
Intuitionistic Logic 
Gu  Ewc. with Strong Negation 

Introduction 

A Kr ipke  model  of intui t ionist ic  predica te  logic can be described 
(see [1]) as a quadruple  . ; ( - - - - ( M ,  4 ,  8, v) where  ( M ,  ~ )  is a poser 
(part ial ly ordered set), ~ is a non-decreasing funct ion associating a set 
of individual  constants  with each X E M, and for each X e M and  each 
formula  A ,  ~xA is equal to ei ther  " t rue"  or "uncer ta in" .  The details 
can be found  in w 3 below. In  part icular ,  Vx(nA) -~ " t rue"  iff for each 
Y ~ X~, Ty.A. =/= " t r u e " .  

In  the  spirit  of Grzegorczyk's  paper  [2] 9ff m a y  be in terpre ted  as 
scheme of a scientific research.  E lements  of M are the  stages of the  

reseaxch, ~ is the  precedence  relation,  ~ (X) is the  set of objects involved 
in t he  reseaxch at  stage X. For  an a tomic formula  A, vxA is a product  
of exper iment .  "The  compound  sentences are not  a p roduc t  of experi- 
m e n t " -  writes G r z e g o r c z y k -  "They  arise f rom reasoning. This con- 
cerns also negat ions:  we see tha t  the lemon is yellow, we do not  see t ha t  it 
is no t  blue".  

This paper  is a reac t ion  for this r emurk  of Grzegorczyk. In  m a n y  
cases the  falsehood of a simple scientific sentence can be ascer ta ined as 
d i rect ly  (or indirect ly)  as its t ru th .  An example:  a l i tmus-paper  is used 
to ver i fy sentence "The solution is acid". We regard  a generalizations 
of Kr ipke  models when  ~x A can be equal to "false", "uncer ta in"  or " t rue" .  
Tha t  gives rise to a conservat ive extension of the  intuit ionist ic logic 
which is nicer at  least  in one aspect :  it is more  symmetr ic ,  it satisfies 
ve ry  na tu ra l  dual i ty  laws. 

We  use the  strong negat ion to formalize the  arising logic. The pro- 
posit ional intuit ionist ic logic with s t rong negat ion was regarded  in [5], [7], 
[8] and  [10]. We use here  Vorob 'ev 's  ealclflus in [10]. Thomason  deve- 
loped in [9] semantics,  which is very  close to ours, and the  correspon- 
ding calculus CF. Unfo r tuna te ly  CF is no t  a conservat ive extension of the  
ordinaxy intuit ionist ic logic. For  example  formula  V x ( A v  C) ~ (VxAvC), 
where x does not  occur in C, is provable  in CF. I t  seems tha t  even in the  
proposit ional  case the  dual i ty  laws of intuit ionistic logic with strong 
negat ion were not  ment ioned  before. 

I n  w 1 we in t roduce a Hi lber t - type  calettlus H formalizing intuitionistic 

logic wi th  strong negation.  In  w 2 H is in terpre ted  in the  ordinury intuition- 
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istic calculus H and it is p roved  tha t  H extends  H conservat ively .  In  w 3 

Kr ipke  models  of I I  are defined. In  w ~ the  completeness  theorem is proved.  
In  w 5 dual i ty  laws are proved.  In  w 6 complete  and independent  sys tems 

of logical operators  for H and for the  proposi t ional  pa r t  of H axe presented.  

In  w 7 a 3-vnlued logic associated with H is discussed. In  w 8 a Gentzen- typo  

calculus corresponding to H is considered. 
The paper  was wr i t t en  in ]r in 1972 and t rans la ted  into English 

in 1976. Discussions with Leo Esa,kia were very  usefull to the  author .  

Note:  Metalogic of this paper  is classic. 

w 1. Predicate calculus 

I1,_ this section we define a calculus H formMizing intui t ionist ic  logic 
with strong negat ion.  

Let  H be  the  intui t ionist ie  predica te  calculus of [3] enri,:.hed b y  
a denumerab le  list of individual  constants .  Recall  t ha t  A ~ B  abbrev ia tes  

(A ~ B ) & ( B =  A) .  I t  is ob ta ined  from I t  b y  adding a new una ry  
proposi t ional  connect ive  " - - "  (called strong negat ion  or minus) and the  
following axiom schemata :  

3. 

. .  

--(A = B ) ~ A  &--B,  
- - (A & B ) ~ - - A v - - B ,  

- - ( A v B ) ~ - - A  & - - B ,  

- n A ~ . ~ A ,  

- -  - - A ~ A ,  

-- 3 x A  ~ V x  -- A ,  

- -  V x A  ~ 3 x  - -  A ,  

(for a tomic A 's  only) - -A  ~ h A .  

t t e rc  and below minus and  other  una ry  logical opera tors  b ind  closer 
than  any b inary  connective.  Here  and below A and B range over  the  

H-formulae  if the  con t ra ry  is not  said explicitly. In  this section the 

sign F means provabi l i ty  and deducibi l i ty  on H. 

Clearly H satisfies the  Deduc t ion  Theorem. 

THEOREM ].l. ~- A ~ (A ~ B). 

PROOF. I t  is enough to deduce B f rom A and - -A wi thou t  var ia t ion 
of variables.  If  A is a tomic use 5. In  the  other  cases use i ,  . . . ,  7 respect-  
iYely. # 

Hence  F - - A  ~ n A for all A's ,  not  only for a tomic  one's. 

In  order to prove  rep lacement  theorems fix an H-formula  C and 
a proposi t ional  le t ter  p. Let  C~ be the  resul t  of replacing all occurrences 
of :p in C b y  A. Let  V., be  the  set of individual  variables x such tha t  x 
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occurs free i~ A and some occurrence of p in C lies in the  scope of 3x 
or  ~ x .  

T~LEORE~[ 1.2. (Rep lacement  p rope r ty  of equivalence).  I f  the mit~us 
does not occur in C then A--~B F C t-.~ C B where the variables of Ira w V E 
are varied. 

PROOF. See proof  of the  Rep lacemen t  Theorem (Theorem 14) in [3]. ~: 

Le t  A ~ B abbrev ia te  ( A ~ B ) &  ( - A ~ - - B )  (the strong equivalence).  

L E ~ ' I A  1.3. 

(i) A =--BF, - - A  ~ - - B ,  and the same f o r T ;  
(if) A1 -~ BI ,  A2 ~ B~ ~ AI  ~ A2 ~ Bl  ~ Be, and the same for & 

and v ; 
A :-=B F V x A  ~- :VxB where x is varied, and the same for 3. (iii) 

Pi~ooF is clear. ~: 

THEORE~ 1.4. (Replacement  p rope r ty  of the  s t rong equivalence).  

A - - B  ~ CA = Cn where the variables of V A u V  B are varied. 

PROOF b y  induct ion on C. The induct ion step uses L e m m a  1.3. 

w 2. Reduced formulae 

Her~ we in terpre t  H in H and prove  tha t  H extends  H conserv,~tively. 
A is called reduced (cf. [10]) iff the  scope of each occurrence of minus 

in A is an a tomic  formula.  ~dm H-proof  (A1, . . . ,  A~) is called reduced 
fff the  formlflas A1, . . . ,  An are reduced.  The reduction operation r is defined 
induct ive ly :  

rA = A  and r ( - - A )  ----- - -A if A is a tomic;  
r ( T A )  = r (A) ;  
r ( A  ~ B) = r ( A ) ~  r(B),  and the  same for & a n d  v ;  
r ( V x A )  = V x ( r A ) ,  a.nd the  same for 3; 
r ( - - ( A  ~ B)) = rA & ( - - r B ) ;  
r ( - - ( A  & B ) )  = ( - r A ) v ( - - r B )  and 
r ( - - ( A v B ) )  = ( - - r A ) &  ( r - B ) ;  
r ( - - V x A )  = 3 x ( - - r A )  and 
r ( - - 3 x A )  = V x ( - r A ) ;  
r ( - - T A )  = r ( - - - - A )  = r A .  

Theorems 2.1 and 2.2 below generalize the  analoguous results in [10]. 

T~[EOrCE~ 2.1. rA is reduced and the formula A ~ r ( A )  is provable in H. 

PROOF. Easy  induct ion on A. @ 

THEORE3~ 2.2. I f  A is provable in H then there exists a reduced proof  

of rA  in H. 
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PROOF. Easy  induct ion on the  length of an H-proof  of A. @ 

THEOREM 2.3. Le t  P~, . . . ,  Pk ,  Q~, . . . ,  Qk be different predicate letters 
where Pi  ~md Qi are m~.- a ry ;  E = A Vx~ .. .  xmi (Qix~ .. .  x,~ i ~ ~ Pxx . . .  x,,,f) ; 

i 

A ra~tge over the H-formulae 
be the result of replacing - -P~,  

Then A is provable in, H 

with predicate letters among P ~  . . . ,  Pk; qA 
�9 ..~ - -Pk  in rA  by Q1, . . .~Qk.  

i f f  E ~ qA is provable in H. 

PRom< Suppose  tha t  A is p rovable  hi H. B y  Theorem 2.2 there  
exists a, r educed  proof  (A~, ...~ A,)  of rA. W i t h o u t  loss of general i ty  all 
predica te  le t ters  OCmlrring in this proof  axe among P ~ , . . . ,  Pk. Then 
( q A ~ , . . . , q A , , )  is a deduct ion  of qA in H f rom hypothes ises  of the  form 
Qit~ ...  t,,~ ~ qP~t~ . . .  t,,~ which are deducible  in H f rom E.  

Now let (B~, . . . ,  B , )  be an H-proof  of E ~ qA. W i t h o u t  loss of general i ty  
all predica te  let ters occurring in this proof  are a m o n g P l ,  . . . ,  Pk, Q~, . . . ,  Qk. 
Le t  A~, . . . ,  A,~ and D be  the  results  of replacing Q1, . . . ,  Qk b y  - P ~ ,  . . . ,  - -Pk 

in B~, . . . ,B,~ a.nd E respect ively.  Then (A~, . . . ,  A,,) is an  H-proof  of 

D ~ rA and D is p rovable  in H. B y  Theorem '~ , .1 ,  A is p rovab le  in H. @ 

Let  w A  be the  result  of repl~ming the  s t rong neg,~tioll in A b y  the  
ordinary one. 

L E ~ L a  2.4. _Let A be reduced. I.f A is provable in H then w A  is pro- 
vable in H. 

PROOF. Easy  induct ion on the length of a reduced H-proof  of A. :~ 

THEORE~f 2.5. Let A be an H-formula. I f  A i.~ provable in H the~ 
A is provable in H. 

PROOF. Use L e m m a  2.4. N: 

w 3. Kripke models 

We ree,~ll here Kr ipke  modcls  of H (according to [1]) and define Kr ipke  

models of H.  
Le t  C,,(A) be  the  set of individua.1 constants  occuriing in A. A Kr ipke  

model  of 11 (respectively H)  is a quadruple  3C = ( M ,  ~<, 8, r> where:  
(M,<<? is a poser  (the poser of stnges of S ) ;  b associates a set of 
individual  constants  wi th  each stage in such a way  tha t  X ~< Y implies 
bX ~_ bY ;  and z: M • (the set of H-sentences)-~{0,  1} (resp. ~: M • (the 
set of 
(resp. 

3.1 

3.2 
3.3 

H-sentences) -+{- -1 ,  0, 1}) satisfies the  following conditions 3.1-3.7 
3.1-3.14): 

If  A is ~tomic, 
z v A  = z x A ;  
~v(A & B) = 1 
r x ( A  v B) = 1 

r x A  =/=0 and X ~  Y then  Cn(A)  ~_ dX  and 

iff m i n { z x A ,  z x B }  = 1; 
iff C n ( A v B )  ~_ 6 X  and max{z_u  r x B } = l  ; 
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3.4 
3.5 

3.6 
3.7 
3.8 
3.9 
3.10 
3.11 
3.12 
3.13 
3.14 

:LEI~II~IA 3.1. ~0r  each formula A ,  
Cn(F) ~ ~X and v r A  = LyA.  

PROOF. Easy  induct ion on A. @ 

T x ( q A )  = 1  iff Cn(A)  ~_ (~X and for each Y ~ X ,  T y A < I ;  
z x ( A  ~ B) = 1  iff  Cn(A ~ B) ~ ~X and for each Y ~ X ,  
if vzA =I then ~yB =I; 
~xVxA(x ) - - - -1  iff for every Y > ~ X  ~nd cE~Y, vt~A(c)_-- i  ; 
v x 3 A ( x )  ---- 1 iff there  exists e ~ X  such tha t  ~:xA(c) = 1; 
v x ( A  & B) = --1 iff Cn(A & B) ~_ ~X a n d m i n { v x A ,  v x B  } = --1; 
~ x ( A v B )  = --1 iff max{7:xA,  v x B }  = --1; 
Vx(TA ) = --1 if/ ~ x A  = 1 ;  
~x(A  D B) = --1 iff z x A  = 1 and ~ x B  = --1; 
~:xVxA (x) = --i ill there  exists c ~ ~X such t h a t  ~ x A  (e) = --1; 
v x ~ x A ( x )  = --1 iff for every :Y~ X and c~SY,  vyA(c )  ---- --1; 
~ x ( - - A )  = - ~xA .  

i f - c x A  ~ 0 and X <~ Y then 

L E ~ I A  3.2..Let M, ~ and c5 be as above and ~o: M x (the set of atomic 

H-formulae)-+{O, 1} (resp. re: M x (the set of atomic H-formulae)~.{ - - 1 , 0 ,  1}) 
satisfy co~dition 3.1 then. Then there exists a unique extension T of ~o such 

that S ---- <M, ~., ~, ~} is a Kripke  model of H (resp. of H). 

PROOF is clear. 

:DEFINITION. Let  .)V = ( M ,  ~ ,  ~, ~} be a Kr ipke  model of H (resp. H). 
A is defined (resp. true) at  stage X iff C n ( A ) c  'SX (resp. vxA ----1). 
A is defined in 9~ ~ iff A is defined at  some stage of Yr. A is true in ~V iff 
A is defined in S ~nd it is t rue  a t  each stage of 3V where it is defined. 

THEORE~I 3.3. (Correctness Theorem). I f  A is provable in H (resp 

in H) then it is true in all Kripke models of H (resp. of H) where it ,is defined. 

PROOF. Eusy induct ion on the  length of ~ form,~l proof of A. 

CO~OLLAI~u 3.4. .Let  .)ff be a model of H a~ld X be a stage of X .  Suppose 

that C n ( A ) =  C,n(B). I f  (A- . ,B)  is provable in H then v x A  = 1 i f f  

T x B  = 1 .  I f  (A ---- B) is provable in H then v.x.A = LyB.  

Tm~O~EM 3.5. (Completeness Theorem for H, see [1] or [4]). I f  an 
H-sentence A is ?wt provable in H then there exists a KripI~e model of H 
where A is defined b~tt not true. 

w 4. Completeness Theorem 

THEOREm[ 4.1. Let A be an tl-sente~we. I f  A is not provable in H then 

there exists a Kripke  model of H where A is defined but not true. 

PnOOF. W i t h o u t  loss of gener,q.lity A is reduced in the sense of w 2, 
see Theorem 2.1 and Corollary 3.4. We use no ta t ion  of Theorem 2.3. 
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Suppose  t ha t  A is not  p rovab le  in H. B y  Theorem 2.3, E ~ qA is no t  
p rovable  in H. B y  Theorem 3.5 there  exists a ICripke model  ,~  = ( M ,  <~, 
6, a',) of H where  A is defined b u t  no t  true.  W i t h o u t  loss of general i ty  
E is t rue in X .  For,  (E ~ qA) is defined b u t  not  t rue  a t  some stage X of .~. 
Hence  there  exists Y >~ X such tha t  r y E  = 1 r ~y(qA) .  Take  the  sub- 
model  of ~ with the  set {ZE M:  Z~> Y} of stages. 

For  every formula  P : q  . . .  cm~ and stage X of , ~  define: 

-~~ Pie l  . . .  emi = �9 1 

The definition is emweet since E 

exists a unique model  .~o ~.ir, ~ ,  

if a x P i q  . . .  emi ~- l ,  

ff axOie~ . . .  emi = 1, 

otherwise 

is t rue  in ~ .  B y  L e m m a  3.2 there  

d, v) of H such t ha t  T extends  re. 
By  induct ion on a subformula  B of A it is easy  to cheek tha t  at  each 
stage X, r , :B  = 1 implies (rx(qB) = 1. Hence  A is no t  t rue  in s 4~ 

CO~mLL.tg~ 4.2. (Adequacy  Theorem for H).  A is provable in  II  if.f 

it  is true in each model of H where it is defined. 

w 5. Dual i ty  

Here  we prove  tha t  an inessential extension of H satisfies ve ry  na tura l  
dual i ty  laws. 

Le t  calculus H I  be obta ined  f rom I I  b y  adding a una ry  proposi t ional  
connect ive a, b ina ry  proposi t ional  connect ive  fl and the  following axiom 
schemas:  

aA ~ - 7 - - A ,  

(Af iB) --~ - - ( - - A  ~ - - B ) .  

H I - f o r m u l a e  can be  regarded as abbrevia t ions  of H-formulae .  
Now we define dual i ty  of the  lbgical opera,tors: 

& is dual to v and vice versa,, 
V is dual to 3 and vice versa, 
7 is dual to a and vice versa, 

is dual to fl and vice versa, 
- -  is dual  to itself. 

Below in this section s range over the  logical opera tors  of t11, ~ is the  
operator  dual to s, A and B range over the  I l l - f o r m u l a s  and the  sign 
means provabi l i ty  and deducibi l i ty  in H I .  

LE3n~A 5.1. 

t- . . . .  A - - A ;  
I - - - s A  =~ ~ ( - - A )  where s i s " l  or a; 
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F - - ( A s B )  = - - ( - - A ) ~ ( - - B )  where s is &, v , D  or fl; 
F - s x A  - - - S x ( - - A )  where s is V or 3. 

PROOF is clear. 

COROLLARY 5.2. There exists an algorithm A ~ A  ~ which associates 
a formula  A ~ wi th  each formula  A in  such a way  that A -- A ~ and the 
scope of each occurrence of minus  in  A ~ is atomic, and a logical operator 
s occt~.rs in A ~ i f f  s or ~ occurs in A .  

Below in this section: 

A '  is the  result  of repl~cing each logical oper,~tor in A by  the du,~l 
operatoI ' ;  .~ is the  resul t  of replacing each a tomic  formul~ in A b y  its 
s t rong negat ion;  A* = A ' .  

THEORES'[ 5.3. FA* ~-A. 

PRooF b y  induct ion on A. @ 

Let  A - ~ B  abbrevia tes  (A ~ B) & ( •  D --A) (the strong implication). 

THEOnE~ 5.4. I f  ~ A ~ B  the'J~ ~ B ' ~ A ' .  

PROOF. Le t  (A~, . . . ,  An) be a proof  of A-->B. Then (_4~, . . . ,  A,,) is 
proof  of A-+B.  Now A - ~ B  F - -B-~-- . :4  F B*-->.4* ~ B ' - ~ A ' .  ~: 

COROLLARY 5.5. If F A ~ B then ~ A '  =~ B' .  

z.Yote. Calculus H1 c~n be  conservat ive ly  ex tended  ia such a w a y  
t h a t  the  dual i ty  s tn tements  5.3-5.5 remain true.  F o r  example,  H1 can 
be  enriched b y  the  connect ive -~ and the  connect ive du~l to -->. 

w Propositional logic 
Here  we prove  Adequacy  Theorem for the  proposi t ional  paa't of H 

and present  complete  and independent  systems of logical oper~tors for 

H ~nd its proposit ionnl  par t .  

Le t  P H  be the proposit ional  p~rt  of H.  Formulae  of P H  are those 

of H bui l t  f rom proposi t ional  let ters by  proposi t ional  connectives.  Axioms 

of P H  are those oi H which are PH-lo~'mul~e. ~[odus ponens is the  only 

inference r(fle of P H .  

In this section A ,  B r~nge over the  PH-formtLl~e, E ~',~nge over the  

H-formulue.  

LE~L~'IA 6.1. _Let (1,~, . . . ,  .F,,) be a,~ H-proof, p be a propositional 
letter and for each i = 1 , . . . , ~ ,  A~ be obtained f rom E~ by (i) omitting all 
V x  and ]x,  and (ii) replaciq~g all atomic formulae which are not propositional 

letters by p.  Then ( A ~ , . . . ,  A,,) is a PH-proof .  

PROOF is clear. @ 

Hence  a P H - f o r m u l ~  provable  in H is provable  in P H .  
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A triple .)ff ----(M, 4 ,  ~} will be c~lled a Kr ipke  model  of P / t  iff 

( M , ~ }  is a poser and ~: M •  set of PH-sentenees)-+{--1,  O,1} 
satisfies the  releva.nt conditions among 3.1-3.14. A is t rue  in 9ff fff for 
every  XE M, Zx A = 1. 

LEM~L~ 6.2. .Get M and ~ be as above and zo: M • (the set of atomic 

PH-sentences)--->( --1,  0, 1} satisfies condition 3.1. Then there exists a unique 

extensio~, ~ of 3 ~ such that ( M ,  ~ ,  v) is a Kripke model of PH.  

PROOF is clear. 

F r o m  Adequacy  Theorems for /~ follows 

TItEORESi 6.3. (Adequacy Theorem for PH).  A is provable i t~ P H  

i f f  it is true in all Kripke models of Pt I .  

Formulae  F~ and F2 are called s trongly equivalent  iff ('~1 -~--~2) is 

provable in / t .  According to Corollary 3.4 s t rongly equivalent  formulae  
can be considered to have  the  same meaning.  I t  is wor th  while to s t udy  
formulae  modnlo strong equivalence. 

Fo rmula  ~ A  - - ( A  ~ --A) is provable  in Pt-I (see [10]). This fac t  
can be  easily checked. Conjuction and dis junct ion are mu tua l l y  expressible 
using minus (Lemma 5.1). So we proved  

THEOrEm[ 6.4. ( - - ,  &, ~ } and ( -- ,  v ,  ~ } are complete systems of con~. 

nectives of Pi I .  

LE~I_~A 6.5. System (-1, &, v ,  ~} is not complete i,~ PH.  

Pn00F by  induct ion to nbsurdi ty.  

Suppose tha t  (-lp ~ A) is provable  in P H  where  minus  does not  
occur in A. Wi thou t  loss of general i ty  p is the  only proposit ional  le t te r  

of A. Let  ~ be a one-stage model  of P / t .  Then  ( A ~ p ) ,  or ( A ~ - l p ) ,  
or ( A ~ ( p  & ~p)), or ( A ~ ( p v  ~p)) is t rue  in Yd'. If  p is t rue  in ~" then  
formulae  ( - -p  ~ p) ~nd ( - -p  -- (pv ~p)) are not  t rue  in Y .  I f p  is uncer ta in  
in ~ then  formulae  ( - -p  --= -lp) and ( - -p  ~ (p & -Tp)) are no t  t rue  in 9ft. 

LEM~.[A 6.6. System ( - - ,  ~ } is incomplete in PH.  

PROOF. Consider the  Kr ipke  model  of Figtu'e i where  1 ~ 2, 1 ~ 3, 
r iP  = 0, r~p ---- 1 a, nd rap = --1. Let  A be built  f rom p using connectives- 
,~nd ~ only. 

p -P 

Figure 1 
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I f  vfA = v3A then  v iA = r fA.  W e  prove  this fac t  b y  induction.  Cases 
A = p  and A = - -B  are clear. Le t  A - - - -B~ C. If  v~A ----~3A : e < l  
then  ~fB =~sB ----1 = r i B ,  T2C : ~ 3 C  : ~  ----~1C and ~IA ----~. Le t  
vfA ----vsA = 1. W e  have  to p rove  t ha t  Vx B ----1 implies VxC = 1' for 
each X ~ I .  I t  is clear for X : 2 , 3 .  If  v l B  = 1 then  v fB  = v~B = 1 
: v2C : v3C and  b y  the  induc t ion  hypothes is  vlC = 1. 

Now check tha t  v f (pv  --p) = v3(pv --p) = 1 b u t  v l (pv  --p) ---- 0. 

LEM~IA 6.7. System { - - ,  7 , & ,  v} is not complete in P~I. 

PRooP.  Suppose  t ha t  p = q is s t rong equivalent  in P / t  to a formula  
A bui l t  f rom p and q wi thou t  = .  Then p = q in equivalent  to rA (see w 
and D does not  occur in rA. Le t  B be ob ta ined  from rA  b y  replacing -- b y  7. 

B y  L e m m a  2.4 formula  (p = q ) ~ B  is p rovable  in / t  which cont radic ts  
[6]. 

T}IEOI~E~ 6.8. Systems { - - ,  &, ~ } and { -- ,  v ,  ~ } are complete and i~de- 

pendent in P~I. Moreover, they are the only complete and independent 

systems of connectives in P H .  

PICOOF. See Theorem 6.4 and L e m m a e  6.5-6.7. 

COROLLARY 6.9. { - - ,  v , ~ ,  3} 'iS a complete and independent system 

of logical operators in H. 

PI~OO~. The completeness  follows f rom Theorem 6.4 and the  fact  

t ha t  F V x A  -- -- (3x - -A)  in H. Independence  of 3 is clear. I f  - - p  is s t rongly 

equiva len t  in H to a formtfla A bui l t  wi thout  minus then  according to 

L e m m a  6.1 minus  is expressible th rough v and ~ in P H  which contr,~dicts 
to L e m m a  6.5. Independence  of v ,~nd = is p roved  ,~nalogously. 

All other  complete  and independent  sys tems of logical operators  of 

/ t  can be  ob ta ined  f rom the  sys tem of L e m m a  6.9 b y  ch~noing v for 
& and/or  changing 3 b y  V. 

w 7. A 3-valued logic 

Let  C be the calculus obta ined  from H b y  adding a new axiom schema 
7 7 A  = A. A funct ion  v associating --1,  0 or 1 with each sentence of 

will be  called n model of C iff there  exists ~ one-stage Kr ipke  model  

({0}, ~<, 5, a} of H such th,~t 50 is the  set of all individual  constants  
and a0 = ~. Fo rmu la  A is trtee in v iff vA = 1. F r o m  the Adequacy  Theorem 

for H follows 

TgEORES[ 7.1. A sentence A is provable in C i f f  it is true in all models 

of C. 
I t  is not  difficult  to check tha t  ( - - ,  = ,  3} and { - - ,  = } are complete  

and independent  systems of logical operators  for C and the proposi t ional  

pa r t  of C respect ively.  
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w 8.  G e n t z e n - t y p e  ca lcu lus  

A Gentzen- type  in tu i t ionis t ic  p red ica te  calculus G1 is descr ibed in [3]. 

Le t  calculus G be ob ta ined  f rom G1 by the  fol lowing changes.  I~emove 
logicz~l operators  ~,  &, V and  the  co r responden t  logica,1 rules of inference, 
and  add  minus  ( the s t rong negat ion)  and  the  following rules (in not~r 

A ,  F-+O 

- - (A  = B) ,  F-+O 

- - A ,  F-+O 

- - ( A v B ) ,  F ~ O  

of [3]): 

- - B , / - ' - + 0  

- -  (A = B ) , / ' - - + 0  

-- B ,  1"->0 

- -  ( A v  B ) ,  F-+O 

T ' ~ A / ' - + - - B  

/ ' ~ -  (A ~ B) 

F-'-, - -A ; .F-> - -B 

/~-:- - (Av B) 

- A  (t), F ~ O  I ~  - -A  (y) 

- - 3 x A  (x), F-->O T'-> - - 3 x A  (x) 

(y does no t  occur in A(x)  

A ,  F ~  F F-~A F->A 

A ,  F-> O F--> -- -- A -- A , F--> 

T~EOREM 8.1. I f  F F-E in t I  with all variables held constant than 

~- F ~ E  in G,  and vice versa. 

PROOF imi ta tes  the  corresponding" proof  in [3]. 

THEORE~I 8.2. Giren a proof in G of a sequent in which no variable 

occults both free a~d bound, another proof in G of the same sequent can be 
found which contains no cut. 

PROOF imi ta tes  the  cor responding  proof  in [3]. 

COROLLARY 8.3. 1~7, i~ 

(i) 'if k A v B then k A or k B, 
(ii) .if k - - ( A  & B) then k - -A or ~- - - B ,  

(iii) .if k 3 x A  (x) then k V x A  (x) or k A (c) for some indi- 
vidual c(mstant e, 
(iv) i f  ~ - - V x A ( x )  then k V x - - A ( x )  or F - -A (c )  for some in- 
divid~eal constant c. 

(One CUR read  " k - - A "  ~s "A is logically f~lse". So (ii) s tates  t h a t  ff 
A & G is logicully fnlse t h e n  ei ther  A or B is logie~flly fnlse). 
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