash A(c)$ for some individual constant c,
(iv) if $\vdash-\forall x A(x)$ then $\vdash \forall x-A(x)$ or $\vdash-A(c)$ for some individual constant c.
(One can read " $\vdash-A$ " as " A is logically false". So (ii) states that if $A \& \mathrm{G}$ is logically false then either A or B is logically false).

References

[1] M. C. Fittiyg, Intuitionistic logic, model theory and forcing, North-Holland, Amsterdam, 1969.
[2] A. Grzegorczyk, A philosophically plausible formal interpretation of intuitionistic logic, Indagationes Mathematicae 26 (1964), pp. 596-601.
[3] S. C. Klemen, Introduction to metamathematics, Van Nostrand, New York, 1952.
[4] S. Kripke, Semantical analysis of intuitionistic logic I, in Formal systems and recursive functions, North-Holland, Amsterdam, 1965. pp. 94-130.
[õ] A. A. Markov, Konstruktienaja logila (in Russian), Uspelkhi Matematičeskih Naule 5.3 (1950), pp. 187-188.
[6] J. C. C. McKinsey, Proof of independence of the primitive symbols of Heyting's calculus of propositions, Journal of Symbolic Logic 4 (1939), pp. 155-158.
[7] D. Nelson, Constructible falsity, Journal of Symbolic Logic, 14 (1949), pp. 16-21.
[8] H. Rasiowa, r-lattices and constructive logic with strong negalion, Fundamenta Mathematicae 46 (1958), pp. 61-80.
[9] R. H. Thomason, A semantical study of constructible falsity, Zeitschrift für muthematische Logik und Grundlagen der Mathematik 15 (1969), pp. 247-257.
[10] N. N. Vorob'ev, Constructive propositional calculus with strong negation (in Russian), Transactions of Steklov's Institute 72 (1964), 195-227.

Department of Mathematics
Ben Gurion University of the Negey
Beer Sheva, Israel

