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The theory of ordered Abehan groups with quantification over conves subgroups 1~ studied
An chmnation of the elementary quantifiers s presented and a primutivety 1ccursive decision
procedure for this theory 1s constructed

0. Introduction

LT

For the sake of brevity the terms "‘group”, “o-group’ and ““chain” will be used
for ““Abelian group”, “linearly ordercd Abelian group™ and ““ncaily ordered sct’
respectively

Algebraically speaking an o-group G 1s a group ard a chain, and tor ever-
Ly,zE€G x<y mphes x +z<y+z

Let G be an o-group It 1s easy to check that G 1 totsion free, has neither
minimal nor maximal element and s eithe~ discretely or densely ordered A subset
X C G 1s called a convex subgroup of G 1iff X 15 a subgroup and X 15 convex {the
latter means that for every x,,x, € X andeach y € G, f x, <y <x,then y € X)
Convex subgioups play a fundamental role in non-formahized theory of o-groups
(see [3]) 1t 1s easy to check that convex subgroups of G are linearly ordered by
inclusion

Let us review the history

G 1s called Archimedean iff for every positive x,y € G therc exists a natural n
such that x < ny G 1s Archimedean 1ff {0} and G are the orly convex subgroups of
G Archimedean o-group 1s embeddable into the naturally ordered additive group
of reals (see Holder’s Theorem in [3]) The elementary theory of Archumcdean
o-groups was studied by Robmson and Zakon (see {15]) Here are their man
results G 1s called n-regular iff for every x,, ., x, € G there exists y € G such
that x,< < x, imphes x, < ny <x; G 1s called regular ff 1t 15 n-regular for each
positive ‘nteger n Each Archimedean o-group 1s regular Each regular o-group s
elementanly equwvalent to some Archimedean o-group Two descrete (respectively
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194 Y Gurevich

dense) regular o grouv are eleme tanly equivalent iff they are elementanly
equivalent as groups

The main result of Kargapolov’s paper {10} 1s a classification of the o-groups of
finite rank by their elementary properties (a torsion free group has a finite rank f it
1s embeddable in a firute dimensional vector space over the rational field)
According to {4], everv two o-groups are universally equivalent

In [5], all o-groups were classified by their elementary properties, and the
elementary theory of o-groups was algornthmmcally reduced to the elementanily
theory of chains Togeher with {11] 1t gives a decision procedure for the
elementary thecry of o-groups An elmination of quantifiers in the elementary
theory of o-groups was presented n [6] Together with [12] 1t gives a priminvely
recursive decision proceduie for the elementary theory of o-groups The part of [6]
relating 1o o-groups was never pubhshed

Here we study the theory of o-groups with quantification over convex subgroups
We eliminate the elementary quantifiers, and construct a primitively recursive
deciston procedwme for this theory The main results of the present paper were
announced 1n {7} An earlier version of a part of this paper may be found in the
Soviet Institute of Scientific and Technical Infcrmation {Moscow), number
6708-73, [8] 1s the corresponding abstract

Let us summatize the contents of the present paper

Part 1 of the present paper 1s purcly algebraic The key notion here 1s the functor
F(s, x) (called the s-fundament of x)

In Part 2 we define the Expanded Theory of o-groups, and eliminate the
elementary quantifiers The Expanded Theory 1s the theory of o-groups wiih
quantification over convex subgroup enriched by some definable predicates The
elimmation of elementary quantifiers reduces the Expanded Theory to so-ca'led
Convex Subgroups Theory The latter 1s an elementary theory of the chans of
convex subgroups with some surplus one-place predicates (each o-group provides
us with a model of the Convex Subgroups Theory)

In Part 3 we axiomatize the Convex Subgroups Theory in the elementary theory
of complete chamms with surplus one-place predicates n such a way that for each
sentence a .n the language of the Convex Subgroups Theory one can easily select a
fimte number of axioms deciding o

In the Appendix we prove that the weak monadic second order theory of
complete chains with surplus one-place predicates 1s primitively recursive (This
strengthens ‘he result of [13], but was obtained simultaneously and independently)
Togethet wirh the previous parts it gives a primitively recursive decision procedure
for the Expanded I'heory of o-groups

Some words about possible generalizations The theorem about elimmation of
elementary cuantifiers can be eauly generahized by enrnching the part of the
language concerning convex sut groups Generahizations of the decidabiinty result
are restricted by undecidability results in theory of chamns For example allowing
quantification over arbitrary subsets of convex subgroups leads to undecidable
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theory 1if the Continuum Hypothesss holds This follows from undecidability of the
monadic theory of the real line, see Shelah’s paper {16] One of the possible
generalizations 1s obtained by ailo ming quantification over finite subsets of convex
subgroups The elementary quantifiers can be eliminated, and the eunched theory
remains prim:tively recursive One can have some generahzations of the form this
specific theory of o-group 1s recurstve modulo that specific theory of chamns About
deciston problem for lattice ordered Abehan groups see [9]

Some words about notatiton It a group H 1s the (internal) direct sum of 1ts
subgroups H, 1 € I, we write H = 2X{H, 1 € I} In this case each h € H 15 equal 1o
some finite sum A, + +n, where h, € H,, ,h, € H, The exteinal direct swir
of groups H,, 1 € I, 1s also denoted by Z{H, 1 € I} The elements of the external
direct sum are functions f I— U{H, 1 € I} such that (1) € H, and {i f(1)# 0 s
finite We can wnte f = 2 (1) Nowlet I be achamnand H,'s (1 € I)be n-groups By
LZ{H, 1 € I} we denote the lexicographic (or w-lexicographic) sum of H’s It 18
the direct sum XH, ordered as follows 2h >0 f Eh#0 and A >0 where
J =max{t h#0} The lexwcographic multiple H I of an o-group H s X{H, 1€ 1
and H, = H}

“wiog” 15 an abbreviation for “without loss of zenerahty”

A1 Kokorin persnaded me (after [5] was published) to continue t work on
algonithmic problems for ordered groups (I have rcturned to o-groups alter
Cohen’s preprint [1] demonstrating potentialities of the method of elirnmnation of
quantifiers) Jonathan Levin corrected the English of an earhier version of this
paper The referee found some places which had to be corrected Tam gratetulto sl
these people

PART 1. ALGEBRA

1. Fundamental subgroups

Throughout this section (¢ 1s an o-group, x.y, 7 € G and X, Y are convex
subgroups of G Here and below p 1s a prime number
Definition 1.1 ([5]) For an nteger s# (& we define
F(s,x)=U{X ¥Yy(x+sy&X)}, F(p,x)=F(p'.x)
F{(s,x) 1s called the s-fundament of ~
Corollary 1.1. F{s,x) 15 a convex subgroup or ®, F(s.x)y=0 tff x =0(mods)
Corollary 1.2, Let a,b#0 be ntegers Then F(ab bx)=F(a,x). F(a.x)C

F(ab,x), F{a.bv)C F{a,x) If a anc b a'e relatively prime, then F(a b ) = F(a. x)
and F{ab,x)= F(a,x)U F(b,x)
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Corollary 1.3. Let a = p'b where b# 0 (modp) Then F(p,k.x)=F(p.k +1,ax)
Corollary 1.4. Let s =py  pi Then F(s,x)= F(p,1,x)U  UF(p.1,x)

Corollary 1.5. F(s,x + y)C F(s.x)UF(s,y) and if F(s,x)# F(s,y). then
F(s,x+y)=F(s,»)UF(sy)

A proof 1s easy For example, we will show that F(ab,x)C Fla,x)UF(b, ) 1if a
and b are relatively pnmz Suppose it 1s nut trve, then F(ab, x) contamns some
x +ay and x + bz Because g and b are relatively prime, ca + db = ! for some
integers ¢ and d, and so

ca(x +b7)+ db(x +ay)=x + ab(cz + dy)& F(ab, 1)

However, this 1s impa-sible

Definition 1.2. I'/(s, X) 1s the subgroup {x F(s,x)C X}
() I':(s, X) 1s the subgroup {x F(s,2)C X},
(m) I'(s, X) 15 the factor group I'(s, X)/I\(s, X),
) I'(p, k.X)=TI(p* X) and the same for I", and I,

It 1s more precise to write I'(s, X, G) nstead of " (s, X) and the same for F, I',, I">
This more precise notation 1s u<ed :n the following two lemmas

Lemma 1.1. Let a bar denote the natural homomerphism G — G/X Then
I'(s, X, G) 1s 1somorphic to T'(s, X, G)

Proof. Forevery Y 2 X, F(5,x)C Y iff F(s.¥)C ¥ Now 1t 1s easy to chack that the
correspondence x + I'y(s, X)— % + I',(s, X) 15 a required 1somorphism

Lemma 1.2. Let X CY Then I'(5, X, C} 15 1somorphic to I'(s, X, Y)

Proof. The correrpordence x + I'(s, X. Y)—x +I'(s, X, G) 15 an 1somorphism
from I'(s. X, Y) cato (s, X, G)

A group I'(s. ¥)satisfies the axtom Vv (st = 0) and so 1t has a representation as a
direct sum of cylic groups

Definition 1.3, p(s, k, X'} 1s the cardinal number of cyclic direct summands of the
order p* 1n a representztion of I'(p. s, X) as a direct sum of cychic groups

Definition 1.4 (cf, [17]) Elements v,, ,v. of a group H are independent
(strongly ndependent) modulo p* if, for every nteger a,, ,a. Sav =0
(Zav, =0(modp*)) implies a,= =a,=0(modp*) A subset M C H 15 inde-
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pendent (strongly independent) modulo p* if every inite subset of M 15 <o
p'(p, k. H) (p’(p, k. H)) 1s the power ot a maximal independent (strongly indepen-
dent) modulo p* subset M C H such that every clement »f M has the order p*

Corollary 1.6. Let H=I'(p.s, X} and 1 sh << Then o'(p.k. ', =pls, k, X and
pp, , HY=2(p(s, 1. X) k=<1 <5}

A proof is easy

Lemma 1.3. Let F(p,s,x)={0} and & = x + I'(p,s.{0}) € I'{p, <. {0}
(1) The order of 15 p“ off D= F(p,s,p*x)C F(p,s,p* 'x)= {0}
(2) If the order of % 1s p* then x =0(modp'™*)

A proof 1s easy

Theorem 1.1, p(s, &k, X)=p(s+ LA X) for k <s anl p(s,s, X)=p(s+ 1,5 Y)
+p(s+1 s+1.X)

Proof. Wlog X = {0} (see Lemma 1 1) Tosimplify no ation we sometimes omit p
and {0} Let a bar (respectively prime) denote the na ural homomorphism from
I';(s) onto I'(s) {(resp from (s + 1) onto I'(s + 1)) Mote that

W xel(s) ff pxe&l'y(s+1)and

() it x € T'(s), then ¥ and (px) have the same order

Case k <s Let U (resp V) be the family of strongly independent modulo p*
subsets of I'(s) (resp I'(s + 1)) consisting of elements of order p* U and V arc
partally ordered by mclusion Let {%, 1 € I} be maxima 1n U [t1s enough to check
that {(px.)’ 1 € I} belongs to V and 1s maximal there First we check the strong
independence Suppose that Za, (px,) = p*u’1e Zapy, =p*u+p v for some
Then Tapk = p*d hence there exist b’s such that ap = p*h, By Lemma 13,
x, = p*~*y, for some y, So p*u = Ep*bp*~*y, — p**'v and u = pw for some w Then
Zapx, =p‘pw + p**'v and Tax, = p*w which imphes a, =0 (mod p*) for every 1
Now we check the maximahity Let y’ be of order p* By Lemma 13, y = pz for
some z There exist a’s, b and u such that b#0(modp*) and b7 = Zai, +p“d,
since {%, 1€ 71} 1s maximal Then bz =Z2ax + p“u(modp*), by = Zapx
p*pu (mod p™*') and by’ = Za.(px.) + p*(pu)

Case k=s By Corollary 16 1t 1s enough to check that p'(p,s, I'(s))=
p'(p,s, I'(s +1)) Let U (resp V) be the famly of independent moduls p* subsets
of I'(s) (resp I'(s+1)) consisting of elements of order p* Let {X, 1 €1} be
maximal in U We check that {(px,) = I} belongs to V and 1s maximal there If
Ta,(pxv.Y =0 then Zapx, =0(modp*""), Tax, =0(modp*), Zax =0, and q =
0(mod p*) for every 1 The maximality s checked as ebove (but u =0
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Definition 1.5.(1) A(x)=U{X xZ X},
(X =MN{Y XCY}f X#G and X*=G f X =G

Corollary 1.7. A{(x) ts a convex subgroup or 8§, A(x)=0 ff x =0
Corollary 1.8. For any integer ¢, A(cx)C A(x) If c#0, then A(cx)=A(x)

Corollary 1.9. Ax +V)CAX)UA() If AX)ZA(y), then A(x+y)=
AX)UA(WY)

Corollary 1.18. X C X" off Ix (X = A(x))

A proot 15 easy
Note Cf the defintnon of A(x) and Definition 11

Definiticn 1.6. Let a bar denote the natural homomo:.phism G— G/X, RE€
{< =,=2=,>}and a# 0 be an integer

(1) xR0 (mod X) = %R0,

Q) [x=1(mod X)]=0<¢% and "y 0<y < x),

(3) E(X)=3x {(x = 1(mod X)),

@) [x = a(mod X)] =3y (v = 1 (mod X) ar{ % = ay),

(5) xRy (mod X)=rRry

Let a and b be integers and b >0 Then
Corollary 1.I1. xRy (mod X) = bxRhy (mod X) = (~ by)R(~ bx }(mod X)
Corollary 1.12. xRa (mod X )= bxRba (mod X)=(~ ba)R(~ bx)(mod X)

Theorem 1.2. Let X C Y., k <5 and

VYZ (X CTZCY unphes Ap(s,1,Z)=0"1=3s})
Then p(s,k, X}=0
Proof By Lemmas1 1anc | 21t can be assumed that X = {0}and Y = G Let abar
denote the natural homomorphism G — G/p°G Clearly every F(p, s, x)C {0} Let
(reductio ad absurdum) p{s, ¥, {6}) >0 Then there exists x such that £# ((mod p)

and p*t =0 The last means p*x =p’y tor some y But F(p,s y)C{0} and
€ I'{p,5,{0}) and £ = p ~*§ which contradicts 3£ 0 (mod p)

Theorem 1.3, E(X) impies X C X" and p(s,5, X) =1

Proof. Let E(X) X C X" follows clearly from the defimtion of E In order to
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prove that p(s,s X)}=11t can be assumed that X = {0} and X = G. sece Lemmas
1 tand 12 Then G 1sisomorphic to the naturally ordered additive group of natural
numbers and G/p°G 1s the cyclic group of the order p°

Definition 1.7.

D(p,s,k,x)=[x=0(mod 2" v 2y [F(p.s.x —p*y)C F(p s.x)= F(p, s, y}}|

Corollary 1.13. Let @# F(p,s.»)= X and a bar denote the natral homomarphism
Ip, s, X)— 1'{p,s,X) Then D{p. s, k, -) 1s equivalent to £ =0 (medp*)

A proof 1s easy
Lemma 14. Let F(p,s,x)={3} Then D(p.s,k.x)=3yz [F{p,s.y)={0} und
x =p'y +p’z]

A proof 1s easy

Lemma 1.5. Let @# F(p,s,x)=X and ¢=p'd where d#0(modp) Then
D{p,s, k., x)=[F(p,k,x)C X and D(p.s + 1. k,cx)]

Proof. According to Corollary 113 and Lemma 1 1 1t can be assumed that d = |
and X = {0} We also use Lemma | 4

(1) Let  F(p.s,y)={0} and x=p'y+pz Then F(p'x)=# and
F(p,s+1,p'y)={0} and p'x =p*(p'y)+p’"z

(2) Let F(pk,x)=0, F(p,s +1,y)={0} and p'x=p“y+p* 'z Then x=
O(modp*),y =p'y’ forsome y’, F(p,s,y )= F(p,s +1,y)={0;andr = p*y’+p'z

Definition 1.8. For any mteger ¢, E{(p.s,¢,2)=3X3y[X =F(p, ¢ 1) and
y =1(mod X) and F(p,s,x — ¢y })C X]

Corollary 1.14. Let X = F(p,s,x), y = l(med X) and a bar denote the natura’
somorphism 1(p, s, X)— ['(p,s,X) Then E(p,s.c,x) s equivalent 10 ¥ = ¢y

Corollary 1.15. If x =0(modp ). or X = F(p,s,x) and —E(X}, or ¢ =0, then
-1 E(p,s,¢,x)

Corollary 1.16. If c =d (modp ), then E(p,s,c,x)=E(p, s, d, x)
A proof 1s easy

Lemma 1.6. Let c¢=p'd where d#0(modp) Then E(p, s k. x}=
E(p,s +1,ck,cx)
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Proof. F(p,s,x —ky)=F(p,s + 1, ¢cx — cky)

2. First special o-group

Let H be an o-grcup, h € H ard h#0(modp;in H Let k and s be integers and
1=k <s w(w*)is the chain (the inverse chamn) of naturals

Lemma 2.1. There exists a subgroup H'CII such that p*he€H' and
p*h#0(modp) in H' and the factor group H/H' has the power p*

Proof. By reasons of induction 1t 1s enough to prove the lemma for k =1 The
factor group H/pH 15 a vector space over the field of power p Let S be a maximal
subspace in H/pH such that h + pH & S The full pre-image of S 1n H 1s a required
subgroup

For every n € w et f. H,— H be an o-group isomorphism, H/ = f'(H') aud
h.=fh) Let G,=LZ{H, n€ »*}. G,=L3{H, n € w*} and G be the least
subgroup of G. contamning GoU{h, — h,., n € o} Let X, be the subgroup
L2{H, n=m} of G,

Lemma 2.2. Every factor group X,, N G/X,... (VG s 0-1somorphic to H

A proof 1s easy
Lemma 2.3. p*hy#0(modp) in G
Proof. L:tf G,— H bedefined asiollows f(x,+ +xo)=fux.+  +foxo It1s
easy to check that f 1s a group 1somorphism, fG = fG,= H' and f(p*h.) = p*h But
ph#0(modp) m H'

Lemma 2.4. Fip, k,p*h,)C{0} mn G

Proof. It 1= enough to prove that every X, NG D Fip,k,p*h) But p*h,=
p*hn (modp')in G and p*h, € X. NG

Lemma 2.5. F(p.1,p’h.)= = F(p,k,p*hy)={0} :n G

Prool. {0} C(by the Lemma 23) F(p,1,p*ho)C C F(p, k,p*ho) C (by the
Lemma 4) {0}

Let an asterisk denote the natural group homomorphism G — G/p*G and I be
the group I'(p,s5,{0})) of G Cleasly 'C G* and (p°ho)* €T
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Lemma 2.6. (p’ho)* has the order p* mn [

Proof. F(p',p*p'ro)=F(l,p*h))=01n G aad F(p' p* 'p’hy) = F(p,p*h,) = {0} n
G by Lemma 25 By Lemma ! 3w Secticn 1 the order of (p'hy)* in I 1 p*

Lemma 2.7. Every x* & I 1s a mubuple of {p‘h,)*

Proof. Letx" &€’ In Gi.a =x,+  +x.forsome n and x, € H, 1t easy to see
that x =0(modp’) n G, Let v, =p’y, and y, = a,h, + h' where h € H' Then,

X=Y plah+h)=> pah = \/z a,) phe(modp )y G

Lemma 2.8. In G, p(s.k,{0}) =1 and p(s, ,{0}) =) for every 1 £ k

Proof. See Lemmas 26 and 27

3. Second special o-group

Let Q be the naturally ordered additive group of rational numbers
Lemma 3.1. Every p(s, k. {0})=0 1t Q
Proof. Clear

Fix an nteger s 2 | and a prime p Let Q, be the least subgroup of G contaring
all quotients a/b where a and b are integers and b 0 (modp)

Lemma 3.2, In Q,. p(s.5.{0}) =1, and p(s,k, {0} =C for k <+
Proof. Clear

Forevery n € w let f, H, ->Q be an isomorphism of o-groups and H, = f '(Q,)
and h, = f'(1) Let Go=LE{H, n€w*land G, =~ LZ{H, n€ o } where »™ 15
the inverse ordered set of natural numbers Let G be the least subgroup of G,

contamning GoU{(hn = Hnut)/p” m,n € o}, and X,, be the subgroup LE{H, n=>
m} of Gl

Lemma 3.3. For every m, G/X,. N G 1s divistble and X,, N G/ X,..; N G 15 1s0mor-
phic to Q

Proof. Clear
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Lemma 3.4. ho#0{(modp) m G
Proof. Let f G,— Q be defined as follows f(x, +  +Xxo)=fuxa+ + + fox, Itis

easy to check that f 1s a group 1somorphism, fG = fG,=Q, and fho=1 But
1#£0(modp) n Q,

Lemma 3.5. F(p, Lh)= =F{p.s,h)={0} m G

Proof. See the proofs of Lemmas 2 4 and 2 5 n Section 2

Let an asterisk denote the natural homomorphism G — G/p°G and I' be the
gioup I'(p, 5,{0}) of G Tt1s easy to see that I" 1s a subgroupof G*and hs €T

Lemma 3.6. hi kas order p> in I’

Proof. We need only prove that p°'hi # 0™ But, F(p,s,p" 'he)=F(p,1,ho)# 0
by Lemma 35

Lem.mna 3.7. Every x* &I 15 a multiple of h}

Proof. Let x* €0 In G, x =x, + + x, for some n and x, € H, There exist a
natural number m, wntegers a,, ,agandelementsy, € H,, , Yo € H} such that

Py = Ay +p" Y PTX0= acho+ pT Y0

Now we count :n G p™x =Zah, =(Za, )h,(modp™*’) By Lemma 3 4, Za, =p™b
for some nteger b Then x = bh,(modp*),1e x*=>bh}

Lemma 3.8. In G, p(s,5{0}) =1 and p(s. k,{0}) = O for every k <s

Proof. Sec Lemmas 36 and 27,

4. Third special o-groug

Definition 4.1. A succession 1s a function @ @ -> @ such that for some n, an# 0
and (Vi >n) ar = 0. That n 1s called the length of succession «
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In this section o, B,y and & are successions The restiction of A o j =
{it€w 1<n}is denoted by a |n

Definition 4.2. § 15 the set of successions ordered as totlows o < B if there exvists n
such that o [n =8 |n and an > Bn

Corollary 4.1. The chan 8 v dense and has newther maxumal nor nunimal
succession

Corollary 4.2, Ifa<B<yanda§n=‘y[n‘ thenﬂfn=nzfn
Corollary 4.3. If the length of a 1v n and « in tl=glnt1, then B=<a

Definition 4.3. B=¢(a,n) ¥ Bln=al|n Prn=(en)+1. 0=Ln+1)=
B(n+2)=

Corollary 4.4. Va¥n3B[B = d{a,n)] and YB 3o 3n[B = ¢(a, n)]
Corollary 4.5. ¢p(a.n)=wmfly v{n+1=0a|n+1'anda =up{d(a,n) rnzw)
Corollary 4.6. & (a,m)= &(B, n) isequivaleattom = nand o fn +1=8 f n+l

Fix a natural k >0 About Q and Q, see Sect.wn 3 For every successior a let
f. H.— Q be an somorphism of o-groups a1d .(Q,)=H/, f ()= h, Let
Go=LEZ{H, a €S}, Gi=LZ{H, a €8S} and G be the least subgroup of &,
contamnimng G, and such that « | n = £ | n always implies (h, = he)/p™ & G In other
words if « ,’ n=g [ n then h,=h,(modp™) in G Let X. be the subgroup
GNLEH; B=salandY.=X.m G

It 1s evident tnat X, = A{h, )} in G and that for every x € G there exists a such
that A(x)= X, m G

‘emma 4.1. Y./X, s somorphic to Q

Feoof. Clear

Lemma 4.2. If B = d(a.n) then Yo, CF(p.nk +1 h,)

Proof. Let f G,— Q be defined as tollows f(Za,h,)=32{a, B< y} Clearly f154
group homomorphmsm and fY, ={0}, fGo=Q,, fr. =1 If F{p,nk + |, h,)C Y,
then fh, =0 (mod p™ "y m fG So 1t 1s encugh to prove that if x € G then fr 152

multiple of 1/p™ G 1s constructed from G, and elements (h, - h,)/p" where
yli=8|1 If x €G, then fx s a multiple of 1 Let x =(h, — h;)/p" where



204 Y Gurevich

yli=6|1 and let y<8& It B<y or §<p then fx =0 Let y<8<3§ Then
fx =1/p™* By Corollary 42, 8 ;'z =§ } By Corollary 4 3, t = n So fx 1s a multiple
of 1/p™

Lemma 4.3. If B = ¢(a,n), then F(p.nk + k. h)C Y n G

Proof. If y|n+1=a|n+1 then h,=h,(modp™ ) and F(p,nk +k h,)=
F(p.nk + k,h,)C X, Let B = ¢(a,n) By Corotlary 45, Yy=(HX, y|n+1=
a|n+1} So F(o,nk +k h,)C Ys

Corollary 4.7. If B = ¢(a,n), then F(p,nk +1,.h,)=  =F(p,nk +k h,)= Y},
in G

Proof. See Lemma 4 2 and Lemma 4 3
Lemma 4.4. In G. if F(p,m,h. )= F(p, n, hg), then h, = hs (modp™)

Proof. Thecase m =0orn =01strivial Let th <m <in + k, ph <n <k + k and
F(P> m, hu) = F(p, n, hg) By (:0!’0“31‘)’ 47, gb(a, l) = ¢(B&i) By Corollary 4 6, 1=y
and a [t-+1=8i+1 and so h, = hs (mod p™***)

Lemma 4.5. In G, if F(p,m, ah.)= F(p, n, bhg), then bh, = bh, (modp")

Proof. Let a =p'c and b =p’d where ¢,d#0(modp) and let F(p.m,ah,)=
F(p,n,bhs) Ther F(p,m ~1 h,)=F({p,n~),hs) and by Lemma 44, h, =
hs {modp™ ). 1e, bk, = bhs (modp™)

Lemma 4.6. in G, if 0 A F(p,s,x)=Y, thenp™x = ah, +y and F(p.s + n,y)C Y
for some n,a,y and y

Proof. Let B4 F(p,s,x)=Y and p"x =3a.h, Let an asterisk denote the
natural homomornhism G— G/I'(p,s+n, Y) By Limma 45 it it can be
assumed that (p’'x)* =Z(b.h.)* where a# B and a,#0 and a7 0 imphes
F(p.s> + 0, 5.0, ) # F(p, s+ n, bshy) Let F(p, s+ n, bh,)=max F(p.s + n, b
Then (p"x)" = (b ], )*

Corollary 4.8. If # F(v, s, x)=Y in G, then Y = Y}, for some B
Proof. See Lemma 4 6 and Corollary 47
Fix B = ¢(a,n) end 5 =k Let an astensk denots the natural homomorphism

G->G/Ip.s, Ys)and I' = F(p,s,Ys) Clearly I' is a subgroup of G*.
Let g =p" *“(h. = he)/p™
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Lemma 4.7. g* s an element of I' of order p*

Proof. F(p,s,g*)=(by Corollatry 13 in Section 1) F{ph+nk hi-h}=
F(p.k +nk.ht)y= Y} by Corollary 47 Sog*&rl
Clearly. F(p,s,p*g*)=9 But

F(p,s,p* '¢¥)=Fp. 1+ nkhi-hp)y=Fp t+nk,h)=Y}
by Corollary 47 So the order of g* 1s p* by Lemma | 3 1 Section |

Lemma 4.8. Every v*€ ' is a multple of g*

Proof. By Lemma 4 6 p"x =ah, +y and F(p,s +n,y)C Y forsome n,a,y and y
Let a = v'b where b#0(modp) By Lemma 45 ah, = ah, (modp''*) Wlog
V= By  Corollary 47 nk+lss+n—-1<nk +k Let m =
(k+k)Y—(s+n—-1) So px*=pbhi=pbh,—hy)* and p i Tx*=
p'bp’ ¥ (ha = hg)* =p'bp™g™ and x* = p"bg~

Corellary 4.9. p(s,k, Yp)=1 and p(5,1, Yp)=0 for 1k n G

5. Gluing and interlacement

Definition 5.1. A *G s the set of all convex subgroups of an o-group G ordered by
inclusion

Lemma 5.1. Let H be a subgroup of an o-group G and o A*H —» A7 G be defined
asfollows oY =1J{X€A*G X YHCY)} Then (1) cY NH =Y and 2)visa
monomorphism

Proof. (1) Clearly csYNHC Y Let h€Y and Z = A(h, G} The latter means
that Z 1s A(h) calculated n G Then Z"NHCY and h€EZ CoY

2 Y.C Y, mples oY, CoY:
Indeed, oY~ oY, 2 (¢Y:~cY)NH=Y,-Y,

Definition 5.2. The monomorphism o of Lemma 5 1 will be called canonical

Theorem 5.1. Let a dwect sum G =ZIH, be hnearly ordered and every
o, A*H,—> A*G be the canonical monomophism Let X €A¥Gand Y, = X N H,
Then every

pi(s,k X, G)=2{p(s,k, Y, H) oY, = X}

Proof. Let r=p’
(O I(n, X)=2I{r, Y, H.)
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Indeed, let hE€T(r, Y, H), 1¢ som~ h+rh'€Y, Then h+r'€ X and
her(X G)

Conversely, let Zh, € I'/(r, X), 1e some Sh, +rZh € X Then h, + b€ Y, and
t.e€I'dr, Y. H)

Q) N X)=3{I(,Y,H) XCoY}+EI(rY,H) X=0Y}

Indeed, let h& I)(r, Y.H,), 1e for every Y, CZ €A"H, some h+rh'€ Z,
Andlet oY, =X CZ€A*G Then YCZNH andsome h+rh' € ZNH,1¢
h € (r, X)

Conversely, let Zh €l:(r,X). 1e for every XCZ€EA*G some
Sh+rZhieZ

Case 1. Let XCaY.=Z Thensome Zh,+r2h!c€Z and h,+rh.€e ZNH, =
Y,tre h,el'(r,Y R,)

Case 2 fet X=aY, and Y, CZ €A*H, and 6.Z, = Z Then X C Z and some
Sh+rEZhi€Z h+mieZ,1e h€(r, Y, H)

B rr,X)=2{r~, Y.H) X =07}

Statement (3) follows trom statements (1) and (2) and imples the statement of the
Theorem 5 1

Definition 5.3. A chamn C 1s compact 1f

(VX CC)Iy,z€ CHX#BD y=mfX and z = sup X)
Definition 5.4. Let C be a chamn and x € C Then
. {mf{y x <y}, i x#max C and

x =
X, if x =max C

Definition 5.5. Let H be an o-group and C be a compact chain Monomorphism
o AYH — C 1s regular 1f

(I) YC Y imphes oY <{oY) and

(2} every oY =mf{eZ YCZCZ"}

Theorem 5.2 (Interlacement Theorem) 1.et

(1) C be a compact chain and CE=VxVy 3z (x <y Dxsiz <z <y),

2 {H 1€ be a family of o-groups and s, A*H,— C be a regular
monomorphism and

G (ChEx <x'ywmples (3'1)(x Emg )

Then there exist an o -group G and an 1somorphism ¢ C — 4 * G such that every

pisk,X.G)=2lp(. k Y,H) Y, = X}
and
H,F E(Y) imphes G '= E(¢4.Y).

roof. Let §.h, be an abbreviatior for YA (h, H,)
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Lemma 52, A, h #0 and $h, = b, unples 1 = |

Proof. Let h, h,#0 and x = ¢h, = ¢,h, Then x <1~ because of regulanty of
Now use (3) from Theorem 5 2

Let G be the direct sum XH, ordered as follows If g =TSh and yh, =
max{h, h #0} then g >0 uff h, >0
Let ¢x ={Zh, every hh, <x}

Lemma 5 3. ¢ 1s an isomorphism from C onto A*G

Proof. (1) Evidently ¢x € 4*G

(2) Let x <y Then (see (1) Theorem 52) x =z <z =y for some (see (3)
Theorem 52) z = i, and h, € by — ¢x

(3) Let X€4™G and x =sup{(phV" h € X}
We state that ¢v = X It 1s enough fo prove that always X N H, = ¢x N H, Clearly
X N H, € dx Conversely, let h, € dx Then h, <(Yh,) for some i, € X There-
fore, Juh, < b, and B, |<nlh | n G Because X 1s convex, h, € X

Lemma 5.4. The monomorphism ¢y, A*H, — A™G 15 canonical

Proof. (1) &Y O H, = Y Indeed,
heY=AMWHICY=gh <y Y=hE Y

2) X€A*G and XNH CY imply X CoyY
Indeed, let X =¢x €A*G and X NH CY And let (reductio ad absurdum)
OGP Y Cor, 1€ Y < Because of regulanity of ¢, there exists b € H, such that
Y < ih <x Then h €(dx N H,)~ Y which centradicts X NH CY

Proof of Theorem 5.2. Now the first statement of Theorem 52 follows from
Theorem 51 The second statement 1s evident Theorem 5 2 15 proved

Lemma §.5. Let H, and H be countable Archemedean o-groups Then there exists
an Archemedean ordering of the direct sum H,+ H, preserving the ordenngs of the
suminands

Proof. By Holder's Theotem (see {3]} 1t can be ascumed that H, and f. are
subgroups of the naturally ordered additive group R of reals For any real r# 0, H,
1s 1somorphic to the subgroup {rx x € H.} So1t can be zssumed that H, " H. = {0}
But 1n that case the statement of the Lemma 5 5 1s clear

Let G be an o-group, » €G and X =A(x) m G Then X C X" and the
Archemedean o-group X /X 1s called an Archemedean factor of G
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Theorem 5.3 (G.uing Theorem) Let G, be an o-group and all Archemedean faciors
of G, are countablz 1=1,2 Let 4 A*G,—A*G: be ar 1somorphism of the
chains Then there exists an o-grcup Go (a ghung of G, and G:) and chamn
isomorphisms ¢, A*Go— A*G, such that ¢;= ¢, and every p(s, k, X, Go) =
p(s k, X, G)+p(s k, &:X G)

Proof. For x € G,, let H,{x) be the Archemedean factor of G, corresponding to 1
#f H(x)=Y//Y, and ¢Y,= Y., fix an Archemedean order of H(x,)+ Hx(x:)
preserving the orders of the summands

Let Go be direct sum G,+ G, ordered as follows Let g,=g.+g.#0 and
H(g)=Y]Y If ¢Y,C Y: (respectively Y.C YY) then go>0 ifi g.>0 (respec-
tively g, >0) If ¢Y, =Y, then go>0 iff the element (g + Y,)+ (g2 + Y>) of the
Archemedean o-group Hi(g.) + Hz(g-) 1s positive G, 1s a desired o-group

6. Fourth special o-group

Letusfix p, s and k where 1 <k <5 Let Q and Q, be as in Section 3 We build a

countable o-group G satisfying the following conditions
() if x#0 then A"(x}/A(x) s 1somorphic to Q,

{u) the chain ({A(x) x# 0}, C) 1s order 1somorphic to Q,

(1) G 1s q-dwvisible for each prime q# p,

() if p(s,1, X)=r>0then 1 =k, r =1 and X 1s different from any A (x),

(v) for each x.p(s.k, A" (x 1= 0,

(vi) if X' Y then 3Z(X"CZCY and p(s,k,Z)=1)

Here 1s the 1dea of the construction Let G’ be a copy of the third sy ecial o-group
G’ satisfies condittons (1)-(1v) and (vi) For each non-zero x € G', “suove’ another
copy of the third special o-group “‘between’ A”(x)and G'/A"(x) Do the same for
the new copes of the third special o-group Repeat the process

Now we construct the desired o-group Let «, B range over the successions of
Sectton 4 and S be the chain of successions “S s the set of functions t k~ S
vhere n € @ We order °S as follows t,<t, ff 1,Ct, or Im (t;|m = t;|m and
t(m) < t,{m)) We imagmne elements of “S as sequences, hence 1t 1s clear what i"a
means

For each t&“S let H, be an o-group, isomorphic to Q,f, H,—Q be an
somorphism, Hi=f7"(Q,) and h =f'(1) Let U =LZEhi, a €S}, W, =
L3{H, a €8}, Vi={(hoo=h, glp™ a|n=p,n} and G, be the least sub-
group of W, contamng U, \J V, Clearly, G, 15 a copy of the third special o-group
Let W=LZ{H tZ"$} and T be the least subgroup of W containing
U{G. t#0} It 1s not difficult tc check that G 1s the desired o-group
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PART 2, ELIMINATION OF QUANTIFIERS
7. Elimination theorem

The elementary language of o-groups ELL 1s the first order language with an
equa’ity sign whose non-logical constants are the individual constant “0” the
symbol * —" of one-place opeiation the symbol «“ 4+ of two-place operation and
the symbol ** <™ of two-place predicate The elementary theory of o-groups ELT 15
given 1n ELL by axioms of (Abehan) groups, axioms of chains (1e hnear order
axioms) and by the following axiom

VxVyVz(x<yDx+z<y+2z)

Terms of ELL are called elementar, terms t, — t:1s the abbreviation for ¢, + (- 1)

An Expanded Theory of o-groups EXT 1s now defined Let L2 be the monadic
second order language corresponding to £LL. Every o-group G gives us a natural
model of L2 by the following defimtion second order vanables range over the set
A*G U{B} (the convex subgroups of G and the empty set) Let T2 be the set of
Lz-formulas which are true tn all these natural models We shall essentisly be
studymg the theory T2 but in order to eliminate quantifiers some 1nessential
extenston of T2 1s more conveniently used An Expanded Language of o-groups
EXL 1s obtained from L2 by adding some non-logical constants

Definition 7.1 (of second order terms (superterms) of EXL)

(1) Second order vanables of EXL (1e second ordet variables of L2t are
superterms,

(2) @ 1s a superteim, and for each elementary term f, A(¢) 15 a superterm,

(3) F(p.s,t) 15 a superterm for every elementary term f prime p and
natural s =1,

(4) if T 1s a superterm, then so s T7

Definition 7.2 (Of atoms (atom formulas) of EXL Here ¢ 1s an elementary term,
T, Ty, T; are superterms, p 1s a prime number, k, 5, r are naturalsand 1 s k < s and
I 1s an integer)

(1) D(p,s, k,t}, E(p.s, t) are atoms,

@ T.=T, T.CT,, E(T) and p(s, k, T)>r are atoms,

(3) t € T 1s an atom and

@) t=I(modT), t<l(mod T) t>1(modT) are atoms

A natural model of EXL 1s obtained from a natural model »f 1.2 by mean- of
definitions of Section 1 and the follow'ng defimtion
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Definition 7.3. (1) §#* 1s the zero-subgroup {0},

(2) T,=T; and T,C T; are defined naturally,

3) E @) 1s false,

@) p(s, k,0)>r 1s always false and ¢t = | (mod#), t <! (mod#), t >1(mod¥) are
always f.lse

50 every o-group gives us one natwial model of EXL An Expanded Theory
of o-groups EXT 1s the set of EXL-foimulas which are true in all these natural
models

The at yrs of T2 are expressible in EXT

“1 = t:} = [fx — 1= O(modﬂ*)],
{tl < 'z] = [tx - &< 0(mod @*)]

The mverse statement 1s also true but we do not need 1t and we do not prove 1t

Theorem 7.1 (Elimuination Theorem) For every EXL-formula o there exists an
EXL-fermula a* such that o* has no bound elementary varables and x =a*
m EXT

The Ehmination Theorem 1s the object of Part 2 {Sections 7-10) The proof
below gives a primttively recursive procedure for building a* from o And of
course a ° has the same free varables as «

The Convex Subgroups Theory, CST, is defined in Section 11 As a corollary of
Theorem 7 1 we have the following

Theorem 7.2. There exists a pnmitively recursive algorithm which for every EXL-
senten<e o bullds a CSL-seatence a* such that a € EXT fff a* € CST

Proof. Iet a be an EXL-sentence « does not contamn free elementary variables
By Theorem 7 1, @ does not contain elementary vanables at all

Wlog the mdividual constant 0 does not occur in « Indeed D(p,s,k,0) s
aiways true, E(p, s, k,0) 1s always false, 0€ T=0C T and 1t 1s easy to ehminate 0
from atoms 0= {mod T), 6>1(mod T), 0<!(mod T)

Further,

(Y=X)=(XCY &—3Z(XCZCY))
V(Y=X &MU D X)3Z(XCZCU))

So 1t can be assuimed that every superterm of a 15 a vaniable or § We also admit a
new individual constart U which denotes the maximal (non-proper) convex
subgroup

W iog all quantsfications in @ are restricted by §C X C U Indeed, IXB(X) =
B@vpU)vIAX(BX)& @BCXCU))
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W log the indivdual constants @ and U do not occur in o Indeed, E(@), E(U)
pls kB >r, pls k,UY>r, UCH are false #=0, C U, U =U are true And
because every variable in o 1s bounded by the open mterval (§ U) we can replace
#= X by the propositional constant “false™, #C X by the “tiue” and so on

As a matter of fact we now have a desired fromula &~

An EXL-formula a 15 called open if a has no bound e¢lementary variables
Below. we write “a = 87 mnstead of “‘a = 8 in EXT". “a tmphes 87 instead of “re
mmples 8 in EXT” and so on

The Ehmination Theorem 1s proved by an induction on ¢ The only non-triviel
case 1s the following

Lemma 7.1 (Main Lemma) For every open EXL-formula ce(x) ihere evists an open
EXL-formula o™ such that 3xa(x}=a’

The following simple statements are used often
Lemma 7.2 (Cases Lemma) If « imples VB, then Axa=V Ix (a & B/}

Lemma 7.3. Let a be an EXL~formula and B be a subformula of a such thar any
free occurrence in 3 of any vanable 15 never bound 1n « Let o, (respectively <) be
obtained from « by replacing B by the proposiional constant ‘true” (respectively
“false ") Ther Gra=3x (B & a)vIx (B & a)

Lemma 7.4, Let o be an EXL-formula and T be u superterm in « such that any
occurrence in T of any vanable s never bound 1 a Let o' be obtained from o by
replacing T by a new second order variable X Then 3xa=3XIx (X =T & o)

8. Primary case

An EXL-formula a{x) 1s called a p-formula if x can occur in a{x} only through
F(p,nt), D(p.r.c,t) or E(p,r,c,t) In other words a p-formula contains neither
A(t), tRc (mod T) nor F(q,r.t), D{q.7,¢c,t), E(g.r,c.t) where g# p

Theorem 8.1. Let a(x) be an open p-formula There exists an open p-formula o
such that Ixa(x)=a*

Theorem 8 11s the object of this section Let R be the set of numbers r occurring
in « through F(p,r,t(x)), D(p,r.c.t(x)) or E(p,r,c,t1(x)) Let s = max R It can be
assumed that s 1s the only element ot R, see Corollary 1 3 and Lemmas 1 »and { 6
in Section 1 Below we wnte F(2), D{(c¢, t), E(c, t) instead of F(p,s, 1), D{(p,s, ¢, 1},
E(p, s, c, t) respectively =1, 15 an abreviation for F(t,~1,)= ¢
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Note that x =y wmphes a(x)=a(y) Every elementary term ¢ of « can be
represented 1n a form ax + by, +  + bny. where 0 << a, b, <p* Moreover, 1t can
be assumed that a = p*, see Corollary 13 and Lemmas 15 and 1 6 in Section 1
Below 7 15 an elementary term without x and M 1s the sct of terms 7 occurring i «
through F(ax + 7), D(c,ax + 7) or E(c,ax + 7) It can be assumed that if r €M
then preM

By the Cases Lemma 1t can be assumed that for k =1, .,s, « has conjuncts
F(p**x +1,)CF(p**x + 1) for some 7. and every TEM Let & =p " “x + =
and t,=0 Then « 1imphes F{t)CF(t)C CF(t) Indeed, F(&)C
F(p**x +pres)=F(p - tes)) C F(tio1)

By the Cases Lemma 7 2 1t can be assumed that (F(#)C F(t+1)) or (F(t)=
F(t.1)) » a comunct mn ¢ In order to avoid using indices we assume that

W=F(t)= =FUL)CF@l.)= =F@)CF(@.)= =F()
Evidently
{ pl kps y = ( k(f"T.)z"p Toy ]fksl,
prx= b "P‘ Tx = ’ “( 7). f1<ks=y,
Py = ”‘(tg-—r,), ifj<ks<s

Let a'(x,x,) be 4 formula such that a(x)=a'(1, )

Lemma 8.1.

Bxa(x) =3x, EX, [a’(x,,x‘) & p"'(xl —_ 71) = -7 & ps"’(y‘ - T\) =X, Tl]
Procf. o(x) mplies a'(t,%.) Conversely a'(x, x,) implies a(x, = 7.)

Coroliary 8.i. It 15 enough to prove Theorem 81 for a(x) such that a(x) has
conquncts p*x = 1y and §C F(x)C F(p'x + 7) for some 1<k <s and 7o and every
Osi<kandreM

Let N=lpx+7 0s1<k & TEM} Wlog N s the set of all elementary
terms f{x) m «
Wlog (X = F(x)) 15 a conjunct in &, see Lemma 7 4 in Section 7

Lemma 8.2 Wiog a has comuncts F(1)C X, r€M

Proof. Let + € M By thc Cases Lemma it can be assumed that F(r)C X cor
X C F(r) 15 a conpunct of @ But F(x)= X C F(r) mmplies F(p'x +7)= F(r),
D(c,p'x +1y=D(c,7) and E(c,p'x + 7)=E(c,7) So we can cancel 7 friom M

Lemma 8.3. The corjunct p*x =71, can be replaced n a by p*‘ry=0 &
F(p*x - 1) C X
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Proof. Let a'(x) be the result of the 1eplacement a(x) :mphes a'(x) Conversely,
suppose a'(x) Then p*x —7,=y forsome y € X and p* 'y =0.1¢ y =p*z for
some z It 1s easy to check that a(x - z) 1s true

Evidently o mmphes F(i)= X fo1 t €N

Corollary 8.2. Wlog a =as & a(n) & B(x) where ay15p* *ro=0 & §C X &
AMF(TYCX TE€MbaiisF(pix —7)C X & AF{ty=X + & N}andxcanocrur
i B(x) only through atoms D(c,t) k(c,t)

Lemma 8.4. Let oy and E(X) umply 3x (a, & B)=v and oy and — E{X) mnply
Ax(a;, &P)=6 Then, Ixa=a, K EX)&yvar& MNE(X) &S

Proof. Clear

So 1t 1s enough to find the corresponding v and é

Suppose a, and E{(X) By the Cases Lemma 1t can be assumed that 8 has a
conjunct E(a, x), 1 < a <p" Therefore we can replace D(,t)by {E(b p’.1) i =
o <p '}, E(bjp'x +rYby E(b—a p'.7), Fp'x +7)=X by mE(~ap' 1)

Asaitesull ai{x) & B(x)=F(x)= X & E(a,x) & o' for some open o’ withont
x And,

N &pB)=a’" &Ix(Flx)=X & E(a,x)=a' & E(X)

Suppose w, and -1 E(X)

Wlog every atomn 8 hasaform D (. t(x)) Ind ed, let B, be an atom Lix)
If By = E(J, t(x)) then B, can be replaced by “false” Let £, 1 ot contain x By the
Cases Lemraa it can be assumed that 8, or =1 8, 1s 4 conjunct of £(x) It can be
assumed that B, occurs only once in B(x) let a, & f = *f.&a’ ben
2x (o & B)= %8, & 3xa'(x)

Let a bar aenote the nar ral 1somorphism Ia(p, s, X)— (p,s, X) Let a be
p “$ =7, & AN{t#0 t € N}and B’ be obtained from B by replacement of D (5,7} by
t= 0(modp’) Evidently Jx (ai(x) & B(x))=3% («)(X) & B'(X))

Let K(p, s) be the class of (Abehan) groups satisfying the axiom p* v =0 Let a
first order language L (p, s) be obtaned from the elementary language of groups by
adding the atoms t =0(modp') Let T(p,s) be the theory of K(p,s) in L{p.s)

Lemma 8.5. T(p,s) admits a quantifier ehmmation
Proof. It 1s easy to check Lemma 8 5 with the aid of [17] or even without it

According to Lemma 8 5 the formula 3% (a{(X) & B'(X)) 15 equvalent 1n T(p, )
to some Boolean combination of atoms 7=0 and ‘7 =0(modp’) Then
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Jx (a(x) & B(x)) 15 equivalent to the correspond.ng Beolean combination of
atoms F{7)C X and D{j, v} Theorem 81 1s proved
9. Without exiles
Superterms A (¢(x)) and atoms 1(x)Rk (mod T') will be called exiles

Theorem 9.1. Let a(x) be an open EXL-formula without exiles There easts an
open EXL-formula o such that 3xa(x)=a™

Proof. Let o be the set of pars {(pr) occurring m a«a through
F(p,r,t{x)), D(p,r,c.t(x)). E(p,r,c,t(x)) Let w={p Jr(p,r)Eoc} and s, =
max{p (p,r)€ o}

Lemma 9.1. Wlog a(x)=B & Aa,(x) p E 7} where every «,(x) s a p-
formula and B does not contain x

Proof. See Lemmas 73 and 7 4

Lemma 9.2. 3xa(x)=8 & A{3xa,(x) pE 7}

Proof. Suppose 8 and a,(x,), p €7 There exist integers a, such that a, =
I(mods,) and a, =0{mods,) for g € = — {p} It 1s easy to check that a(Za,x,)

holds

Now Theorem 8 1 ymphes Theorem 9 1

i0. Bamnishment
Superterms A (t{x}) and atoms t(x)Rk (mod T} are called exu-s

Theorem 10.1. Let «(x) be an open EXL-formula There exists an open EXL-
formula o*(x) without extles such that Axa(x)=Ixa*(x)

Theorens 10 115 the object of this <ection The Main Lemma of Section 7 follows
from Theorem 10 I and Theorem 9 1
Below 7 15 an elementarv ‘erm without x

Lemma 10.1. W Lo.g. every elementary term t\x) m a has a form x + 71

Proof. Every f{(x) can be represented 1n a form ax + ¢ for some integer a Let
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S={a#0 ax + v occursin a} et b be the least common multiple of numbeis
§ 1t can be assumed that p 15 the only element of 8, see Corollanies 12, 1 8. { {2
and Lemmas 15, 16 Let a'(x) be the formula such that a{x)= «'(bt) Then
Fra(x)=3x[a'(x) & F(b,2)=0] Now Coroliary 14 1s used

Lemma 10.2. Wlog a=(Ax)=X)& 8 & y where

(1} 8 s a comunction of extle atoms (v + r)Rk (mod X),

(2) B has no comuncts x + 7 =9 (mod X).

(3) v has no exiles at all,

(4) for every compunct (x + 1)Rk (mod X) in B there exists « compunct A (tYC X n
vy and

(5) X#0 15 a conjunct n vy

Proof. Let M be the set of terms r occurring i a through A(x +71) o1
{(x + 7)Rk {(mod T) By the Cases Lemma it can be assumed that (A(x +7.)=
A +r)or (A(x +75)C A(x + 7)) 1s a conjunct in & for some fixed 7, and everns
7€ M Because of Axa(«)=dxca(x — 7.,)1t can be assumrd 7, = 0 Moreover it can
be assurned that (A{x)= A(x + 7)) 18 a conjunct m &, 7E M Indeed, A(x)C
A{x+71) 15 equivalent to A(x)C A(r) and wmphes (x + )Rk (mod 7) =
TRk (mod T) So a = a, & a: where o, = A{A(x)=A(x +71) T E M}

Wlog a:=(A(x)=X)& a:, see Lemma 74 Wlog a. has no exile super-
terms Let 8 = (x + r)Rk (mod T) be an exile atcm m e« Wiog I = X Indeed,
it can be assumed that TC X, T=X or X CT 1s a conjunct m o In the case
X CT we can replace 8 by GRk (mod T) In the case TC X and k#0 we can
replace B by E(T) & (x + 7)R0(mod X) In the case TC X and k =0 we can
replace B by (x + 7})RO(mod X) Wlog B or =8 1saconjunctin as, see Lemma
73 It can be assumed that B 1s a conjunct because of

“x+r<k{modXN=(x + 7=k (mod X)) v(x + 7>k (mod X})

and similarly for other cases

A conjunct A(x)=A(x + 7)1 a, can be replaced by

AMT)C X & x +7<0(mod X) or

A(R)CX & L +7>0(mod X)

If @ has a cenjunct x + 7 = 0(mod X) then a 15 false

By the Cases Lemma X =% o+ X#9 1> a conjunct m « In the case X =0
a(x)=a(0) QED

Let o be the set of pairs (p, r) occurring in v through F(p,r, t(x)}), D(p,r.c, t{v}}
ot E(p,r, ¢, t{x)) Let s be the least common multiple of the numbers p” (p.r)€ v

Lemma 10.3. If x =y (mods), then y(x)=y(y)
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Proof. Clear

Below F(s,t)C X and E(s, ¢, t) are used as abbreviations for

ANF(p,nt)CX (p.r)E o} and

A{E{p.r,c.t) {p,r) E o} respectively
{(cf, Corollary 1 4)

Suppose (x + 70 = k {mod X)) s aconjunct in 8 W lo.g 1t sthe only conjunct mn
B Indeed 1t 1mphes that

(x + 7)RI (mod X) = (7 — )R (I — k)(mod X)
Wiog 70=0 Indeed,
Ax[Ax)=X & x+ 1=k (mod X) & y(x)]=
=3qx[AX)=X & x =k fmod X) & y{x — 70)]
Let afx)= E(X) & y(x) & F(5,x)C X & E(s, k, x)

Lemma 10.4. Jve ()= dxan(x)

Proof. a(x) 1mplics adx) Conversely, suppose aq(x) Because of F{s,x)C X
there exists y € X" — X such that y = v (mods) Clearly as(y) & A(y) = X holds
Therefore y = k + ns (mod X) for some n Let u =1(mod X) Then a(y — nsu)
holds

Let every conjunct m 8 be an mequality Note that

x+r<ki(modX) & x +7m<k:(mod X)=
Ex+’r,<k;(modX)& Tr— a,$k2~k1(m0dX)V
x+ 1<k mod X) & 71— 1. sk ~ kx{(mod X)

So it can be assumed that B has at most one conjunct of a form x +7 <
k (mod X) and (sirularly) at most one conjuct of a form x + 7 > k (mod X) It also
can be assumed that E(X) or mE(X) 1, a conjunct 1n y

Case 1 p hasat most one conjunct Leta; be F(5,2)C X & X C X" & v(x)

Lemma 10.5. Sxa(x)=3Ixa(x)

Proof. a(x) imples a{x) Conversely, suppose a(x) Wlog A(x)= X, see the
proof of Lemma 104 1. a has no exile-atoms then a(x) holds Let g =x + 1<
E (mod X) (respectively B=x+r>k(modX)) Let y>0(modX} Then
a{x — nsy) (respectively a{« + nsy)) holds for sufficiently large n
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Case 2 B=m7+k <y <7+ k:(mod X)and — E(X)1saconjunctin y It can
be assumed that k= k,=0 [f k, #0 or k;#0 then a 1s false Let o =a, & 7, <
72 (mod X))

Lemma 10.6. Fxa(d)=dva(n1)

Proof. a(x) mplies ax(x) Conversely, suppose ax(x) Wlog A{x}=X The
Archemedean o-group X /X 1s somorphic to some dense ordered subgroup of the
o-group of reals So there exists y >0 (mod X)) such that sy <7, - 7,(mod X) Then
a(x + nsy) holds for some n

Case 3 B=r1,+k,<x <7+ k;(modX)and E(X)1saconjunct ny Let § be
T+ ky+ 28 <4yt kytmod X) It can be assumed that § o1 —1 8 15 a conjunct m vy
But mn the case —1 8 we can replace 8 by oneof theatoms v =7, + k, ~ L 1 = [~ 25
and use Lemma 104 So it can be assumed that 8 15 a conjunct m y Let
;= F(S,x)gX & b4

Lemma 10.7. 3xa{x)=Txa:(x)

Proof. a(x) implies a+(x) Conver<ely, supposc ax(x) Wlog A(x)=X The
Archemedean o-group X'/X 1s 1sou orphic to the o-group of integers Lot y =
1(mod X)) Then a(x + nsy) holds for some n

PART 3. CONVEX SUBGROUPS THEORY
11. Decidability theorem

The Convex Subgroups Language CSL s a first order language whose non-logical
constants are “ <7, the one-place predicate symbol E and the one-place predicate
symbols p(s, k) > r where p, s, k and r are naturals, p 1s pnme and [ < k <5 Every
o-group G gives the natural model AG of CSL as follows Elements of AG are
proper convex subgroups of G (a convex subgroup X C G 1s proper if X# G}
X <Y =XCY The predicates E(X) and p(s, k, X) > r are defined according to
Section 1 The Convex Subgroups Thecry CST s the set of CSL-formulas holding
m all 4G

Theorem 11.1. CST s decidable
Let o be a finite set of quadruples (p, s, k, r) of naturals where p 1s prime and

Ik <¢ Let L, be a sublanguage of CSL whose non-logi~al symbols are <, E
and p(s,F)>r where (p,s, k,r)€ o Let T, = L, NCST
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Theorem 11.2. T, is umformly decidable on o

Clearly Theorem 11 2 implies Theorem 111

Let 4,G be the correspondmg L, projection of the natural CSL-model 4G
Evidently T, 1s the theory of all 4,G

Let oy o3, 03, o, be the corresponding projections of o and s = max o: Accord-
ing to Theorem 1 1 it can be assumed that s 1s the only elementof o> Wlo g itcan
be assaumed also that if p € o, | Sk <sand0<r<maxo., then(p.s,k.r)Eo

The following abbreviations are used

plk,x)>r for p(s,k,x}>r,

p(k,x)=0 for —1(p(k,x)>0),

pk,x)=r=+1 for plk,x)>r & —i(p(k,x)>r+1),

p(xy=0 for {p(k,x)=0 1<k <s},

p'(x)=0 for {p(k,x)=0 1<k <s},

y=x" forx<y&3z(ax<z<y)vx=y &Mu>x)Jz(x<z<u)

A model A of L, 1s called a o-chamn (a complate o-chamn) it A 1s a chamn (a
complete chain) The definition of complete chains 1s found n Section 14

K, 1s the class of complete o-chamns satisfying the followmg avioms (where
pEoyand rr+1€a,)

(K1) JxVy (x <y),

{K2) x<yDIzxsz<zsy),

(K3) plk,x)>r+12 plk,x)>r,

(K4) px)A0DFy(x<y)& Wy >x)Iz(x<z<y & p(2)#0),
(K5) E)D(x<x v¥y(y<=x)D&p(s,a)=1

ThK, 15 the theory of K, in L,
Lemma 11.1. ThX, s uniformly decidable on o

Proof. Let C, be the theory of all coniplete o-clamsn L, By Theorem 152 C, 1s
uniformly devidable on ¢ But'ThK, 1s finitely axiomatizable in 7,

Lemma 11.2. A.G €K,

Proof. Yvidently A.G 15 a complete o-chain and satisfies axioms (K1)-(K3) For
axioms (K4) and {X5) see Theorems 12 and 1 3

In Section 12 we build a class M, of o-chains such that ThM, C ThK,
According to Sectira 13 for every C € M, there exists an o-group G such that
A5 =C So T, C(according to Section 13) ThM, C (according to Secuon 12)
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ThK, C(by the Lemma 12)C T, So, T,=Thk, and Lemma {1 mph
Theorem 11 2

12. o-chains

Definition 12.1. A o-chain S 1s the mnternal ordinal sum Z{A, 1 € [} ot 1fs convey
submodels A, on a ¢hamn 1 if

() S=U{A, (€1} and

2):1<) x€A, v EA mply x<v

Definition 12 2. An external ordinal sum S =X{A, 1 €1} ot o-chains A, on 4
cham I 1s defined as {ollows Elements of § are paurs (1.a) whete 1 € [ and ¢ € A,

(,x)<(y)ffr <y or:=jandx <v Andforevery one-place predicate svmbol P
m L., SEPGx) ff A EP(x) An ordinal multple A T=2{4A, & and
A = A}

Notations. Let A and B be o-chains, B 18 one-element and b € B The following
abbreviattons are used

plk,BY=r for BFp{k,b)=r

E(B) for B & E(b),

p'A=0for AN{plk a)=0 a €A and k <s},

pA =0 for A{plk a)=0 a€ A and k <<}

Let U, be the class of such one-clement o-chains B that — E(B) Let 0, denote
every o-chain B € U, such that (Vp € o )pB =0 Let w (respectively o *) be the
naturally (resp inversely) ordercd set of natural numbers Let R bc the chan
of reals

Definition 12.3. Let F be a fimite set of o-chamns An ordinal sum 2{A, 1 €1} 1s
called F-dense 1f

(1) Vi (3B € FMA, = B,

2y (VB FY{t A =B} dense wn I} and

(3) I has neither miramal nor maximal elements

Lemma 12.1. Every two F-dense o-chains are elementary equivalent
Proof. By the Ehrenfeucht Criterion {2}

Definition 12.4. An ordinal sum § = 2{A, r € R} s called an F-shuffing and 1s
denoted by 7F if

(1) § 1s F-dense,

(2) (3B € F)B 1 not one-element,

(3) (IB E€F) {r A.# B} 1s countable and



220 Y Gurevich

(4) 1f {r A,# B} 1s countable and B 1s one-element then B =0,

Definition 12.5. Let M. be the least class of o-chains such that

(1) 1 o-chain A 1s one-element and p'A =0 then A € M.,

(2) H ABEM, then A+BEM,,

B U AEM, then A w &M,

@ 'f AEM, BEU, and (YpE)(pPA=0D p'B=0), then B+A o*
€ M,

5) C+7FeM, f C€U, and finte F=F UF, where non-zero
F,.C{A+B A=M, and B€ U.} and F,C U,, and

(¥p € v )[((YD € F)pD =0) 2 p'C = 0]
Theorem 12.I. ThM, C ThK,

Proof. It 1z enough te prove that for every n=1,2, every AEK, 15 n-
equivalen. to some BEM, Fix n

Defipition 12.6. o chain A wili be called good if 1t satisfies one of the following
requirements

(G1) A 1s n-equivalent to some B € M,

(G2) A does not have the minimal element and B + A satisfies (G1) for every
B € U, such that, for every pE€o, and a € A, if p’B#0 then
(c E A)(c <a and pc#0),

(G3 A 18 onc-element and (Ap € o,)p'A# 0 and
(G4) A=A+ B vwhere A’ sansfies (G1) or (G2) and B satisfies (G3)

Lenma 12.2. If a good ¢-chain A € K,,, then A satisfies (G1)

Proof. Clear

Definition 127. o cham A s cailed quasi-good if every non-void half-closed
mterval jx.y) =12 xsz <y} mm A 15 good

Lemma 12.3. Every quasi-gnod o-chamn 1s good
Proof, See the proof of Lemma 143

Lemma 12.4. Every w-chain in K, 15 good
Proof. See the proof of Lemma 144

Theorem 12 1 1s proved
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13. Constructing o groups

Theorem 13.1. Forevery o-chain A € M, there exisis an o-group G s .ch that A,G
s somorphic to A

Proof. By an induction on A Desired o-groups will be constructed as subgroups of
lexicographic sums of countable Archimedean o-groups The operations of gluing
a': 1 interlacement of Section 5 praserve this property

tet A be one-element Then (Vp € o\)p’A =0 If the only element of A satisfies
the predicate E then the naturally ordered group of natural numbers 1s a de~ired
o-group Let A € U, By the Gluing Theorem of Section 5 1t can be assumed that
Yp (pA =0) or pA =1 for some p and gA =0 for everv g% p So Q or O, (see
Section 3) 1s a desired o-group

Let A =B+ B:and B, =A4,H,, 1 = 1,2 Then the lexicograpmicsum H,+ H; 1< a
de sired o-group

letA=B wandB=AH Then Ho = LI{H, 1 € w and H, = H}1sa desied
o-group

Let A=C+B w* B=4H and CeU, If C=0, then H w’=
LZ{H, 1€ o*and H, = H} s adesired group Le: p(k, C) # G forsome p and k

It can be assumed that p(k,C)=1and q(L, C)=01f g# p or I#¥ k Indeed et
plk,Cu)=1and q(L, Cx)=01fq#porl#k andlet A, Hu =Cy + B w* Then
a suitable interlacement of o-groups H,, (see the Interlacement Theorerm in Section
5) 1s a desired o-group

It H 15 not p-divisible then the o-group G of Section 2 15 a desired group Let H
be p-divisible

It can be assume that H 1s a lexicographic multiple of Q Indeed, let H' =
LE{H 1€AH«H =Q}and 4,G'=C+AH w* Thenaglungof H o’
and G'1s a desired o-group It can be assumed that H = Q Indeed:f H £ Q then H
1s an 1nterlacement of Q and some H' Let A,G'=C+ Qo™ Then a suitable
mterlacement of H'w* and G’ 1s a desired o-group

Now the group G of Section 3 1s a desired o-group

Suppose

A=D+7(FUF), DeU.,,
F,={B+C l1si<sm and B =41 and C. € U,}
nd

F,={C, m<i<nand C € U,}

Wlog D=0, Indeed let A,G'=0,++(F,UF,) Then 4,(G'/X)=
Bi+Ci+7r(FiUF;) for some convex subgroup XCG' and A=
D +4,(G'/X) o* See the previous case

wet A =0,+{D, r &R} and



222 ¥ Gurevich
{{rER D.=B +C}, firsm,
R, =

{reER D, =C}. ifm <71
Wiog m=1 Ifm>1let A, =0, +2{F, r&R} where

B,+C,, freR,,
F=1C, freER, and m <,
| O, n other cases

and for 1<r1sm let A, =0, +Z{F, r €R} where

{ B +C reR,

F =
i Q, n other cases
Let A,G, = A, 1=1, m Then the corresponding interlacement of o-groups
G, ,G. 1s adesired o-group

Below B =B, and H = H,

Wlog C =10, audR - R, 1s countable forscme 1 > 1 Indeed, by the definition
of shuffling 1n Section 12, some R~ R, 1s countable and 1f 1 > 1 then C, =0, Let
R~ R, be countable There exists a representation R, = U{R, t€& I} where
swunmands R, are countable, dense mm R a1d disjomt Let u€l and A, =
0, + Z{F. r € R} where

B+C1', lf"ER“‘
F,=14 C, ft=u,reR and 1 >1,
G, in other cases

Let A,G, = A, The corresponding interlacement of o-groups G, 1s a desired
o-group

Wilog Ci=0, If C,#0, let R, = §,U S, where summands S, are dense in R
and disjoint Let A, =0, + Z{F, r €R} where

B+0, ifres,

F, = Cy, fres,,
C. f réR and 1 >1,
0, in other cases
Cy, fre s,
“ =4 B +0,, HreES,,
Do 1n other cases

Let A,G, = A, Then the corresponding interlacement of G, and G 1s a desired
o-group

Let s =2{pk,C) pEo, kEosy, 1<i<n}

Wlog s=1 The staiement 1s proved by induction on s Let C. Cr, € U, and
every p(k,C\)=p(k, C..)+ p(k,Cx). Let R;=S,US; and the summands S, are
dense m R and disjunctive Let A, =0, +Z{F; r € R} where
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B+0,, u#reR,,
Fi=14 G, if r&R, and 1 <y,
0. in other cases

Let 4,G. = A, Then the corresponding wterlacement of G, and G: 15 a desired
o-group

If s =0 then the lexicographic multiple H R, 15 a desned o-group

Suppose s = p(k,C-)=1 (and so F,={B,+0,}, F.={(,0,}

Case 1 Hsnot p-divistble There exists a repiesentation R, = U{R“ 1< Ry
such that R, N R, =0 f t#u and every cham R, 15 somorphic to «* and
mR, =t For every t€ R; et A, =Cy+ B Ry, and 75, be the o-group G of
Section 2 Then A,G, = A, and the interlacement of o-groups G, 15 a desired
0-group

Case 2 H 1s p-divistble Wlog H isa lexicographic multiple of the rational
o-group Q Indeed. let subcham I={X€A"H XCX }, H=0Q [ and A, =
0, + Z{F, r €R} where

AH'+0,, HreR,
C,, if r &R,
0, 1n other cises

Fr

it

Let A.Gi= A ,and G,=H R, Ther the corresponding gluing of G, and ;15
desired o-group

Wlog H = Q Suppose that H 1> not isomorohic to Q Then H 1sisomorphic te
lexicographic sum H,+ Q -+ H, where H; or H_ can be zero-group Let A, =
U, +{F. r €R} where

A,Q0+6,=0,+0,, HreR,,
F =3 C,, ifreR,,

0. in other cases

Let 4.G, = A,and G.= (H,+ H>) R, Then the corresponding interlacement of
G, and G; 15 a desired o-group

Lemma 13.1. Ler X, X, Y1, Y be countable dense subsets of the chain R of reals
and X, 0 X, =Y. NY.=@ There exists an automcrphism ¢ R—R such that
X =Y, 1=12

Proof. Let X=X, UX, and Y = Y, U Y. It s enough to construct an somor
phism ¢ X — Y such that ¢X, = Y, Indeed this ;somorphism can be extended as
foilows* & (hmx,) = hm¢x,

Fix 2 numeration of X U Y by naturals A 1-1-function f 1s called adwmi.ssible if
dom f 15 finite and rmg(f | X)C Y. A sequence fo,fi, of admussible functions s
constructed as follows fo=0 If n =2k and x 1s the element in X —dom f, of tne
minimal number then f,., 1s an admissible vxtension of f, such that x € dom f.., If
n =2k +1andy s the element 1n Y-rngf, of the minimal number then £, 15 an
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adm ssible extension of f such that y €Emgf.., Evidently mf, 15 a desired
1somorphism
Now 1t 1s clear that the o-group G of Section 6 1s a desired o-group Theorem 131

15 proved

APPENDIX. COMPLETE CHAINS WITH ONE-PLACE PREDICATES

A chain i3 a linear ordered set A chamn A 1s complete if A satisfies the following
second order axiom

VXCAYVYCANXAD& Y#ADP& VxEX)VyEY)x <y
DAz(VxEXNVyEY A<z =<y]

The decidability of the weak monadic second order theory of complete chains 1s
proved 1n Section 14 The proof uses [11] and [12] The decidability of the weak
monadic second order theory of complete chains with one-place predicates 1s
proved m Secuon 15, where this theory 1s reduced to the predecessor theory A
simular reduction was used in [5] The decision procedures are primitively recursive

14. Complete chains

L, 's the weak monadic second order language wnose enly non-logical constant 1s
<" K, 1s the class of complete chains, ThK, 's the Lo-theory of K,

Definnion 14.1. A chain S 1s the nternal ordinal sum Z{A, 1 € I} of 1ts convex
subchains A, on a chain I if

(1) $=U{A, 1€} and

21>, x€A,yEA mply x<y

Definition 12,2, An external ordinal sum § = Z{A, 1 € I} of chains A, onachawmn I
1s defned as follows Elements of § are pawrs (,x) where 1 €1 and x € A,
(,x)<(,y)ff 1<j or1=7 and x <y In particular A + B =3{A, 1 €{0,1},
0<1, Ay~ A B,= B} The ordinal product A I=Z{A, 1€I and A, = A}

Below o (respectively »*) 1s the naturally (respectively inversely) ordered set of
ndtural numbers and Q 15 the cham of rationals

Definition 14.3. Lct F be a fimite set of chams An ordinal sum £{A, 1€ I} 15
called F-dense i

(1) every A, EF,

2) for every B € F the subset {1 A, = B} s dense in A and

(3) I has nerther minimal nor maximal elements
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Definition 14.4. In the case T = Q an F-dense sum 15 called a shuffling of F and s
denoted by 7F

Every two shufflings of F aie somorpme
Lemma 14.1. Every two F-devrse chains are Lo-equivalent
Proof. By the Ehrenfeucht Criterion [2]

Let M be the muntmal class of chains such thar

(1) M contamns all one-element chams,

(2) if A BEM and either A contamns the last :lement or B contains the frst
element then A + B EM,

(3) if A €M and A contans either the first or he fast element then A w and
A w* belong to U,

(4) if a fimte FCM and every member of F contamns the first anc the last
elements then vF €M

Let ThM be the Le-theory of M

Lemma 142, ThK,CThM

Proof. It 1s enough to prove that every A € M 1s Li-equivalent to some A'& K,
An induction on A and the Ehrenfeucht Criterion {2} are used The case of
one-element A 15 trivial {(A+BY=A"+B, (A w)Y=A" wand (A w™y=
A' w* Let A=7F and F'={B' B€F} Then A 15 Lyerqunalent to cvery
F'-dense sum 2{A, : € R} where R 1s the cha'n of 1eals

Theorem 14.1. ThMCThK,

Proof. It 1s enough to prove that tor every n =12, every A€ K, 15 n
squivalent to some B € M Fix n Chain A will be called good 1f 1t 1s equivalent to
some B EM Chain A will be called quasi-good 1if every non-void half-closed
mterval i, y)={z x=<z <y}of A 1s good

Lemma 14.3. Every quasi-good chamn 1s good

Proof. There exists Lo-sentence a such that a chain A 15 good iff 1t satisfies o Lot
B{(x, y) be obtaned from a by the restriction of the quantifiers to the mterval [x )
Lemma 14 3 states that ¥Vxy(x <y D B{(x,y)) imphes a So 1t 1s enovgh to prove
Lemma 14 3 only for countable chains Let A be a countable quasi-good chawn

Case 1 A has the mimmal element a f A ={a,b]=[a b)+{b} thea A 15
good Suppose A does not contain the maximal element and B be a subsst of A
such that B=w and (Vx € A)(Fy € B)x <y Let {x,y}~{u, v} ff the mservals
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[x y)U{y,x) and [u, v)U[v, u) are non-void and r -equivalent By the Ramsey
The orem [14] there exists an nfimite C C B such that every pair of different
elements of C are equivalent Let b, ¢ € C and b < ¢ By means of the Ehrenfeucht
Criterion [2] 1t 1s easy to check that A 1s n-equivalent to [a, b} +{b,c)w So A 1s
gocd

Case 2 A does not contam the mmmmal elemen Simlarly 1t 18 proved that
there exists mfimte C C A such that (Yx € A)(Iye Cyy <x andif x,y,u, v C
and x <y, u <v then {x,y) and [u, v) are n-equivalent Let b,c € C and b <c¢
Then A 1s n-equwvaient to [b,c)o*+{x ¢ <x} and A 1s good

Lemma 14.4. Every complete chain s good

Proof. Let A be a complete chain Forx,y€A letx~y ff x =y or x#y and
[x,y}U[v,2) 15 quasi-gond The mtroduced relation 1s an equivalence relation
Evety ¥ ={y x ~y} i1s convex, quasi-good and good Let A ={i xE€ A} be
ordered as follows ¥ <j =1y <y A 1sadensechain If A i1s one-element Lemma
14 415 proved Suppose (reductio ad absurdum) A 1s not one-element For % < v let
F(X, 3) be a minimal subset of M such that every Z € (X, ¥) 15 n-equivalent to some
B € F(% §) Let F = F(4, §) have the mimmal possible power Then U{7 <5<
¥} 15 n-equivalent to an F-dense cham and 1s quast-good This contradicts to
density of A Lemma 14 4 15 proved

Theorem 14 1 1s proved
Thecrewa 14.2, Th M s decidable

Proof. We assume the kuowledge of [12] Let n =2 We <ay that n-type ¢ 1s I-good
{r-good) f t,(A)=t imples ARIxVy(x<y) (AFIxVy(y<rx)) The pred:
cates “f-good” and “r-good” are effective Let S, be the least set of n-types such
that

(1) n-type of one-element chans belongs to S,

(2) if s, t €8, and cither 5 15 r-good or ¢ 1s I-good then s+nt €S,

(3) it s €8, and s 1> erther [-good or r-good then w,(s), wi(s) E S,

(4) st X C S5, and every s € X 15 [-good and r-good then o,(X)E S,

It's easy to see that S, 1s the set of n-types of M and §,, effectively depends on n
So Th M 1s decidavle

Lemma 14 2 and Theorems 14 1 and 14 2 imply

Theo ez 14.3. Th K, 15 decidable
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15. Adding one-piace predicates

Let L,. be the weak monadic second order language whose non-logical consiante
are " <" and the one-place predicate symbols P, P, Let K, be the class of
such L,,-models A that Lieduction ot A 1s a complete chain Let K, be the class
of such models A € K,, that A satisfies the following axioms

V{P.(x) 1<<i<m} and

P{(x)D P {(x)wheie lsi1<j=<m
{In other woids A EVx 3" 1P (x))

Let ThX,. (respectively ThK,) be the L, -theory of K, (resp K/)

Lemma 15.1. ThK,, s umformly on m reducible to ThX] where n = 2"
Proof. Clear
Theorem 15.1. Th K, 15 uniformly on » rediced to ThK,

Proof. The following abbreviations are use *

0 y=x"forv<y &3z (x<z<y)
vy =y & (Vu>1j3dz (x <z <u),
() y=x fory<x & —3z(y <z<x)

vy=y & (Vu <a)3z(u <z <),

xlzxf, lf]zl‘
() R, (»\) for {sz A <xV=xo Isi<) &x, =x]], f1<)<n,
Ix: v A <al =2, 1s1<n}, if = n

Let B be an L,-sentence and B’ be obtamed from B by
(1) the restricion of quantifiers by x = x ~ and
(2) the replacing of every P, by R,

leta=(B &Ix(x=x7))

Lemma 15.2. B8 has a model in K, iff @ has a model tn K,

Droof, Let AEK, and Aka Let A'={x €A x=x"} A’ 1 complete The
defimtions P, (x)= R, (x) turn A’ to an L,-model satisfying 8

Let BE K, and BF 8 Let A be the ordina’ sum Z{C, b € B} ot chamms C,
which are defined as follows Let BEP.(b) fx <xlet C, =+ w" + w {wheie:
denotes a chain contamng exactly 1 elements) If ¢ = ¢" Jet Ch =1+ w™ It s easy
to check that A s complete and A ko
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Because B 1s an arbitrary formula of L,, Lemma 15 2 imphes Theorem 151
From Theorem 14 3, Theorem 151 and Lemma 151 we obtamn

Theo.em 15.2. ThK,, s unuformly decidable on m
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