Yurr  Intuitionistic Logic
GUEEVICR  ywith Strong Negation

Introduction

A Kripke model of intuitionistic predicate logic can be described
(see [1]) as a quadruple ¥ = (M, <, §, 7> where (M, <) is a poset
(partially ordered set), ¢ is a non-decreasing function associating a set
of individual constants with each Xe¢ M, and for each Xe¢ M and each
formula 4,73 A is equal to either “true” or “uncertain”. The details
can be found in § 3 below. In particular, r¢(714) = “true” iff for each
Y>> X,1p,4 # “true”.

In the spirit of Grzegorczyk’s paper [2] o may be interpreted as
a scheme of a scientific research. Elements of M are the stages of the
research, < is the precedence relation, §(X) is the set of objects involved
in the research at stage X. For an atomic formula 4, 74 is a product
of experiment. “The compound sentences are not a product of experi-
ment” — writes Grzegorczyk — “They arise from reasoning. This con-
cerns also negations: we see that the lemon is yellow, we do not sce that it
is not blue”.

This paper is a reaction for this remark of Grzegorczyk. In many
cases the falsehood of a simple scientific sentence can be ascertained as
directly (or indirectly) as its truth. An example: a litmus-paper is used
to verify sentence “The solution is acid”. We regard a generalizations
of Kripke models when 7y 4 can be equal to “false”, “uncertain” or “true”.
That gives rise to a conservative extension of the intuitionistic logic
which is nicer at least in one aspect: it is more symmetrie, it satisfies
very natural duality laws.

We use the strong negation to formalize the arising logic. The pro-
positional intuitionistic logic with strong negatioa was regarded in [3], [7],
(8] and [10]. We use here Vorob’ev’s calculus in [10]. Thomason deve-
loped in [9] semantics, which is very close to ours, and the correspon-
ding calculus CF. Unfortunately CF is not a conservative extension of the
ordinary intuitionistic logic. For example formula Vz(Av C) o (Vzdv (),
where 2 does not occur in C, is provable in CF. It seems that even in the
propositional case the duality laws of intuitionistic logic with strong
negation were not mentioned before.

In § 1 we introduce a Hilbert-type caleulus H formalizing intuitionistic
logic with strong negation. In § 2 His interpreted in the ordinary intuition-
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istic caleulus H and it is proved that H extends H conservatively. In § 3

Kripke models of H are defined. In § 4 the completeness theorem is proved.
In § 5 duality laws are proved. In § 6 complete and independent svstems
of logical operators for H and for the propositional part of H are presented.
In § 7 a 3-valued logic associated with H is discussed. In § 8 a Gentzen-type
calculus corresponding to H is considered.

The paper was written in Russian in 1972 and translated into English
in 1976. Discussions with Leo Esakia were very usefull to the author.

Note: Metalogic of this paper is classic.

§ 1. Predicate calculus

In this section we define a caleulus H formalizing intuitionistic logic
with strong negation.

Let II he the intuitionistic predicate calculus of [3] enriched by
a denumerable list of individual constants. Recall that A ~B abbreviates
(A> B) &(B> A). H is obtained from H by adding a new unary

propositional connective “ —" (called strong negation or minus) and the
following axiom schemata:

1. —(4 > B)~4 &— B,

3. —(4 &B)~—Av — B,

3. —(AvB)~—4 & — B,

4 —~4~A4,

. ——A~A4,

6 —JrA~Vr— A,

T —Ved~3Fr— A,

3. (for atomic A’s only) -4 o T1A4.

Here and below minus and other unary logical operators bind closer
than any binary connective. Here and below 4 and B range over the

H-formulae if the contrary is not said explicitly. In this section the
sign F means provability and deducibility on H.

Clearly H satisfies the Deduction Theorem.

THEOREM 1.1. F— A o (4 o B).

Proor. It is enough to deduce B from 4 and —A without variation

of variables. If 4 is atomic use 8. In the other cases use 1, ..., 7 respect-
ively. #

Henee +F— 4 o 14 for all A’s, not only for atomiic one’s.

In order to prove replacement theorems fix an H-formula ¢ and
a propositional letter p. Let C, be the result of replacing all occurrences
of pin C by A. Let ¥V, be the set of individual variables # such that =
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occurs free in 4 and some occurrence of p in C lies in the scope of Iw
or V.

TaEOREM 1.2. (Replacement property of equivalence). If the minus
does not occur in C then A~DB + C ~Cp where the variables of V UV g
are varied.

Proor. See proof of the Replacement Theorem (Theorem 14)in [3]. #
Let 4 = B abbreviate (A~ B)& ( —4 ~ — B) (the strong equivalence).

LeMMA 1.3.
(i) A =Bt, —A = —B, and the same for 7;
(ii) A, =B,, A, =B, FrA, > A4, =B, > B,, and the same for &
and v ;

(iii) A =B +Vzd =VeB where z is varied, and the same for 3.
Proor is clear. i

THEOREM 1.4. (Replacement property of the strong equivalence).
A =B +0, 4 =00, where the variables of V ,uVy are varied.

Proor by induction on €. The induction step uses Lemma 1.3. H#

§ 2. Reduced formulae

Here we interpret H in H and prove that H extends H conservatively.

A is called reduced (cf. [10]) iff the scope of each occurrence of minus
in 4 is an atomic formula. An H-proof (4,,..., 4,) is called reduced
iff the formulas A ,, ..., 4, arve reduced. The reduction operation r is defined
inductively:

1A =4 and r(—4)= —4 if A is atomic;
r(1A4) =r(d);

r(Ad > B) = »(4) > r(B), and the same for & and v;
r(Vod) = Vz(rd), and the same for 3I;

r{—(4A o B)) =74 & (—rB);

r(—(4 &B)) =(—rd)v(—rB) and
’r( AvB)—(—IA)&(?‘—B);
r(—Vzd) = Jr(—7r4) and
r(—dzd) = Va(—rd);

F(—14) =r(——A4) =7r4.

Theorems 2.1 and 2.2 below generalize the analoguous results in [10].

THEEOREM 2.1. 7.4 is reduced and the formula A~v(A) is provable in H.

Proor. Easy induction on 4. i

THEOREM 2.2. If A is provable in H then there erists a reduced proof
of r4 in H.
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Proor. Easy induction on the length of an I?—proof of A. #

THEOREM 2.3. Let P,..., P, Q,, ..., Q. be different predicate letters

where P; and Q; are m;-ary; B= A Va,..., Q... Tp; 2 VP2 ... )5
7

A range over the E—fov‘meclae with predicate letters among P, ..., P,; qA
be the result of replacing —P,, ..., — P, in 4 by Q,,...,Q,.
Then A s provable in H iff E > qA s provable in H.

Proor. Suppose that 4 is provable in H. By Theorem 2.2 there
exists a reduced proof (4,,..., 4,) of »A. Without loss of generality all
predicate letters occurring in this proof are among P, ..., P,. Then
(g4, ..., q4,) is a deduction of g4 in H from hypothesises of the form
Qty ... 1, 2 1P, ... 1, which are deducible in H from E.

Nowlet (By, ..., B,) bean H-proof of ! > gA. Without loss of generality
all predicate letters occurring in this proof are among P, ..., P, @,, ..., Q,..
Let 4,,..., 4, and D be the results of replacing @,,...,Q, by —P,,..., — P,
in B,,..., B, and E respectively. Then (4,,..., 4,) is an H-proof of
D > r4 and D is provable in IH. By Theorem 2.1, A is provable in H. %

Let w4 be the result of replacing the strong negation in A by the
ordinary one.

Lenma 2.4, Let A be veduced. If A is provable in H then wAd is pro-
vable tn H.

Proor. Easy induction on the length of a reduced fi—proof of A. #

THEOREM 2.5. Let A be an H-formula. If A is provable in H then
A is provable in H.

Proor. Use Lemma 2.4. H

§ 3. Kripke models

We recall here Kripke models of H (according to [1]) and define Kripke
models of H.

Let Cn(A) be the set of individual constants occuriing in A. A Kripke
model of II (respectively I_i) is a quadruple X = (M, <, 4, ) where:
(M,<) is a poset (the poset of stages of .¢); J associates a set of
individual constants with each stage in such a way that X < Y implies
0X = 6Y; and 7: M x (the set of H-sentences)—{0, 1} (resp. =: M X (the
set of H-sentences)—~{—1, 0, 1}) satisfies the following conditions 3.1-3.7
(resp. 3.1-3.14):

3.1 If A isatomic, 744 # 0 and X < Y then Cn(4d) < 6X and
14 =1.4;

3.2 7x(4 &B) =1 iff min{ryd, 7B} =1;

3.3 7x(AvB) =1 iff Cn(4AvB) < 6X and max{rx4, ryB}=1;
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3.4 1x(74) =1 iff Cn(4) < 6X and for each Y> X, 7,4 < 1;

3.5 7x(A>B)=1 iff On(d>B) <éX and for each Y > X,
if 14 =1 then <yB =1;

3.6 1xVod(w) =1 iff for every Y > X and ced¥, rp4(c) = 1;

3.7 1xJA(x) =1 iff there exists cedX such that v, A4(c) =1;

3.8 7x(A& B) = —1iff On(A & B) = 6X and min{ry 4, ryB} = —1;

3.9 7x(AdvB) = -1 iff max{rgd,rxB} = —1;

3.10 Tx(N4) = -1 iff 744 =1;

3.11 Ty(A>B)=—-1 iff 7¢4 =1 and B = —1;

312 txVod(x) = —1 iff there exists cedX such that 7y 4(c) = —1;
3.13  txdzA(x) = —1 iff for every Y > X and ¢edY, 7,-A(¢) = —1;
314 1y(—A) = —7yd.

LEMMA 3.1. For each formula A, if 1A #0 and X <Y then

Proor. IEasy induction on A. 3

LemMA 3.2. Let M, < and § be as above and °: M x (the set of atomic
H-formulae)—{0,1} (resp. =°: M X (the set of atomic H-formulae)—{—1,0, 1})
satisfy condition 3.1 then. Then there exists a unique extension v of ©° such
that o = (M, <, d, > is a Kripke model of H (resp. of H).

Proor is clear. #

DEFINITION. Let.#" = (M, <, 8, > be a Kripke model of H (resp. H).
A is defined (resp. true) at stage X iff Cn(A4) < 0X (resp. 4 = 1).
A is defined in " iff 4 is defined at some stage of . A is true in " iff
A is defined in & and it is true at each stage of #° where it is defined.

THEOREM 3.3. (Correctness Theorem). If A is provable in H (resp
wn H) then it is true in all Kripke models of H (resp. of H) where it is defined.

Proor. Easy induction on the length of a formal proof of 4. #

COROLLARY 3.4. Let o be a model of Hand X bea stage of . Suppose
that Cn(A4) = Cn(B). If (A~B) is provable in H then Ted =1 iff
tyB =1. If (4 = B) is provable in H then tvd = 1y B.

THEOREM 3.5. (Completeness Theorem for H, see [1] or [4]). If an

H-sentence A is not provable in H then there exists a Kripke model of H
where A is defined but not true.

§ 4. Completeness Theorem
THEOREM 4.1. Let A be an H-sentence. If A is not provable in H then
there exists a Kripke model of H where A is defined but not true.

Proor. Without loss of generality 4 is reduced in the sense of § 2,
see Theorem 2.1 and Corollary 3.4. We use notation of Theorem 2.3.
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Suppose that 4 is not provable in H. By Theorem 2.3, £ > ¢4 is not
provable in H. By Theorem 3.5 there exists a Kripke model ;" = (M, <,
d, 6> of H where 4 is defined but not true. Without loss of generality
E is true in 4. For, (Il o g4) is defined but not true at some stage X of 7.
Hence there exists Y > X such that v+ F =1 # 1,-(g4). Take the sub-
model of # with the set {Ze M: Z> Y} of stages.

For every formula Pic, ... ¢, and stage X of 2 define:

1 it oxPior...c, =1,
0 .
tyxPier ooy, =y =1 i oxQc ... Cmy = 1,
lO otherwise :

The definition is correct since F is true in .#". By Lemma 3.2 there
exists a unique model ¥ = (M, <, d, 1> of H such that 7 extends z°.
By induction on a subformula B of A4 it is easy to check that at each
stage X, 1B = 1 implies ¢4 (¢B) = 1. Hence 4 is not true in &Z. #

CoroLLARY 4.2, (Adequaey Theorem for ﬁ). A is provable in i iff
it is true in each model of H where it is defined.

§ 5. Duality

Here we prove that an inessential extension of H satisties very natural
duality laws.

Let calculus H1 be obtained from H by adding a unary propositional
connective a, binary propositional connective # and the following axiom
schemas:

ad = -1 -4,
(ApB) = —(—A o> —B).

H1-formulae can be regarded as abbreviations of H-formulae.
Now we define duality of the logical operators:

1s dual to v and vice versa,
is dual to I and vice versa,
is dual to « and viee versa,
is dual to B and vice versa,
— is dual to itself.

U O <%

Below in this section s range over the logical operators of H1, s is the
operator dual to s, 4 and B range over the HI-formulas and the sign +
means provability and deducibility in HI.

LeMMA 5.1.

F—-—A =4,
b —sA =35(—A) wheresis8 1 or a;
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F—(AsB) = (—A4)5(—B) where s is &, v, > or f;
F—szAd =3v(—A) where s s YV or 3.
ProoOF is clear. 4
COROLLARY 5.2. There exists an algorithm A =A° which associates
a formula A° with each formula A in such a way that A = A°, and the
scope of each occurrence of minus in A° is atomic, and a logical operator
s occurs im A° iff s or § occurs in A.
Below in this section:

A’ is the result of replacing each logical operator in 4 by the dual
operator; A is the result of replacing each atomic formula in A by its
strong negation; 4% = 4’

THEOREM 5.3. FA* = A.

Proor by induction on 4. #

Let 4—B abbreviates (4 > B) & (=B > —A) (the strong implication).
THEOREM 3.4. If+A—>B then FB'—4'.

Proor. Let (4,,...,4,) be a proof of A—B. Then (dA,,..., 4,) is
a proof of A—~B. Now A—>B F —B>—AdAFB* 4"+ B ->A". %

CoroLLARY 5.5. Ift A =B then +A =8B

XNote. Caleulus HI can be conservatively extended in such a way
that the duality statements 5.3-5.5 remain true. For example, HI can
be enriched by the connective — and the connective dual to —.

§6. Propositional logic

Here we prove Adequacy Theorem for the propositional part of H
and present complete and independent systems of logical operators for
H and its propositional part.

Let PH be the propositional part of H. Formulae of PH are those
of H built from proposmlon&l letters b) propositional connectives. Axioms
of PH are those of H which are PH-formulae. Modus ponens is the only
inference rule of PH.

In this section A, B range over the Pﬁ—formulae, F range over the
H-formulae.

LeMma 6.1, Let (F,,...,F,) be an Ti-proof, » be a propositional
letter and for each ¢ = 1,...,n, A; be obtained from F; by (i) omitting all
V& and 3w, and (ii) replacing all atomic formulae which are not propositional
letters by p. Then (4,,...,4,) 18 a PI_i-proof.

Proor is clear.

Hence a PH-formula provable in H is provable in PH.
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A triple & = (M, <, > will be called a Kripke model of PH iff
(M,<> is a poset and v: M x (the set of PH-_sentences)—>{—1,0,1}
satisfies the relevant conditions among 3.1-3.14. 4 is true in ¢ iff for
every Xe M, 154 = 1.

LeEMMA 6.2. Let M and < be as above and <°: M X (the set of atomic
PFI—serntences)»{ —1, 0, 1} satisfies condition 3.1. Then there exists a unique
extension t of 7° such that (M, <, t> is a Kripke model of PH.

ProoF is clear. #

From Adequacy Theorems for H follows

THEOREM 6.3. (Adequacy Theorem for PH ). A s provable in PH
iff it is true in all Kripke models of PH.

Formulae F, and F, are called strongly equivalent iff (F', = F,) is
provable in H. According to Corollary 3.4 strongly equivalent formulae
can be considered to have the same meaning. It is worth while to study
formulae modulo strong equivalence.

Formula 14 =(4 > —4) is provable in PH (see [10]). This fact
can be easily checked. Conjuction and disjunction are mutually expressible
using minus (Lemma 5.1). So we proved

THEOREM 6.4. {—, &, >} and {—, v, o} are complete systems of cons
nectives of PH.

LeamMa 6.5. System {7, &, v, o} is not complete in PH.

PrOOF by induction to absurdity.

Suppose that (1p = A) is provable in PH where minus does not
oceur in A. Without loss of generality p is the only propositional letter
of A. Let - be a one-stage model of PH. Then (A~p), or (A~ "p),
or (A~(p & TIp)), or (A~(pv 7p)} is true in A" If p is true in " then
formulae ( —p = p) and ( —p =(pv ﬂp)) are not true in . If p is uncertain
in 2" then formulae (—p =Tp)and (—p =(p & 71p)) are not true in . 4

LeymMa 6.6, System { —, o} is incomplete in PH.

Proor. Consider the Kripke model of Figure 1 where 1< 2,1 < 3,
7,p =0, 7,p =1 and 7;3p = —1. Let 4 be built from p using connectives-
and > only.

P -P
3

Figure 1
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f 1,A = 1,4 then 7,4 = 7, A. We prove this fact by induction. Cases
A =pand A = —Bareclear. Let A = B> (. If 1,4 =14 =e< 1
then 7,B =1t;B=1=1,B, 1,0 =1,C = ¢ =1,0 and 1,4 =¢. Let
7,4 = 1,4 = 1. We have to prove that B = 1 implies txC = 1 for
each X > 1. It is clear for X =2,3. If v, B =1 then 7,B =1,B =1
= 1,0 = 7,C and by the induction hypothesis 7,C = 1.

Now check that 7,(pv —p) = t3(pv —p) = 1 but 7,(pv —p) = 0. %

LeMMa 6.7. System {—,7,&, v} is not complete in PH.

PROOF. Suppose that p > ¢ is strong equivalent in PH to a formula
A built from p and ¢ without o. Then p > ¢ in equivalent to 4 (see §2)
and o does not occurinr4. Let B be obtained from r4 by replacing — by 7.

By Lemma 2.4 formula (p o ¢)~B is provable in H which contradicts
[6] +

THEOREM 6.8. Systems { —, &, o} and { —, v, o} are complete and inde-
pendent in PH. Moreover, they are the only complete and independent
systems of comnectives in PH.

Proor. See Theorem 6.4 and Lemmae 6.5-6.7. 3

COROLLARY 6.9. {—, v, >,3} is a complete and independent system
of logical operators in H.

Proor. The completeness follows from Theorem 6.4 and the fact
that F Vod = —(Jr—4) in H. Independence of 3 is clear. If — p is strongly
equivalent in H to a formula A built without minus then according to
Lemma 6.1 minus is expressible through v and > in PH which contradicts
to Lemma 6.5. Independence of v and o is proved analogously. #

All other complete and independent systems of logical operators of
H can be obtained from the system of Lemma 6.9 by changing v for
& and/or changing 3 by V.

§ 7. A 3-valued logic

Let C be the caleulus obtained from H by adding a new axiom schema
774 o> A. A function 7 associating —1,0 or 1 with each sentence of
C will be called a model of C iff there exists a one-stage Kripke model
{0}, <, 6,0y of H such that 60 is the set of all individual constants
and ¢, = 7. Formula 4 is true in 7 iff 74 = 1. From the Adequacy Theorem

for H follows

THEOREM 7.1. A sentence A is provable in c iff it is true in all models
of C.

It is not difficult to check that {—, >, 3} and { —, >} are complete
and independent systems of logical operators for C and the propositional

part of c respectively.
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§ 8. Gentzen-type calculus

A Gentzen-type intuitionistic predicate calculus GI is described in [3].

Let calculus G be obtained from G1 by the following changes. Remove
logical operators 71, &,V and the correspondent logical rules of inference,
and add minus (the strong negation) and the following rules (in notation
of [3]):

A, -6 —B, I'=0 I'-AT'-»—-B
—(A>B), -0 —(4>B), -0 TI—>—(4>B)
—A4, I'>6 — B, '-0 I'-—A; I'>—B
—(AvB), -0  —(AvB),I'-6 I's>—(AvB)
—A@), I'>0 I'——A(y)

—Jwd@w), -0 TI'>—3Jzd ()
(y does mot occur in A (x)
A, I'->TI . I'—A I'>A
——A, I'>0 I'-——4 —A, -
THEOREM 8.1. If I't E in H with all variables held constant than
F I'=FE in G, and vice versa,

Proor imitates the corresponding proof in [3]. 3k
THEOREM 8.2. GHiven a proof in G of a sequent in which no variable

occurs both free and bound, another proof in G of the same sequent can be
found which contains no cut.

ProoF imitates the corresponding proof in [3]. 4

CoROLLARY 8.3. In H
(1) if FAvB then F+FA or | B,
(ii) if F—(A4d&B) then F -4 or F —B,
(i) if F3dzA(x) then FVzxd(xr) or FA(c) for some indi-
vidual constant ¢, .
(iv) if F —VxAd(z) then +Nr—A(r) or + —A(c) for some in-
dividual constant c.

(One can read “ F — A" as “A is logically false”. So (ii) states that if
A & G is logically false then either 4 or B is logically false).
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