EXPANDED THEORY OF ORDERED ABELIAN GROUPS

Yurn GUREVICH
Department of Matnema ics, Ben Gurton Unversty of the Neg ${ }^{v}$, Beer Sheva J,rael

Recened 20 October 1974
Revised version received 10 January 1977

Abstract

The theory of ordered Abeltan groups with quantification orer convex subsroupe s stublud An elimination of the elementary quantifiers is presented and a pimiticiticcursive decisom procedure for this theory is constructed

0. Introduction

For the sake of brevity the terms "group", "o-group" and "chan" will be ubed for "Abehan group", "linearly ordered Abelian group" and "nealy ordered set" respectively

Algebraically speaking an o-group G is a group ard a chain, and toi ever, $x, y, z \in G, x<y$ mplues $x+z<y+z$

Let G be an o-group It is easy to check that G w toision free, has nether minimal nor maximal element and is etthe- discretely or densely ordered A subset $X \subseteq G$ is called a convex subgroup of G iff X is a subgroup and X is convex (the latter means that for every $x_{1}, x_{2} \in X$ and each $y \in G$, f $x_{1}<y<x_{2}$ then $y \in X$) Convex subgioups play a fundamental role in non-formalized theory of o-groups (see [3]) It is easy to check that convex subgroups of G are linearly ordered bv inclusion

Let us review the history
G is called Archimedean iff for every positive $x, y \in G$ there exists a natural n such that $x<n y G$ is Archimedean iff $\{0\}$ and G are the only convex subgroups of G Archmedean o-group is embeddable into the naturally ordered additive group of reals (see Holder's Theorem in [3]) The elementary theory of Archmudean o-groups was studied by Robinson and Zakon (see [15]) Here are their main results G is called n-regular iff for every $x_{1}, \quad, x_{n} \in G$ there exists $y \in G$ such that $x_{1} \ll x_{n}$ imphes $x_{1} \leqslant n y \leqslant x_{2} G$ is called regular iff it is n-regular for each positive nteger n Each Archimedean o-group is regular Each regular o-group is elementanly equ:valent to some Aichimedean o-group Two descrete (respectively
dense) regular o groun are eleme tarnly equivalent iff they are elementarily equivalent as groups

The mann result of Kargapolov's paper [10] is a classification of the o-groups of finte rank by their elementary properties (a torsion free group has a finite rank iff it is embeddable in a firute dimensional vector space over the rational field) According to [4], everv two o-groups are unversally equivalent

In [5], all o-groups were classified by their elementary properties, and the elementary theory of o-groups was algonthmically reduced to the elementarily theory of chams Togeher with [11] it gives a decision procedure for the elementary theory of o-groups An elmination of quantifiers in the elementary theory of o-groups was presented in [6] Together with [12] it gives a primitively recursive decision proceduse for the elementary theory of o-groups The part of [6] relating to o-groups was never published

Here we study the theory of o-groups with quantification over convex subgroups We eliminate the elementary quantifiers, and construct a primitively recursive decision proceduse for this theory The main results of the present paper were announced in [7] An earher version of a part of this paper mav be found in the Soviet Instutute of Scientific and Technical Information (Moscow), number 6708-73, [8] is the corresponding abstract

Let us summanze the contents of the present paper
Part l of the present paper is purcly algebratic The key notion here is the functor $F(s, x)$ (called the s-fundament of x)

In Part 2 we define the Expanded Theory of o-groups, and eliminate the elementary quantifiers The Expanded Theory is the theory of o-groups whit quantification over convex subgroup enriched by some definable predicates The elimination of elementary quantifiers reduces the Expanded Theory to so-called Convex Subgroups Theory The latter is an elementary theory of the chams of convex subgroups with some surplus one-place predicates (each o-group provides us with a model of the Convex Subgroups Theory)

In Part 3 we axiomatize the Convex Subgroups Theory in the elementary theory of complete chams with surplus one-place predicates in such a way that for each sentence α, n the language of the Convex Subgroup $¢$ Theory one can easily select a finte number of axioms deciding α

In the Appendix we prove that the weak monadic second order theory of complete chans with surplus one-place predicates is primitively recursive (This strengthens he result of [13], but was obtamed simultaneously and independently) Together with the previous pats it gives a primitively recursive decision procedure for the Expanded Theory of o-groups

Some words atout possible generalizations The theorem about elimination of elementary quantifiers can be casily generalized by enriching the part of the language concerning convex sut groups Generalizations of the decidabilty result are restricted by undecidabilty results in theory of chains For example allowing quantification over arbitrary subsets of convex subgroups leads to undecidable
theory if the Contnuum Hypothess holds This follows from undecidability of the monadic theory of the real line, see Shelah's paper [16] One of the possible generalizations is obtained by alowing quantification over finte subsets of consex subgroups The elementary quantifiers can be eliminated, and the erinched theory remains primstively recursive One can have some generalizations of the form this specific theory of o-group is recursive modulo that speafic theory of chams About decision problem for lattice ordered Abehan groups see [9]

Some words about notation It a group H is the (internal) direct sum of its subgroups $H_{i} \quad t \in I$, we write $H=\Sigma\left\{H_{1} \quad t \in I\right\}$ In this case each $h \in H$ is equal $\%$ some finste sum $h_{t_{1}}+\quad+\dot{n}_{l_{n}}$ where $h_{1_{1}} \in H_{1_{1}}, \quad, h_{t_{n}} \in H_{i_{n}}$ The extenal direct sur of groups $H_{t}, t \in I$, is also denoted by $\Sigma\left\{H_{\imath}, t \in I\right\}$ The elements of the external direct sum are functions $f I \rightarrow \bigcup\left\{H_{i} \quad l \in I\right\}$ such that $f(i) \in H_{1}$ and $\{, f(l) \neq 0\}$ ss finite We can write $f=\Sigma f(l)$ Now let I be a chan and H_{1} 's ($\left.l \in I\right)$ be n-groups H_{s} $L \Sigma\left\{H_{2} \quad: \in I\right\}$ we denote the lexicographic (or ω-lexicographic) sum of H_{1} ', It is the direct sum ΣH_{1} ordered as follows $\Sigma h_{1}>0$ uf $\Sigma h_{1} \neq 0$ and $h_{1}>0$ where $\jmath=\max _{\{ }\left\{\quad h_{\mathrm{s}} \neq 0\right\}$ The lexicographic multiple $H I$ of an o-group H is $\sum\left\{H_{\mathrm{i}} \quad\right.$ ו $\in I$ and $\left.H_{t}=H\right\}$
"wlog" is an abbreviation for "without loss of generality"
A I Kokorm persuaded me (after [5] was published) to contmue tw work on algorithmic problems for ordered groups (I have returned to o-groups atter Cohen's preprint [1] demonstrating potentialties of the method of elimindtion of quantifiers) Jonathan Levin corrected the Engish of an earlier version of this paper The referee found some places which had to be corrected I am gratetul to all these people

PART 1. ALGEBRA

1. Fundamental subgroups

Throughout this section G is an o-group, $x, y, z \in G$ and X, Y are convex subgroups of G Here and below p is a prime number

Definition 1.1 ([5]) For an integer $s \neq 1$, we define

$$
F(s, x)=\bigcup\{X \quad \forall y(x+s y \notin X)\}, \quad F\left(p,{ }^{\prime}, x\right)=F\left(p^{\prime}, x\right)
$$

$F(s, x)$ is called the s-fundament of x
Corollary 1.1. $F(s, x)$ is a convex subgroup or $\emptyset, F(s, x)=\emptyset$ ff $x \equiv 0(\bmod s)$
Corollary 1.2. Let $a, b \neq 0$ be untegers Then $F(a b, b x)=F(a, x), F(a, x) \subseteq$ $F(a b, x), F(a, b x) \subseteq F(a, x)$ If a anc b a'e , elattvely prome, then $F(a b s)=F(a, x)$ and $F(a b, x)=F(a, x) \cup F(b, x)$

Corollary 1.3. Let $a=p^{\prime} b$ where $b \neq 0(\bmod p)$ Then $F(p, k, x)=F(p, k+t, a x)$
Corollary 1.4. Let $s=p_{1}^{\dot{1}_{1}} \quad p_{k}^{k_{k}}$ Then $F(s, x)=F\left(p_{1}, l_{1}, x\right) \cup \quad \cup F\left(p_{k},,_{k}, x\right)$
Corollary 1.5. $F(s, x+y) \subseteq F(s, x) \cup F(s, y)$ and if $F(s, x) \neq F(s, y)$. then $F(s, x+y)=F(s, \imath) \cup F(s, y)$

A proof is easy For example, we will show that $F(a b, x) \subseteq F(a, x) \cup F(b, x)$ if a and b are relatively prim: Suppose it is nut trie. then $F(a b, x)$ contams some $x+a y$ and $x+b z$ Because a and b are relatively prime, $c a+d b=1$ for some integers c and d, and so

$$
c a(x+b z)+d b(x+a y)=x+a b(c z+d y) \in F(a b, \lambda)
$$

However, this is imprasible

Definition 1.2. $\Gamma_{1}(s, K)$ is the subgroup $\{x \quad F(s, x) \subset X\}$
(11) $\Gamma_{2}(s, X)$ is the subgroup $\{x F(s, \lambda) \subseteq X\}$,
(iii) $\Gamma(s, X)$ is the factor group $\Gamma_{=}(s, X) / \Gamma_{1}(s, X)$,
(iv) $\Gamma(p, k, X)=\Gamma\left(p^{k}, X\right)$ and the same for Γ_{1} and Γ_{2}

It is more precise to write $\Gamma(s, X, G)$ instead of $\Gamma(s, X)$ and the same for $F, \Gamma_{1}, \Gamma_{2}$ This more precise notation is used in the following two lemmas

Lemma 1.1. Let a bar denote the natural homomorphism $G \rightarrow G / X$ Then $\Gamma(s, X, G)$ is tsomorphic to $\Gamma(s, \bar{X}, \bar{G})$

Proof. For every $Y \supseteq X, F(s, x) \subseteq Y$ iff $F(s, \bar{x}) \subseteq \bar{Y}$. Now it is easy to check that the correspondence $x+\Gamma_{1}(s, X) \rightarrow \bar{x}+\Gamma_{1}(s, \bar{X})$ is a required isomorphism

Lemma 1.2. Let $\lambda \subset Y$ Then $\Gamma(s, X, C)$ is isomorphic to $\Gamma(s, X, Y)$

Proof. The corre: pordence $x+\Gamma_{1}(s, X, Y) \rightarrow x+\Gamma_{1}(s, X, G)$ is an isomorphism from $\Gamma(s, X, Y)$ ento $\Gamma(s, X, G)$

A group $\Gamma(s, ~ K)$ satisfies the axiom $\forall v(s t=0)$ and so it has a representation as a direct sum of cylic groups

Definition 1.3. $p(s, k, X)$ is the cardinal number of cychic direct summands of the order p^{k} in a representation of $\Gamma(p, s, X)$ as a direct sum of cyche groups

Definition 1.4 (cf , [17]) Elements v_{1}, \quad, v_{n} of a group H are independent (strongly independent) modulo p^{k} if, for every integer $a_{i}, \quad, a_{n}, \Sigma a_{i} v_{1}=0$ $\left(\Sigma a_{1} v_{1} \equiv 0\left(\bmod p^{k}\right)\right)$ implies $a_{1}=a_{n} \equiv 0\left(\bmod p^{k}\right)$ A subset $M \subseteq H$ is inde-
pendent (sirongly independent) modulo p^{k} if every inte subset of M is so $\rho^{1}\left(p, k, H^{\prime}\right)\left(\rho^{3}(p, k, H)\right)$ is the power of a maximal independent (strongly independent) modulo p^{k} subset $M \subseteq H$ such that every clement of M has the order p^{k}

Corollary 1.6. Let $H=\Gamma(p, s, X)$ and $1 \leqslant h \leqslant s$ Then $\rho^{3}\left(p, k, I^{s},=p(s, k, X ;\right.$ and $\rho^{\prime}(p, k, H)=\Sigma(p(s, \imath, X) k \leqslant t \leqslant s\}$

A proof is easy

Lemma 1.3. Let $F(p, s, x)=\{0\}$ and $\bar{x}=x+\Gamma_{1}(p, s,\{0\}) \in \Gamma(p,,,\{0\})$
(1) The order of \bar{x} is p^{k} iff $\emptyset=F\left(p, s, p^{k} x\right) \subset F\left(p, s, p^{k}{ }^{i} x\right)=\{0\}$
(2) If the order of \bar{x} is p^{k} then $x \equiv 0\left(\bmod p^{k-k}\right)$

A proof is easy

Theorem 1.1. $p(s, k, X)=p(s+1, k, X)$ for $k<s$ ant $p(s, s, X)=p(s+1, s, s)$ $+p(s+1 s+1 . X)$

Proof. W $\log X=\{0\}$ (see Lemma 11) To simplify no ation we sometımes omit p and $\{0\}$ Let a bar (respectively prime) denote the na ural homomorphism from $\Gamma_{2}(s)$ onto $\Gamma(s)$ (resp from $\Gamma_{2}(s+1)$ onto $\Gamma(s+1)$) Note that
(1) $x \in \Gamma_{2}(s)$ iff $p x \in \Gamma_{2}(s+1)$ and
(i1) if $x \in \Gamma_{2}(s)$, then \bar{x} and $(p x)^{\prime}$ have the same order
Case $k<s$ Let U (resp V) be the famly of strongly independent modulo p^{k} subsets of $\Gamma(s)$ (resp $\Gamma(s+1)$) consisting of elements of order $p^{k} U$ and V arc partrally ordered by melusion Let $\left\{\bar{x}_{1}, i \in I\right\}$ be maxima in U it is enough to check that $\left\{\left(p x_{1}\right)^{\prime} \quad \imath \in I\right\}$ belongs to V and is maximal there First we check the strong independence Suppose that $\Sigma a_{1}\left(p x_{1}\right)^{\prime}=p^{k} u^{\prime}$ เ e $\Sigma a_{1} p k_{1}=p^{k} u+p^{\kappa+1} v$ for some? Then $\sum a_{1} p \bar{x}_{1}=p^{k} \bar{u}$ hence there exist b_{i} 's such that $a_{i} p=p^{k} b_{1}$ By Lemma 13 , $x_{1}=p^{s-k} y_{1}$ for some y_{i} So $p^{k} u=\Sigma p^{k} b_{t} p^{k-k} y_{1}-p^{s+1} v$ and $u=p w$ for some w Then $\Sigma a_{1} p x_{t}=p^{k} p w+p^{1+1} v$ and $\sum a_{1} \bar{x}_{t}=p^{k} \bar{w}$ which imphes $a_{1} \equiv 0\left(\bmod p^{k}\right)$ for every 1 Now we check the maxımality Let y^{\prime} be of order p^{k} By Lemma 13, $y=p z$ for some z There exist a_{t} 's, b and u such that $b \neq 0\left(\bmod p^{k}\right)$ and $b \bar{z}=\Sigma a_{1} \bar{r}_{1}+p^{k} \bar{u}$, since $\left\{\bar{x}_{1} \imath \in I\right\}$ is maxımal Then $b z=\Sigma a x_{1}+p^{k} u\left(\bmod p^{\dagger}\right), \quad b y=\Sigma a_{1} p x_{1}+$ $p^{k} p u\left(\bmod p^{s+1}\right)$ and $b y^{\prime}=\Sigma a_{3}\left(p x_{6}\right)^{\prime}+p^{k}(p u)^{\prime}$

Case $k=s$ By Corollary 16 it is enough to check that $\rho^{1}(p, s, \Gamma(s))=$ $\rho^{1}\left(p, s, \Gamma(s+1)\right.$) Let U (resp V) be the family of independent moduls p^{k} subsets of $\Gamma(s)$ (resp $\Gamma(s+1)$) consisting of elements of order p^{k} Let $\left\{\bar{x}_{i} l \in I\right\}$ be maximal in U We check that $\left\{\left(p x_{1}\right)^{\prime} \Xi I\right\}$ belongs to V and is maximal there If $\Sigma a_{i}\left(p x_{1}\right)^{\prime}=0$ then $\Sigma a_{i} p x_{i} \equiv 0\left(\bmod p^{s+1}\right), \Sigma a_{1} x_{i} \equiv 0\left(\bmod p^{s}\right), \Sigma a_{i} \bar{x}_{1}=0$, and $a_{i} \equiv$ $0\left(\bmod p^{k}\right)$ for every i The maximality s checked as above (but $u=0$)

Definition 1.5. (1) $A(x)=\bigcup\{X x \notin X\}$,
(ii) $X=\bigcap\{Y X \subset Y\}$ if $X \neq G$ and $X^{+}=G$ if $X=G$

Corollary 1.7. $A(x)$ is a convex subgroup or $\emptyset, A(x)=\emptyset$ iff $x=0$
Corollary 1.8. For any integer $c, A(c x) \subseteq A(x)$ If $c \neq 0$, then $A(c x)=A(x)$
Corollary 1.9. $A(x+y) \subseteq A(x) \cup A(y)$ If $A(x) \neq A(y)$, then $A(x+y)=$ $A(x) \cup A(y)$

Corollary 1.10. $\mathcal{Y} \subset X^{+}$iff $\exists x(X=A(x))$

A proof is easy
Note Cf the definition of $A(x)$ and Defintion 11

Definition 1.6. Let a bar denote the natural homomo phism $G \rightarrow G / X, R \in$ $\{<\leqslant,=\geqslant \gg\}$ and $a \neq 0$ be an integer
(1) $x R 0(\bmod X) \equiv \bar{x} R 0$,
(2) $[x=1(\bmod X)] \equiv 0<\bar{x}$ and $\neg \exists y(0<\bar{y}<\bar{x})$,
(3) $E(X) \equiv \exists x(x=1(\bmod X))$,
(4) $[x=a(\bmod X)] \equiv \exists y(y-1(\bmod X) \operatorname{arc} \tilde{x}=a \bar{y})$,
(5) $x R y(\bmod X) \equiv \bar{y} R \bar{y}$

Let a and b be integers and $b>0$ Then
Corollary 1.11. $x R y(\bmod X) \equiv b x R h y(\bmod X) \equiv(-b y) R(-b x)(\bmod X)$
Corollary 1.12. $x R a(\bmod X) \equiv b x R b a(\bmod X) \equiv(-b a) R(-b x)(\bmod X)$
Theorem 1.2. Let $X \subset Y, k<s$ and

$$
\forall Z(X \subset Z \subset Y \text { imphes } \wedge\{p(\varsigma, t, Z)=0 \cdot \imath \leqslant s\})
$$

Then $p(s, k, X)=0$

Proof By Lemmas 11 anc 12 it can be assumed that $X=\{0\}$ and $Y=G$ Let a bar denote the natural homomorphism $G \rightarrow G / p^{s} G$ Clearly every $F(p, s, x) \subseteq\{0\}$ Let (reductio ad absurdum) $p(s, h,\{0\})>0$ Then there exists x such that $\bar{x} \neq G(\bmod p)$ and $p^{k} \bar{x}=\overline{0}$ The lasi means $p^{k} x=p^{\prime} y$ for some y But $F(p, s, y) \subseteq\{0\}$ and $\bar{y} \in \Gamma(p, s,\{0\})$ and $\bar{x}=y^{-k} \bar{y}$ which contradicts $\bar{x} \neq 0(\bmod p)$

Th orem 1.3. $E(X)$ impites $X \subset X^{+}$and $p(s, s, X)=1$
Proof. Let $E(X) X \subset X^{+}$follows clearly from the defintion of E In order to
prove that $p(s, s X)=1$ it can be assumed that $X=\{0\}$ and $X=G$, see Lemmas 11 and 12 Then G is isomorphic to the naturally ordered additive group of natural numbers and $G / p^{5} G$ is the cyche group of the order p^{\prime}

Definition 1.7.

$$
D(p, s, k, x) \equiv\left[x \equiv 0\left(\bmod y^{\prime}\right) \vee \exists y\left[F\left(p, s, x-p^{k} y\right) \subset F(p s, x)=F(p, s, y)\right]\right]
$$

Corollary 1.13. Let $\emptyset \neq F(p, s, x)=X$ and a bar denote the natural homomorphism $\Gamma_{2}(p, s, X) \rightarrow I^{\prime}(p, s, X)$ Then $D(p, s, k, \cdot)$ is equivalent to $\bar{x} \equiv 0\left(\operatorname{mcd} p^{k}\right)$

A proof is easy
Lemma 1.4. Let $F(p, s, x)=\{0\}$ Then $D(p, s, k, x) \equiv \exists y z \mid F(p, s, y)=\{0\}$ and $\left.x=p^{k} y+p^{s} z\right]$

A proof is easy
Lemma 1.5. Let $\emptyset \neq F(p, s, x)=X$ and $c=p^{\prime} d$ where $d \neq 0(\bmod p)$ Then $D(p, s, k, x)=[F(p, k, x) \subset X$ and $D(p, s+\imath, k, c x)]$

Proof. According to Corollary 113 and Lemma 11 it can be assumed that $d=1$ and $X=\{0\}$ We also use Lemma | 4
(1) Let $F(p, s, y)=\{0\}$ and $x=p^{k} y+p^{\dagger} z$ Then $F\left(p^{k}, x\right)=\emptyset$ and $F\left(p, s+\imath, p^{\prime} y\right)=\{0\}$ and $p^{\prime} x=p^{k}\left(p^{\prime} y\right)+p^{s+i} z$
(2) Let $F(p, k, x)=\emptyset, F(p, s+i, y)=\{0\}$ and $p^{\prime} x=p^{k} y+p^{\prime+1} z$ Then $x=$ $0\left(\bmod p^{k}\right), y=p^{\prime} y^{\prime}$ for some $y^{\prime}, F\left(p, s, y^{\prime}\right)=F(p, s+i, y)=\{0\}$ and $\imath=p^{k} y^{\prime}+p^{\prime} z$

Definition 1.8. For any integer $c, E(p, s, c, x) \equiv \exists X \exists y[X=F(p, s i)$ and $y=1(\bmod X)$ and $F(p, s, x-c y) \subset X]$

Corollary 1.14. Let $X=F(p, s, x), y=1(\bmod X)$ and a bar denote the naturat isomorphism $I_{2}(p, s, X) \rightarrow \Gamma(p, s, X)$ Then $E(p, s, c, x)$ ts equivalent to $\bar{x}=c \bar{y}$

Corollary 1.15. If $x \equiv 0(\bmod p)$, or $X=F(p, s, x)$ and $\neg E(X)$, or $c=0$, ihen $\neg E(p, s, c, x)$

Corollary 1.16. If $c \equiv d(\bmod p)$, then $E(p, s, c, x) \equiv E(p, s, d, x)$
A proof is easy
Lemma 1.6. Let $\quad \varepsilon=p^{\prime} d$ where $d \neq 0(\bmod p)$ Then $E(p, s, k, x) \equiv$ $E(p, s+l, c k, c x)$

Proof. $F(p, s, x-k y)=F(p, s+i, c x-c k y)$

2. First special o-group

Let H be an o-grcup, $h \in H$ and $h \neq 0(\bmod p i$ in H Let k and s be integers and $1 \leqslant k \leqslant s \omega\left(\omega^{*}\right)$ is the chan (the inverse chain) of naturals

Lemma 2.1. There exists a subgroup $H^{\prime} \subset I$ such that $p^{k} h \in H^{\prime}$ and $p^{k} h \neq 0(\bmod p)$ in H^{\prime} and the factor group H / H^{\prime} has the poner p^{k}

Proof. By reasons of induction it is enough to prove the lemma for $k=1$ The factor group $H / p H$ is a vector space over the field of power p Let S be a maximal subspace in $H / p H$ such that $h+p H \notin S$ The full pre-mage of S in H is a required subgroup

For every $n \in \omega$,et $f_{n} \quad H_{n} \rightarrow H$ be an o-group somorphism, $H_{n}^{\prime}=f^{-1}\left(H^{\prime}\right)$ and $h_{n}=f^{-1}(h)$ Let $G_{u}=L \Sigma\left\{H_{n}^{\prime} n \in \omega^{*}, G_{1}=L \Sigma\left\{H_{n} n \in \omega^{*}\right\}\right.$ and G be the least subgroup of G_{1} containing $G_{0} \cup\left\{h_{n}-h_{n+1} n \in \omega\right\}$ Let X_{m} be the subgroup $L \Sigma\left\{H_{n} \quad n \geqslant m\right\}$ of G_{1}

Lemma 2.2. Every factor group $X_{m} \cap G / X_{m+1} \cap G$ is o-isomorphic to H
A proof is easy
Lemma 2.3. $p^{k} h_{0} \neq 0(\bmod p)$ in G
Proof. Lit $f \quad G_{1} \rightarrow H$ be defined as follows $f\left(x_{n}+\quad+x_{1}\right)=f_{n} x_{n}+\quad+f_{0} x_{0}$ It is easy to check that f is a group isomorphism, $f G=f G_{0}=H^{\prime}$ and $f\left(p^{k} h_{0}\right)=p^{k} h$ But $p^{k} h \neq 0(\bmod p)$ in H^{\prime}

Lemma 2.4. $F\left(p, k, p^{k} h_{0}\right) \subseteq\{0\}$ in G
Proof. It 1 s enough to prove that eser; $X_{m} \cap G \supset F\left(p, k, p^{k} h_{0}\right)$ But $p^{k} h_{\theta} \equiv$ $p^{k} h_{m}\left(\bmod p^{k}\right) \operatorname{m} G$ and $p^{k} h_{m} \in X_{m} \cap G$

Lemma 2.5. $F\left(p, 1, p^{k} h_{0}\right)==F\left(p, k, p^{k} h_{0}\right)=\{0\}$ in G
Prool. $\{0\} \subseteq\left(\right.$ by the Lemma 23) $F\left(p, 1, p^{k} h_{0}\right) \subseteq \subseteq F\left(p, k, p^{k} h_{0}\right) \subseteq$ (by the Lemma 4) $\{0\}$

Let an asterisk denote the natural group homomorphism $G \rightarrow G / p^{\prime} G$ and Γ be the group $\Gamma(p, s,\{0\})$ of G Clea.ly $\Gamma \subseteq G^{*}$ and $\left(p^{*} h_{0}\right)^{*} \in \Gamma$

Lemma 2.6. $\left(p^{s} h_{0}\right)^{*}$ has the order p^{*} in Γ
Proof. $F\left(p^{s}, p^{k} p^{\wedge} h_{0}\right)=F\left(1, p^{k} h_{0}\right)=h_{\mathrm{in}} G$ and $F\left(p^{\prime} p^{k}{ }^{\prime} p^{\prime} h_{0}\right)=F\left(p, p^{k} h_{0}\right)=\{0\}$ in G by Lemma 25 By Lemma 13 m Sectien 1 the order of $\left(p^{\wedge} h_{4}\right)^{*}$ in Γ is p^{k}

Lemma 2.7. Every $x^{*} \in \Gamma$ is a multuple of $\left(p h_{0}\right)^{*}$
Proof. Let $x^{*} \in I$ In $G_{1, \lambda}=x_{n}+\quad+x_{0}$ for some n and $x_{i} \in H_{i}$ It is easy to see that $x \equiv 0\left(\bmod p^{\prime}\right)$ in G_{1} Let $x_{1}=p^{\prime} y_{1}$ and $y_{1}=a_{1} h_{1}+h_{1}^{\prime}$ where $h_{i}^{\prime} \in H_{1}^{\prime}$ Then,

$$
\left.X=\sum p^{\prime}\left(a_{t} h_{t}+h_{i}^{\prime}\right) \equiv \sum p^{\prime} a_{t} h_{t} \equiv \sum a_{i}\right) p^{\prime} h_{0}(\bmod p) \text { in } G_{3}
$$

Lemma 2.8. In $G, p(s, k,\{0\})=1$ and $p(s,,\{0\})=1\}$ for every $\mid \neq k$
Proof. See Lemmas 26 and 27

3. Second special o-group

Let \mathbf{Q} be the naturally ordered additive group of rational numbers
Lemma 3.1. Every $p(s, k,\{0\})=0$ in \mathbf{Q}

Proof. Clear

Fix an integer $s \geqslant 1$ and a prime p Let \mathbf{Q}_{p} be the least subgroup of \mathbf{Q} contaring all quotients a / b where a and b are integers and $b \neq 0(\bmod p)$

Lemma 3.2. In $\mathbf{Q}_{p}, p(s, s,\{0\})=1$, and $p(s, k,\{0\})=6$ for $k<$.

Proof. Clear

For every $n \in \omega$ let $f_{n} \quad H_{n} \rightarrow \mathbf{Q}$ be an somorphism of o-groups and $H_{n}^{\prime}=f^{\prime}\left(\mathrm{Q}_{n}\right)$ and $h_{n}=f^{-1}(1)$ Let $G_{0}=L \Sigma\left\{H_{n}^{\prime} \quad n \in \omega^{*}\right\}$ and $G_{1}=L \Sigma\left\{H_{n} \quad n \in \omega^{*}\right\}$ where ω^{*} is the inverse ordered set of natural numbers Let G be the least subgroup of G_{1} contanning $G_{0} \cup\left\{\left(h_{m}-h_{m+1}\right) / p^{n} \quad m, n \in \omega\right\}$, and X_{m} be the subgroup $L \Sigma\left\{H_{n} \quad n \geqslant\right.$ $m\}$ of G_{1}

Lemma 3.3. For every $m, G / X_{m} \cap G$ is divistble and $X_{m} \cap G / X_{m+1} \cap G$ is isomorphic to \mathbf{Q}

Proof. Clear

Lemma 3.4. $h_{0} \neq 0(\bmod p)$ in G
Proof. Let $f \quad G_{1} \rightarrow \mathbf{Q}$ be defined as follows $f\left(x_{n}+\quad+x_{0}\right)=f_{n} x_{n}+\cdots+f_{0} x_{0}$ It is easy to check that f is a group isonorphasm, $f G=f G_{0}=\mathbf{Q}_{p}$ and $f h_{0}=1$ But $1 \not \equiv 0(\bmod p)$ in \mathbf{Q}_{p}

Lemma 3.5. $F\left(p, 1, h_{0}\right)=\quad=F\left(p, s, h_{0}\right)=\{0\}$ in G

Froof. See the proofs of Lemmas 24 and 25 in Section 2

Let an asterisk denote the natural homomorphism $G \rightarrow G / p^{s} G$ and Γ be the gioup $\Gamma(p, s,\{0\})$ of G It is easy to see that Γ is a subgroup of G^{*} and $h_{0}^{*} \in \Gamma$

Lemma 3.6. h_{0}^{*} has ordier p^{s} in Γ

Proof. We need only prove that $p^{s-1} h_{0}^{*} \neq 0^{*}$ But, $F\left(p, s, p^{s-1} h_{0}\right)=F\left(p, 1, h_{0}\right) \neq \emptyset$ by Lemma 35

Lemna 3.7. Every $x^{*} \in \Gamma$ is a multople of h_{0}^{*}

Proof. Let $x^{*} \in \Gamma \operatorname{In} G_{1}, x=x_{n}+\quad+x_{0}$ for some n and $x_{1} \in H_{1}$ There exist a natural number m, mtegers a_{n}, \quad, a_{0} and elements $y_{m} \in H_{n}^{\prime} \quad, y_{0} \in H_{0}^{\prime}$ such that

$$
p^{m} x_{n}=a_{n} h_{n}+p^{m+s} y_{n}, \quad, p^{m} x_{0}=a_{0} h_{0}+p^{m+5} y_{0}
$$

Now we count in $G p^{m} x \equiv \sum a_{1} h_{1} \equiv\left(\Sigma a_{1}\right) h_{0}\left(\bmod p^{m+5}\right)$ By Lemma 34, $\Sigma a_{1}=p^{m} b$ for some integer b Then $x \equiv b h_{0}\left(\bmod p^{s}\right), 1 \in x^{*}=b h_{0}^{*}$

Lemma 3.8. In $G, p(s, s,\{0\})=1$ and $p(s, k,\{0\})=0$ for every $k<s$

Proof. See Lemmas 36 and 37.

4. Third special o-group

Definition 4.1. A successton is a function $\alpha \omega \rightarrow \omega$ such that for some $n, \alpha n \neq 0$ and $\left(\forall_{l}>n\right) \alpha l=0$. That n is called the length of succession α

In this section α, β, γ and δ are successions The restuction of a to $n=$ $\{t \in \omega t<n\}$ is denoted by $\alpha \mid n$

Definition 4.2. S is the set of successions ordered as tollows $\alpha<\beta$ if there exists n such that $\alpha|n=\beta| n$ and $\alpha n>\beta n$

Corollary 4.1. The chain S is dense and has nether maximal nor minmal succession

Corollary 4.2. If $\alpha<\beta<\gamma$ and $\alpha|n=\gamma| n$, then $\beta|n=\alpha| n$
Corollary 4.3. If the length of α s n and $\alpha|n+1=\beta| n+1$, then $\beta \leqslant \alpha$
Definition 4.3. $\beta=\phi(\alpha, n)$ if $\quad \beta|n=\alpha| n, \quad \beta n=(\alpha n)+1, \quad 0=\beta(n+1)=$ $\beta(n+2)=$

Corollary 4.4. $\forall \alpha \forall n \exists \beta[\beta=\phi(\alpha, n)]$ and $\forall \beta \exists \alpha \exists n[\beta=\phi(\alpha, n)]$
Corollary 4.5. $\phi(\alpha, n)=\operatorname{mf}\{\gamma \quad v|n+1=\alpha| n+1\}$ and $\alpha=\sup \{\phi(\alpha, n) \quad n \in \omega\}$
Corollary 4.6. $\phi(\alpha, m)=\phi(\beta, n)$ is equivale nt to $m=n$ and $\alpha|n+1=\beta| n+1$
Fix a natural $k>0$ About \mathbf{Q} and \mathbf{Q}_{p} see Sect on 3 For every succeshor o let $f_{\alpha} H_{\alpha} \rightarrow Q$ be an isomorphism of o-groups a $11 f_{\alpha}^{-1}\left(Q_{p}\right)=H_{n}^{\prime}, f^{\prime}(1)=h_{c \alpha}$ Let $G_{0}=L \Sigma\left\{H_{\alpha}^{\prime} \alpha \in S\right\}, G_{1}=L \Sigma\left\{H_{\alpha} \alpha \in S\right\}$ and G be the least subgroup of G_{1} contaming G_{0} and such that $\alpha|n=\beta| n$ always imples $\left(h_{i v}-h_{\beta}\right) / p^{n k} \in G$ In other words if $\alpha|n=\beta| n$ then $h_{\alpha} \equiv h_{B}\left(\bmod p^{n t}\right)$ in G Let X_{u} be the subgroup $G \cap L \Sigma\left\{H_{\beta} \beta \leqslant \alpha\right\}$ and $Y_{\alpha}=X_{\alpha}^{+}$in G

It is evident that $X_{\alpha}=A\left(h_{u}\right)$ in G and that for every $x \in G$ there exists α such that $A(x)=X_{\alpha}$ in G

Cemma 4.1. Y_{α} / X_{α} is isomorphic to Q
rroof. Clear
Lemma 4.2. If $\beta=\phi(\alpha, n)$ then $Y_{\beta} \subseteq F\left(p, n k+1 h_{\mu}\right)$

Proof. Let $f \quad G_{1} \rightarrow \mathbf{Q}$ be defined as tollows $f\left(\Sigma a_{y} h_{v}\right)=\Sigma\left\{a_{y} \quad \beta<\gamma\right\}$ Clearly f is d group homomorphism and $f Y_{\beta}=\{0\}, f G_{0}=\mathbf{Q}_{p}, f h_{\alpha}=1$ If $F\left(p, n k+1, h_{n}\right) \subset Y_{\theta}$ then $f h_{\alpha} \equiv 0\left(\bmod p^{n k+1}\right)$ in $f G$ So it is enough to prove that if $x \in G$ then $f x$ is a multiple of $1 / p^{n k} G$ is constructed from G_{0} and elements $\left(h_{\gamma}-h_{B}\right) / p^{\text {th }}$ where $\gamma|1=\delta|$ if $x \in G_{0}$ then $f x$ is a multuple of 1 Let $x=\left(h,-h_{\delta}\right) / p^{\text {ix }}$ where
$\gamma|\iota=\delta| l$ and let $\gamma<\delta$ it $\beta<\gamma$ or $\delta \leqslant \beta$ then $f x=0$ Let $\gamma \leqslant \beta<\delta$ Then $f x=1 / p^{i k}$ By Corollary $42, \beta|\iota=\delta|$ By Corollary $43, \imath \leqslant n$ So $f x$ is a multiple of $1 / p^{n k}$

Lemma 4.3. If $\beta=\phi(\alpha, n)$, then $F\left(p . n k+k . h_{*}\right) \subseteq Y_{\beta}$ in G
Proof. If $\gamma|n+1=\alpha| n+1$ then $h_{\alpha} \equiv h_{\gamma}\left(\bmod p^{n k+k}\right)$ and $F\left(p, n k+k, h_{\alpha}\right)=$ $F\left(p, n k+k, h_{\gamma}\right) \subseteq X_{\gamma}$ Let $\beta=\phi(\alpha, n)$ By Corollary $45, Y_{\beta}=\bigcap\left\{X_{\gamma} \gamma \mid n+1=\right.$ $\alpha \mid n+1\}$ So $F\left(o, n k+k, h_{\alpha}\right) \subseteq Y_{\beta}$

Corollary 4.7. If $\beta=\phi(\alpha, n)$, then $F\left(p, n k+1, h_{\alpha}\right)=\quad=F\left(p, n k+k h_{\alpha}\right)=Y_{\beta}$ in G

Proof. See Lemma 42 and Lemma 43

Lemma 4.4. In G. if $F\left(p, m, h_{c}\right)=F\left(p, n, h_{\beta}\right)$, then $h_{\alpha} \equiv h_{\beta}\left(\bmod p^{n}\right)$
Proof. The case $m=0$ or $n=0$ is trivial Let $t k<m \leqslant l n+k, j k<n \leqslant \jmath k+k$ and $F\left(p, m, h_{\alpha}\right)=F\left(p, n, h_{\beta}\right)$ By Corollary $47, \phi(\alpha, i)=\phi(\beta, j)$ By Corollary $46, i=j$ and $\alpha|\imath+1=\beta| i+1$ and so $h_{\alpha} \equiv h_{\beta}\left(\bmod p^{*+k}\right)$

Lemma 4.5. In G, if $F\left(p, m, a h_{\alpha}\right)=F\left(p, n, b h_{\beta}\right)$, then $b h_{\alpha} \equiv b h_{\beta}\left(\bmod p^{\prime}\right)$
Proof. Let $a=p^{\prime} c$ and $b=p^{\prime} d$ where $c, d \neq 0(\bmod p)$ and let $F\left(p, m, a h_{\alpha}\right)=$ $F\left(p, n, b h_{\beta}\right)$ Then $F\left(p, m-i h_{\alpha}\right)=F\left(p, n-\jmath, h_{\beta}\right)$ and by Lemma $44, h_{\alpha} \equiv$ $h_{\beta}\left(\bmod p^{n-j}\right) .1 e, b h_{\alpha} \equiv b h_{\beta}\left(\bmod p^{n}\right)$

Lemma 4.6. In G, if $\emptyset \neq F(p, s, x)=Y$, then $p^{n} x=a h_{y}+y$ and $F(p, s+n, y) \subset Y$ for some n, a, y and y

Proof. Let $\emptyset \neq F(p, s, x)=Y$ and $p^{n} x=\Sigma a_{a} h_{\alpha}$ Let an asternsk denote the natural homomornhism $G \rightarrow G / \Gamma_{1}(p, s+n, Y)$ By Lcmma 45 it it can be assumed that $\left(p^{\prime} x\right)^{*}=\Sigma\left(b_{\alpha} h_{\alpha}\right)^{*}$ where $\alpha \neq \beta$ and $a_{\alpha} \neq 0$ and $a_{\beta} \neq 0$ imples $F\left(p, s+n, b_{\alpha} h_{\alpha}\right) \neq F\left(p, s+n, b_{\beta} h_{\beta}\right) \quad$ Let $\quad F\left(p, s+n, b_{\gamma} h_{\gamma}\right)=\max _{\alpha} F\left(p, s+n, b_{\alpha} h_{\alpha}\right)$ Then $\left(p^{n} x\right)^{r}=\left(h_{\gamma} h_{\gamma}\right)^{*}$

Corollary 4.8. If $\emptyset \neq F(n, \varsigma, x)=Y$ in G, then $Y=Y_{\beta}$ for some β
Proof. See Lemma 46 and Corollary 47
Fix $\beta=\phi(\alpha, n)$ and $s \geqslant k$ Let an asterisk denote the natural homomorphism $G \rightarrow G / \Gamma_{1}\left(p, s, Y_{\beta}\right)$ and $\Gamma=\Gamma\left(p, s, Y_{\beta}\right)$ Clearly Γ is a subgroup of G^{*}.
Let $g=p^{s-k}\left(h_{\alpha}-h_{\beta}\right) / p^{n k}$

Lemma 4.7. g^{*} is an element of Γ of order p^{k}
Proof. $F\left(p, s, g^{*}\right)=\left(\right.$ by Corollary 13 in Section 1) $F\left(p, k+n k h_{r}^{*}-h_{\beta}^{*}\right)=$ $F\left(p, k+n k . h_{\alpha}^{*}\right)=Y_{\beta}^{*}$ by Corollary 47 So $g^{*} \in \Gamma$

Clearly, $F\left(p, s, p^{k} g^{*}\right)=\emptyset$ But

$$
F\left(p, s, p^{h-1} g^{*}\right)=F\left(p, 1+n k, h_{\alpha}^{*-}-h_{\beta}^{*}\right)=F\left(p 1+n k, h_{n}^{*}\right)=Y_{\beta}^{\sim}
$$

by Corollary 47 So the order of g^{*} is p^{k} by Lemrna 13 in Section 1
Lemma 4.8. Every $\mathfrak{v}^{*} \in \Gamma$ is a multiple of g^{*}
Proof. By Lemma $46 p^{n} x=a h_{\gamma}+y$ and $F(p, s+n, y) \subset Y$ for some n, a, γ and y Let $a=b^{\prime} b$ where $b \neq 0(\bmod p)$ By Lemma $45 a h_{\gamma} \equiv a h_{\alpha}\left(\bmod p^{\prime \prime n}\right)$ Wlog $\gamma=\alpha \quad$ By Corollary $47 \quad n k+1 \leqslant s+n-t \leqslant n k+k \quad$ Let $m=$ $(\eta k+k)-(s+n-i) \quad$ So $\quad p^{n} x^{*}=p^{\prime} b h_{\alpha}^{*}=p^{\prime} b\left(h_{\alpha}-h_{\beta}\right)^{*} \quad$ and $\quad p^{n+5-k} x^{*}=$ $p^{\prime} b p^{\prime-k}\left(h_{\alpha}-h_{\beta}\right)^{*}=p^{\prime} b p^{n k} g^{*}$ and $x^{*}=p^{*} b g^{*}$

Corollary 4.9. $p\left(s, k, Y_{\beta}\right)=1$ and $p\left(s, l, Y_{\beta}\right)=0$ for $l \neq k$ in G

5. Gluing and interlacement

Definition 5.1. $\Delta^{*} G$ is the set of all convex subgroups of an o-group G ordereci by inclusion

Lemma 5.1. Let H be a subgroup of ano-group G and $\sigma د^{*} H \rightarrow د^{*} G$ be defined as follows $\sigma Y=\bigcup\left\{X \in \Delta^{*} G \quad X, 7 H \subseteq Y\right\}$ Then (1) $\sigma Y \cap H=Y$ and (2) σ us monomorphism

Proof. (1) Clearly $\sigma Y \cap H \subseteq Y$ Let $h \in Y$ and $Z=A(h, G)$ The latter means that Z is $A(h)$ calculated in G Then $Z^{+} \cap H \subseteq Y$ and $h \in Z^{+} \subseteq \sigma Y$
(2) $Y_{1} \subset Y_{2}$ imphes $\sigma Y_{1} \subset \sigma Y_{2}$

Indeed, $\sigma Y_{2}-\sigma Y_{1} \supseteq\left(\sigma Y_{2}-\sigma Y_{1}\right) \cap H=Y_{2}-Y_{1}$
Definition 5.2. The monomorphism σ of Lemma 51 will be called canonical
Theorem 5.1. Let a direct sum $G=\Sigma H_{1}$ be linearly ordered and every $\sigma_{i} \quad \Delta^{*} H_{1} \rightarrow \Delta^{*} G$ be the canonical monomorphism Let $X \in \Delta^{*} G$ and $Y_{1}=X \cap H_{1}$ Then every

$$
p(s, k X, G)=\Sigma\left\{p\left(s, k, Y_{i}, H_{1}\right) \quad \sigma_{t} Y_{t}=X\right\}
$$

Proof. Let $r=p$
(1) $\Gamma_{1}\left(r_{1} K\right)=\Sigma \Sigma \Gamma_{1}\left(r, Y_{i}, H_{1}\right)$

Indeed, let $h \in \Gamma_{1}\left(r, Y_{\imath}, H_{1}\right)$, 1 e som ${ }^{\prime} h+h^{\prime} \in Y_{1}$ Then $h+h^{\prime} \in X$ and $h \in \Gamma_{1}(r, X, G)$

Conversely, let $\Sigma h_{1} \in \Gamma_{1}(r, X), 1$ e some $\Sigma h_{t}+r \Sigma h_{i}^{\prime} \in X$ Then $h_{i}+r h_{i}^{\prime} \in Y_{1}$ and $\ell_{i} \in \Gamma_{1}\left(r, Y_{t}, H_{i}\right)$
(2) $\Gamma_{2}(r X)=\Sigma\left\{\Gamma_{1}\left(r, Y_{1}, H_{2}\right) X \subset \sigma_{1} Y\right\}+\Sigma\left\{\Gamma_{2}\left(r, Y_{t}, H_{4}\right) X=\sigma_{1} Y_{t}\right\}$

Indeed, let $h \in \Gamma_{2}\left(r, Y_{i}, H_{1}\right), 1$ e for every $Y_{1} \subset Z_{1} \in \Delta^{*} H_{i}$ some $h+r h^{\prime} \in Z_{1}$ And let $\sigma_{1} Y_{1}=X \subset Z \in \Delta^{*} G$ Then $Y_{1} \subset Z \cap H_{2}$ and some $h+r h^{\prime} \in Z \cap H_{n} 1 \mathrm{e}$ $h \in \Gamma_{2}(r, X)$

Conversely, let $\Sigma h_{1} \in \Gamma_{2}(r, X)$. e for every $X \subset Z \in A^{*} G$ some $\Sigma h_{1}+r \Sigma h_{i}^{\prime} \in Z$

Case 1. Let $X \subset \sigma_{1} Y_{1}=Z$ Then some $\Sigma h_{1}+r \Sigma h_{i}^{\prime} \in Z$ and $h_{i}+r h_{i}^{\prime} \in Z \cap H_{i}=$ $Y_{1}, 1 \in h_{1} \in \Gamma_{1}^{\prime}\left(r, Y \quad H_{1}\right)$

Case 2 :et $X=\sigma_{1} Y_{i}$ and $Y_{1} \subset Z_{i} \in \Delta^{*} H_{1}$ and $\sigma_{i} Z_{1}=Z$ Then $X \subset Z$ and some $\Sigma h_{t}+r \Sigma h_{i}^{\prime} \in Z, h_{1}+r_{i}^{\prime} \in Z_{t}^{\prime}, 1$ e $h_{i} \in \Gamma_{2}\left(r, Y_{t}, H_{t}\right)$
(3) $\Gamma(r, X) \cong \Sigma\left\{\Gamma\left(r, Y_{t} . H_{1}\right) \quad X=\sigma_{t} Y_{t}\right\}$

Statement (3) follows trom statements (1) and (2) and imphes the statement of the Theorem 51

Definition 5.3. A chain C is compact if

$$
(\forall X \subseteq C)(\exists y, z \in C)(X \neq \emptyset \supset y=\operatorname{mf} X \text { and } z=\sup X)
$$

Definition 5.4. Let C be a chan and $x \in C$ Then

$$
x^{+}= \begin{cases}\inf \{y x<y\}, & \text { if } x \neq \max C \\ x, & \text { and } x=\max C\end{cases}
$$

Definition 5.5. Let H be an o-group and C be a compact chan Monomorphism $\sigma \Delta^{*} H \rightarrow C$ is regular if
(1) $Y \subset Y^{+}$imphes $\sigma Y<(\sigma Y)^{+}$and
(2) every $\sigma Y=\operatorname{nf}\left\{\sigma Z \quad Y \subseteq Z \subset Z^{+}\right\}$

Theorem 5.2 (Interlacement Theorem) let
(1) C be a compact chain and $C \vDash \forall x \forall y \exists z\left(x<y \supset x \leqslant z<z^{+} \leqslant y\right)$,
(2) $\left\{H_{i}, E^{\top}\right\}$ be a family of o-groups and $\psi_{t} \Delta^{*} H_{t} \rightarrow C$ be a regular monomorphism and
(3) $\left(C \vDash x<x^{\prime}\right)$ imples $\left(\exists^{\prime} t\right)\left(x \in \operatorname{mg} \psi_{1}\right)$

Then there exist an o-group G and an isomorphism $\& C \rightarrow \Delta^{*} G$ such that every

$$
p(\varsigma, k, X, G)=\sum\left\{p\left({ }_{4} k \quad Y_{n}, H_{t}\right) \phi \psi_{1} Y_{t}=X\right\}
$$

and

$$
H_{4} \models E(Y) \text { implies } G:=E\left(\phi \psi_{1} Y\right) .
$$

Proof. Let $\psi_{1} h_{1}$ be an abbrevation for $\psi_{1} A\left(h_{i}, H_{1}\right)$

Lemma 5.2. $h_{2}, h_{1} \neq 0$ and $\psi_{i} h_{1}=\psi_{1} h_{,}$implies $i=1$
Proof. Let $h_{t} h_{j} \neq 0$ and $x=\psi_{i} h_{i}=\psi, h_{j}$. Then $x<i^{+}$because of regularity of ψ Now use (3) from Theorem 52

Let G be the drect sum ΣH, ordered as follows If $g=\Sigma h_{2}$ and $\psi_{1} h_{1}=$ $\max \left\{\psi_{i} h_{1} h_{t} \neq 0\right\}$ then $g>0$ iff $h_{1}>0$

Let $\phi x=\left\{\Sigma h_{1}\right.$ every $\left.\psi_{t} h_{t}<x\right\}$
Lemma 53. ϕ is an isomorphism from C onto $\Delta^{*} G$
Proof. (1) Evidently $\phi x \in \Delta^{*} G$
(2) Let $x<y$ Then (see (1) Theorem 52) $x \leqslant z<z^{+} \leqslant y$ for some (see (3) Theorem 52) $z=\psi_{1} h_{1}$ and $h_{:} \in \phi y-\phi x$
(5) Let $X \in \Delta^{*} G$ and $x=\sup \left\{(\psi, h,)^{+} h_{4} \in X\right\}$

We state that $\phi x=X$ It is enough to prove that always $X \cap H_{i}=\phi x \cap H_{1}$ Clearly $X \cap H_{1} \subseteq \phi x$ Conversely, let $h_{1} \in \phi x$ Then $\psi_{1} h_{1}<\left(\psi_{1}, h_{1}\right)^{+}$for some $h, \in X$ Therefore, $\psi_{i} h_{i} \leqslant \psi_{1} h_{i}$ and $\left|h_{1}\right|<n\left|h_{i}\right|$ in G Because X is convex, $h_{1} \in X$

Lemma 5.4. The monomorphism $\phi \psi_{,} \Delta^{*} H_{\mathrm{t}} \rightarrow \Delta^{*} G$ is canonical
Pronf. (1) $\phi \psi_{1} Y \cap H_{1}=Y$ Indeed, $h \in Y \equiv A\left(h, H_{1}\right) \subset Y \equiv \psi_{i} h<\psi_{1} Y \equiv h \in \phi \psi_{1} Y$
(2) $X \in \Delta^{*} G$ and $X \cap H, \subseteq Y$ imply $X \subseteq \dot{\phi} \psi_{1} Y$

Indeed, let $X=\phi x \in \Delta^{*} G$ and $X \cap H_{1} \subseteq Y$ And let (reductio ad absurdum) $\phi \psi_{1} Y \subset \phi \lambda, 1$ e $\psi_{1} Y<1$ Because of regularity of ψ_{v}, there exists $h \in H_{i}$ such that $\psi_{1} Y \leqslant \psi_{i} h<x$ Then $h \in\left(\phi x \cap H_{1}\right)-Y$ which centradicts $X \cap H, \subseteq Y$

Proof of Theorem 5.2. Now the first statement of Theorem 52 tollows from Theorem 51 The second statement is evident Theorem 52 is proved

Lemma 5.5. Let H_{1} and H_{2} be countable Archemedean o-groups Then there exists an Archemedean ordering of the direct sum $H_{1}+H_{2}$ preserving the ordenngs of the summands

Proof. By Holder's Theotem (see [3]) 1^{1} can be ascumed that H_{1} and H_{2} are subgioups of the naturally ordered additive group \mathbf{R} of reals For any real $r \neq 0, H_{1}$ is isomorphic to the subgroup $\left\{r x \quad x \in H_{1}\right\}$ So it can be assumed that $H_{1} \cap H_{2}=\{0\}$ But in that case the statement of the Lemma 55 is clear

Let G be an o-group, $\lambda \in G$ and $X=A(x)$ in G Then $X \subset X^{+}$and the Archemedean o-group X^{+} / X is called an Archemedean factor of G

Theorem 5.3 (G.ung Theorem) Let G_{1} be an o-group and all Archemedean factors of G_{1} are countable $l=1,2$ Let $\psi \Delta^{*} G_{1} \rightarrow \Delta^{*} G_{2}$ be ar tsomorphism of the chains Then there exists an o-gr, up $G_{0}\left(a\right.$ gluing of G_{1} and $\left.G_{2}\right)$ and chain isomorphisms $\phi_{1} \Delta^{*} G_{0} \rightarrow \Lambda^{*} G_{1}$ such that $\phi_{2}=\psi \phi_{1}$ and tvery $p\left(s, k, X, G_{0}\right)=$ $p\left(s, k, \phi_{1} X, G_{1}\right)+p\left(s, k, \phi_{2} X, G_{2}\right)$

Proof. For $x \in G_{i}$, let $H_{1}(x)$ be the Archemedean factor of G_{1} corresponding to λ If $H_{1}\left(\lambda_{1}\right)=Y_{1}^{+} / Y_{1}$ and $\psi Y_{1}=Y_{2}$, fix an Archemedean order of $H_{1}\left(x_{1}\right)+H_{2}\left(x_{2}\right)$ preserving the orders of the summands

Let G_{0} be direct sum $G_{1}+G_{2}$ ordered as follows Let $g_{0}=g_{1}+g_{2} \neq 0$ and $H_{1}\left(g_{1}\right)=Y_{i}^{+} / Y$ If $\psi Y_{1} \subset Y_{2}$ (respectively $Y_{2} \subset \psi Y_{i}$) then $g_{0}>0$ if $g_{2}>0$ (respectively $g_{1}>0$) If $\psi Y_{1}=Y_{2}$ then $g_{0}>0$ fff the element $\left(g_{1}+Y_{1}\right)+\left(g_{2}+Y_{2}\right)$ of the Archemedean o-group $H_{1}\left(g_{1}\right)+H_{2}(g)$ is positive G_{0} is a desired o-group

6. Fourth special o-group

Let us fix p, s and k where $1 \leqslant k \leqslant s$ Let \mathbf{Q} and \mathbf{Q}_{p} be as in Section 3 We buld a countable o-group G satusfying the following conditions
(i) if $x \neq 0$ then $A^{+}(x) / A(x)$'s isomorphic to \mathbf{Q},
(ii) the chain ($\{A(x) x \neq 0\}, \subset)$ is order isomorphic to \mathbf{Q},
(iii) G is q-divisible for each prime $q \neq p$,
(iv) if $p(s, t, X)=r>0$ then $t=k, r=1$ and X is different from any $A_{l}(x)$,
(v) for earh $x \cdot p\left(s, k, A^{+}(x)\right)=0$,
(vi) if $X^{\lrcorner} C . Y$ then $\exists Z\left(X^{+} \subset Z \subset Y\right.$ and $\left.p(s, k, Z)=1\right)$

Here is the idea of the construction Let G^{\prime} be a copy of the third si ecial o-group G ' satisfies ccuditions (i)-(iv) and (vi) For each non-zero $x \in G$ ', "suove" another copy of the third special o-group "between' $A^{+}(x)$ and $G^{\prime} / A^{+}(x)$ Do the same for the new copies of the third special o-group Repeat the process

Now we construct the desired o-group Let α, β range over the successions of Setron 4 and S be the chain of successions ${ }^{\text {w }} S$ is the set functions $t \quad n \rightarrow S$ where $n \in \omega$ We order " S as follows $t_{1}<t_{2}$ iff $t_{1} \subset t_{2}$ or $\exists m\left(t_{1}\left|m=t_{2}\right| m\right.$ and $t_{1}(m)<t_{2}(m)$) We imagine elements of ${ }^{\omega} S$ as sequences. hence it is clear what $i^{\wedge} \alpha$ means

For each $t \in{ }^{\omega} S$ let H, be an o-group, somorphic to $\mathbf{Q}, f_{t} H_{1} \rightarrow \mathbf{Q}$ be an somorphism, $H_{t}^{\prime}=f_{i}^{-1}\left(Q_{p}\right)$ and $h_{t}=f_{1}^{-1}(1)$ Let $U_{t}=L \Sigma\left\{h_{i}^{\prime} \wedge_{a} \alpha \in S\right\}, W_{i}=$ $L \Sigma\left\{H_{t^{\wedge} \alpha} \alpha \in S\right\}, \quad V_{t}=\left\{\left(h_{t^{\prime} \alpha}-h_{t_{\beta}^{\prime}}\right) / p^{n k} \alpha \mid n=\beta_{1} n\right\}$ and G_{t} be the least subgroup of W_{t} conta ning $U_{i} \cup V_{1}$ Clearly, G_{t} is a copy of the third special o-group Let $W=L \Sigma\left\{H_{t} t={ }^{\omega} S\right\}$ and J be the least subgroup of W contaming $\cup\left\{G_{t} t \neq 0\right\}$ It is not cifficult to check that G is the desired o-group

PART 2. ELIMINATION OF QUANTIFIERS

7. Elimination theorem

The elementary language of o-groups ELL is the first order language with an equa'ity sign whose non-logical constants are the individual constant " 0 " the symbol " - " of one-place operation the symbol " + " of two-place operation and the symbol " <" of two-place piedicate The elementary theory of o-groups ELT is given in ELL by axioms of (Abehan) groups, axioms of chains (1 e linear order axioms) and by the following axiom

$$
\forall x \forall y \forall z(x<y \supset x+z<y+z)
$$

Terms of ELL are called elementar, terms $t_{1}-t_{2}$ is the abbreviation for $t_{1}+\left(-t_{2}\right)$
An Expanded Theory of o-groups EXT is now defined Let L2 be the monadic second order language corresponding to ELL Every o-group G gives us a natural model of L2 by the following definition second order variables range over the set $\Delta^{*} G \cup\{\emptyset\}$ (the convex subgroups of G and the empty set) Let $T 2$ be the se of Lz-formulas which are true in all these natural models We shall essenthity be studying the theory T 2 but in order to eliminate quantifiers some inessentid extension of T 2 is more conveniently used An Expanded Language of o-groups, EXL is obtained from L2 by adding some non-logical constants

Definition 7.1 (of second order terms (superterms) of EXL)
(1) Second order variables of EXL (ie second ordet varables of L2, are superterms,
(2) \emptyset is a superteim, and for each elementary term $t, A(t)$ is a superterm,
(3) $F(p, s, t)$ is a superterm for every elementary term t, prime p and natural $s \geqslant 1$,
(4) if T is a superterm, then so is T^{+}

Definition 7.2 (Of atoms (atom formulas) of EXL Here t is an elementary term, T, T_{1}, T_{2} are superterms, p is a prime number, k, s, r are naturals and $1 \leqslant k \leqslant s$ and l is an integer)
(1) $D(p, s, k, t), E(p, s, l t)$ are atoms.
(2) $T_{1}=T_{2}, T_{1} \subset T_{2}, E(T)$ and $p(s, k, T)>r$ are atoms,
(3) $t \in T$ is an atom and
(4) $t=l(\bmod T), t<l(\bmod T), t>l(\bmod T)$ are atoms

A natural model of EXL is obtaned from a natural model of $L 2$ by mean of definitions of Section 1 and the following defintion

Definition 7.3. (1) \emptyset^{+}is the zero-subgroup $\{0\}$,
(2) $T_{1}=T_{2}$ and $T_{1} \subset T_{2}$ are defined naturally,
(3) $E \cdot \emptyset$) is false,
(4) $p(\mp, k, \emptyset)>r$ is always false and $t=l(\bmod \emptyset), t<l(\bmod \emptyset), t>l(\bmod \emptyset)$ are always f.llse

So every o-group gives us one natual model of EXL An Expanded Theory of o-groups EXT is the set of EXL-formulas which are true in all these natural models

The at ums of T2 are expressible in EXT

$$
\begin{aligned}
& \left.\mid t_{1}=t_{2}\right] \equiv\left[t_{1}-t_{2}=0\left(\bmod \emptyset^{+}\right)\right], \\
& {\left[t_{1}<t_{2}\right] \equiv\left[t_{1} \cdots t_{2}<0\left(\bmod \emptyset^{+}\right)\right]}
\end{aligned}
$$

The inverse statement is also true but we do not need in and we do not prove it

Theorem 7.1 (Elmmation Theorem) For every EXL-formula α there exists an EXL-formula α^{*} such that α^{*} has no bound elementary variables and $\alpha \equiv \alpha^{*}$ in EXT

The Elimmation Theorem is the object of Part 2 (Sections 7-10) The proof below gives a primitively recursive procedure for building α^{*} from α And of course α " has the same free variables as α

The Convex Subgroups Theory, CST, is defined in Section 11 As a corollary of Theorem 71 we have the following

Theorem 7.2. There exists a primitively recursive algorthm which for every EXL. senten'e α bulds a CSL-sentence α^{*} such that $\alpha \in \mathrm{EXT}$ iff $\alpha^{*} \in \mathrm{CST}$

Proof. Let α be an EXL-sentence α does not contan free elementary vanables By Theorem 71, α does not contain elementary variables at all

W \log the individual constant 0 does not occur in α Indeed $D(p, s, k, 0)$ is diways true, $E(p, s, k, 0)$ is always false, $0 \in T \equiv \emptyset \subset T$ and it is easy to eliminate 0 from atoms $0=l(\bmod T), 0>l(\bmod T), 0<l(\bmod T)$

Further,

$$
\begin{aligned}
& \left(Y=X^{+}\right) \equiv(X \subset Y \& \neg \exists Z(X \subset Z \subset Y)) \\
& \quad \vee(Y=X \&(\forall U \supset X) \exists Z(X \subset Z \subset U))
\end{aligned}
$$

So it can be assumed that every superterm of α is a variable or \emptyset We also admit a new individual constart U which denotes the maximal (non-proper) convex subgroup
$W \log$ all quantificationc, in α are restricted by $\emptyset \subset X \subset U$ Indeed, $\exists X \beta(X) \equiv$ $\beta(\emptyset) \vee \beta(U) \vee \exists X(\beta(X) \&(\emptyset \subset X \subset U))$

W \log the indivdual constants \emptyset and U do not occur in α Indeed, $E(G), E(U)$ $p(s, k, \emptyset)>r, p(s, k, U)>r, U \subset \emptyset$ are false $\emptyset=\emptyset, \emptyset \subset U, U=U$ are true And because every variable in α is bounded by the open interval ($\emptyset U$) we can replace $\emptyset=X$ by the propositional constant "talse". $\emptyset \subset X$ by the "ttue" and so on

As a matter of fact we now have a desired fromula α^{*}
An EXL-formula α is called open if α has no bound elementary varidbles Below, we write " $\alpha \equiv \beta$ " instead of " $\alpha \equiv \beta$ in EXT". " α imphes β " instead of " α imples β in EXT" and so on

The Elmmation Theorem is proved by an inducion on α The only non-trival case is the following

Lemma 7.1 (Main Lemma) For every open EXL-formula $\alpha(x)$, here exists in open EXL-formula α^{*} such that $\exists x \alpha(x) \equiv a^{*}$

The following simple statements ate used often
Lemma 7.2 (Cases Lemma) If α imples $\vee \beta$, then $\exists x \alpha \equiv \vee \exists x\left(\alpha \& \beta_{1}\right)$
Lemma 7.3. Let α be an EXL-formula and β be a subformula of α such thar any free occurrence in β of any variable is never bound in α Let α_{t} (respectively of) be obtained from α by replacing β by the proposittonal constant 'true" (rspectuvely "false") Then $\exists \lambda \alpha \equiv \exists x\left(\beta \& \alpha_{t}\right) \vee \exists x\left(\neg \beta \& \alpha_{t}\right)$

Lemma 7.4. Let α be an EXL-formula and T be a superterm in α such that any occurrence in T of any variable is never bound in α Let α ' be obtained from α by replacing Tby a new second order variable X Then $\exists x \alpha \equiv \exists X \exists x\left(X=T \& \alpha^{\prime}\right)$

8. Primary case

An EXL-formula $\alpha(x)$ is called a p-formula if x can occur in $\alpha(x)$ only through $F(p, r, t), D(p, r, c, t)$ or $E(p, r, c, t)$ In other words a p-formula contams nether $A(t), t \operatorname{Rc}(\bmod T)$ nor $F(q, r, t), D(q, r, c, t), E(q, r, c, t)$ where $q \neq p$

Theorem 8.1. Let $\alpha(x)$ be an open p-formula There exists an open p-formula α such that $\exists x \alpha(x) \equiv \alpha^{*}$

Theorem 81 is the object of this section Let R be the set of numbers r occurning in α through $F(p, r, t(x)), D(p, r, c, t(x))$ or $E(p, r, c, t(x))$ Let $s=\max R$ It can be assumed that s is the only element of R, see Corollary 13 and Lemmas 1) and : 6 in Section 1 Below we write $F(t), D(c, t), E(c, t)$ instead of $F(p, s, t), D(p, s, c, t)$, $E(p, s, c, t)$ respectively $t_{1} \equiv t_{2}$ is an abreviation for $F\left(t_{1}-t_{2}\right)=\emptyset$

Note that $x \equiv y$ imples $\alpha(x) \equiv \alpha(y)$ Every elementary term t of α can be represented in a form $a x+b_{1} y_{1}+\quad+b_{m} y_{m}$ where $0 \leq a, b_{1}<p^{8}$ Moreover, it can be assumed that $a=p^{k}$, see Corollary 13 and Lemmas 15 and 16 in Section 1 Below τ is an elementary term without x and M is the set of terms τ occurring in α through $F(a x+\tau), D(c, a x+\tau)$ or $E(c, a x+\tau)$ It can be assumed that if $\tau \in M$ then $p \tau \in M$

By the Cases Lemma it can be assumed that for $k=1, \ldots, s, \alpha$ has conjuncts $F\left(p^{s-k} x+\tau_{k}\right) \subseteq F\left(p^{s-k} x+\tau\right)$ for some τ_{k} and every $\tau \in M$ Let $t_{k}=p^{s-k} x+\tau_{k}$ and $t_{0}=0 \quad$ Then α implies $F\left(t_{0}\right) \subseteq F\left(t_{1}\right) \subseteq \quad \subseteq F\left(t_{\mathrm{s}}\right) \quad$ Indeed, $\quad F\left(t_{k}\right) \subseteq$ $F\left(p^{s-k} x+p \tau_{k+1}\right)=F\left(p \cdot t_{k+1}\right) \subseteq F\left(t_{k+1}\right)$

By the Cases Lemma 72 it can be assumed that $\left(F\left(t_{k}\right) \subset F\left(t_{k+1}\right)\right)$ or $\left(F\left(t_{k}\right)=\right.$ $\left.F\left(t_{k-1}\right)\right)$ is a compunct in $c e$ In order to avoid using indices we assume that

$$
\eta=F\left(t_{0}\right)==F\left(t_{1}\right) \subset F\left(t_{1+1}\right)==F\left(t_{1}\right) \subset F\left(t_{t-1}\right)==F\left(t_{3}\right)
$$

Evidently

$$
p^{s-k} x \equiv \begin{cases}p^{\prime-k} p^{s} x \equiv p^{\prime-k}\left(t_{1}-\tau_{1}\right) \equiv-p^{t-k} \tau_{l}, & \text { if } k \leqslant l \\ p^{\prime-k} p^{s-1} x \equiv p^{\prime-k}\left(t_{1}-\tau_{l}\right), & \text { if } l<k \leqslant l \\ p^{\prime-k} x \equiv p^{\prime-k}\left(t_{s}-\tau_{3}\right), & \text { if } J<k \leqslant s\end{cases}
$$

Let $\alpha^{\prime}\left(\kappa_{y}, x\right)$ be a formuia such that $\alpha(x) \equiv \alpha^{\prime}\left(t_{t}, t_{s}\right)$

Lemma 8.1.

$$
\exists \lambda \alpha(x) \equiv \exists x, \exists x_{l}\left[\alpha^{\prime}\left(x_{l}, x_{3}\right) \& p^{r-1}\left(x_{l}-\tau_{j}\right)=-\tau_{1} \& p^{s-1}\left(x_{\mathrm{s}}-\tau_{3}\right)=x_{l}--\tau_{l}\right]
$$

Proof. $\alpha(x)$ implies $\alpha^{\prime}\left(t_{j}, t_{s}\right)$ Conversely $\alpha^{\prime}\left(x_{p}, x_{s}\right)$ implies $\alpha^{\prime}\left(x_{s}-\tau_{s}\right)$
Corohary 8.i. It is enough to prove Theorem 81 for $\alpha(x)$ such that $\alpha(x)$ has conjuncts $p^{k} x=\tau_{0}$ and $\emptyset \subset F(x) \subseteq F\left(p^{\prime} x+\tau\right)$ for some $1 \leqslant k<s$ and τ_{0} and every $0 \leqslant t<k$ and $\tau \in M$

Let $N=\left\{p^{\prime} x+\tau \quad 0 \leqslant t<k \& \tau \in M\right\}$ Wlog N is the set of all elementary terms $t(x)$ in α

W $\log (X-F(x))$ is a conjunct in α, see Lemma 74 in Section 7
Lemma 8.2 W iog α has conjuncts $F(\tau) \subseteq X, \tau \in M$
Proof. Let $\tau \in M$ By inc Cases Lemma it can be assumed that $F(\tau) \subseteq X$ or $X \subset F(\tau)$ is a conjunct of α But $F(x)=X \subset F(\tau)$ implies $F\left(p^{2} x+\tau\right)=F(\tau)$, $D\left(c, p^{\prime} x+\tau\right) \equiv D(c, \tau)$ and $E\left(c, p^{\prime} x+\tau\right) \equiv E(c, \tau)$ So we can cancel τ fron M

Lemma 8.3. The corfunt $\rho^{k} x=\tau_{0}$ can be replaced in α by $p^{s} \tau_{0} \equiv 0$ \& $F\left(p^{k} x-\tau_{0}\right) \subset X$

Proof. Let $\alpha^{\prime}(x)$ be the result of the replacement $\alpha(x)$ imples $\alpha^{\prime}(x)$ Conversely, suppose $\alpha^{\prime}(x)$ Then $p^{k} x-\tau_{0} \equiv v$ for some $y \in X$ and $p^{s-k} y \equiv 0$. ic $y=p^{k} z$ for some z It is easy to check that $\alpha(x-z)$ is true

Evidently α implies $F(t)=X$ foi $t \in N$
Corollary 8.2. W $\log \alpha=\alpha_{0} \& \alpha_{1}(\ell) \& \beta(x)$ where α_{0} is $p^{\prime} \tau_{0}=0 \& \emptyset \subset \mathrm{Y} \&$ $\wedge\{F(\tau) \subseteq X \quad \tau \in M\}, \alpha_{1} t s F\left(p^{*} x-\tau_{0}\right) \subset X \& \wedge\{F(t)=X \quad \in \in N\}$ and x can ocrur in $\beta(x)$ only through atoms $D(c, t) \mathrm{L}(c, t)$

Lemma 8.4. Let α_{0} and $E(X)$ imply $\exists x\left(\alpha_{1} \& \beta\right) \equiv \gamma$ and α_{0} and $\neg E(X)$ mply $\exists x\left(\alpha_{1} \& \beta\right) \equiv \delta$ Then, $\exists x \alpha \equiv \alpha_{0} \& E(X) \& \gamma \vee \alpha_{11} \& \neg E(X) \& \delta$

Proof. Clear

So it is enough to find the corresponding γ and δ
Suppose α_{0} and $E(X)$ By the Cases Lemma it can be assumed that β has a conjunct $E(a, x), 1 \leqslant a<p$. Therefore we can replace $D(\rho, t)$ by $\left\{E\left(b p^{\prime}, t\right)\right\} \leq$ $\left.o<p^{s-1}\right\}, E\left(b, p^{\prime} x+\tau\right)$ by $E\left(b-a p^{\prime}, \tau\right), F\left(p^{\prime} x+\tau\right)=X$ by $\neg E\left(-a p^{\prime} \tau\right)$

As a sesult $\alpha_{1}(x) \& \beta(x) \equiv F(x)=X \& E(a, x) \& \alpha^{\prime}$ for some open α^{\prime} whitout x And,

$$
\exists x\left(\alpha_{1} \& \beta\right) \equiv \alpha^{\prime} \& \exists x(F(x)=X \& E(a, x)) \equiv \alpha^{\prime} \& E(X)
$$

Suppose α_{0} and $\neg E(X)$
W \log every atom in β has a form $D(, t(x))$ Ind ed, let β_{0} be an atom in $\beta(x)$ If $\beta_{0}=E(J, t(x))$ then β_{0} can be replaced by "false" Let $\beta_{0} 1$ ot contan x By the Cases Lemria it can be assumed that β_{0} or $\neg \beta_{0}$ is a conjunct of $\beta(x)$ It can be assumed that β_{0} occurs only once in $\beta(x)$ Let $\alpha_{1} \& \mu= \pm \beta_{0} \& \alpha^{\prime}$ iren $\equiv x\left(\alpha_{1} \& \beta\right) \equiv \pm \beta_{0} \& \exists x \alpha^{\prime}(x)$

Let a bar denote the nar ral somorphism $\Gamma_{2}(p, \varsigma, X) \rightarrow \Gamma(p, s, X)$ Let α be $p^{k} \bar{x}=\bar{\tau}_{0} \& \wedge\{\bar{t} \neq 0 \quad t \in N\}$ and β^{\prime} be obtained from β by replacement of $D(,, t)$ by $\bar{t} \equiv 0\left(\bmod p^{\prime}\right)$ Evidently $\exists x\left(\alpha_{1}(x) \& \beta(x)\right) \equiv \exists \bar{x}\left(\alpha_{1}^{\prime}(\bar{x}) \& \beta^{\prime}(\tilde{x})\right)$

Let $K(p, s)$ be the class of (Abehan) groups satisfying the axıom $p^{s} v=0$ Let a first order language $L(p, s)$ be obtaned from the elementary language of grours $b v$ adding the atoms $t \equiv 0\left(\bmod p^{\prime}\right)$ Let $T(p, s)$ be the theory of $K(p, s)$ in $L(p, s)$

Lemma 8.5. $T(p, s)$ admits a quantifier elimenation
Proof. It is easy to check Lemma 85 with the aid of [17] or even without it

According to Lemma 85 the formula $\exists \bar{x}\left(\alpha_{1}^{\prime}(\bar{x}) \& \beta^{\prime}(\bar{x})\right)$ is equivalent in $T(p, y)$ to some Boolean combination of atoms $\bar{\tau}=0$ and ${ }^{\prime} \tilde{\tau} \equiv 0\left(\bmod p^{\prime}\right)$ Then
$\exists x\left(\alpha_{1}(x) \& \beta(x)\right)$ is equivalent to the corresponding Beolean combination of atoms $F(\tau) \subset X$ and $D(, r)$ Theorem 81 is proved

9. Without exiles

Superterms $A(t(x))$ and atoms $t(x) R k(\bmod T)$ will be called exiles
Theorem 9.1. Let $\alpha(x)$ be an open EXL-formula without exiles There exists an open EXI.-formula α^{*} such that $\exists x \alpha(x) \equiv \alpha^{*}$

Proof. Let σ be the set of pairs (p, r) occurring in α through $F(p, r, t(x)), D(p, r, c, t(\lambda)), E(p, r, c, t(x))$ Let $\pi=\{p \exists r(p, r) \in \sigma\}$ and $s_{p}=$ $\max \{p(p, r) \in \sigma\}$

Lemma 9.1. Wlog $\alpha(x)=\beta \& \wedge\left\{\alpha_{p}(x) p \in \pi\right\}$ where every $\alpha_{p}(x)$ is a p formula and β does not contain x

Proof. See Lemmas 73 and 74

Lemma 9.2. $\exists x \alpha(x)=\beta \& \wedge\left\{\exists x \alpha_{p}(x) p \in \pi\right\}$
Proof. Suppose β and $\alpha_{p}\left(x_{p}\right), p \in \pi$ There exist integers a_{p} such that $a_{p} \equiv$ $1\left(\bmod s_{p}\right)$ and $a_{p} \equiv 0\left(\bmod s_{q}\right)$ for $q \in \pi-\{p\}$ It is easy to check that $\alpha\left(\sum a_{p} x_{p}\right)$ holds

Now Theorem 81 mples Theorem 91

10. Banishment

Superterms $A(t(x))$ and atoms $t(x) R k(\bmod T)$ are called exu's
Theorem 10.1. Iet $\alpha(x)$ be an open EXL-formula There exists an open EXLformula $\alpha^{*}(x)$ without extles such that $\exists x \alpha(x) \equiv \exists x \alpha^{*}(x)$

Thenrem 101 is the object of this section The Main Lemma of Section 7 follows from Theorem 101 and Theorem 91

Below $\tau 15$ an elementarv ierm without x
Lemma 10.1. W l.o.g. ever) elementary term $t(x)$ in α has a form $x+\tau$
Proof. Every $t(x)$ can be represented in a form $a x+\tau$ for some integer a Let
$S=\{a \neq 0 \quad a x+r$ occurs in $\alpha\}$ I et b be the least common multiple of numbe 1, in S It can be assumed that b is the only element of S, see Corollaries $12,18,112$ and Lemmas 15,16 Let $\alpha^{\prime}(x)$ be the formula such that $\alpha(x)=\alpha^{\prime}(b x)$ Then $\exists x \alpha(x) \equiv \exists x\left[\alpha^{\prime}(x) \& F(b, x)=\emptyset\right]$ Now Corollary 14 is used

Lemma 10.2. W $\log \alpha=(A(x)=X) \& \beta \& \gamma$ where
(1) β is a conjunction of extle atoms $(x+\tau) R k(\bmod X)$,
(2) β has no conjuncts $x+\tau=\eta(\bmod X)$.
(3) γ has no exiles at all,
(4) for every conjunct $(x+\tau) R k(\bmod X)$ in β there extsts a confunct $A(\tau) \subseteq X$ in γ and
(5) $X \neq \emptyset$ is a conjunct in γ

Proof. Let M be the set of terms τ occurning in α through $A(x+\tau)$ or $(x+\tau) R k(\bmod T)$ By the Cases Lemma it can be assumed that $(A(x+\tau)=$ $A(x+\tau)$) or $\left(A\left(x+\tau_{0}\right) \subset A(x+\tau)\right)$ is a conjunct in α for some fixed τ_{1} and cvery $\tau \in M$ Because of $\exists x \alpha(x) \equiv \exists x \alpha\left(x-\tau_{1}\right)$ it can be assumnd $\tau_{0}=0$ Moreover it can be assurned that $(A(x)=A(x+\tau)$) is a conjunct in $\alpha, \tau \in M$ Indeed, $A(x) C$ $A(x+\tau)$ is equivalent to $A(x) \subset A(\tau)$ and imphes $(x+\tau) R k(\bmod T) \equiv$ $\tau R k(\bmod T)$ So $\alpha=\alpha_{1} \& \alpha_{2}$ where $\alpha_{1}=A\{A(x)=A(x+\tau) \tau \in M\}$
$\mathrm{W} \log \alpha_{2}=(A(x)=X) \& \alpha_{3}$, see Lemma $74 \mathrm{~W} \log \alpha_{3}$, has no exile superterms Let $\beta=(x+\tau) R k(\bmod T)$ be an exile atem in $\alpha, \mathrm{W} \log \Gamma=\mathrm{X}$ Indeed, it can be assumed that $T \subset X, T=X$ or $X \subset T$ is a conjunct in α_{3} In the case $X \subset T$ we can replace β by $0 R k(\bmod T)$ In the case $T \subset X$ and $k \neq 0$ we can replace β by $E(T) \&(x+\tau) R 0(\bmod X)$ In the case $T \subset X$ and $k=0$ we can replace β by $(x+\tau) R 0(\bmod X) W \log \beta$ or $\rightarrow \beta$ is a conjunct in $\alpha_{;}$, see Lemma 73 It can be assumed that β is a conjunct because of

$$
\neg(x+\tau<k(\bmod X)) \equiv(x+\tau=k(\bmod X)) \vee(x+\tau>k(\bmod X))
$$

and simularly for other cases
A conjunct $A(x)=A(x+\tau)$ in α_{1} can be replaced by
$A(\tau) \subseteq X \& x+\tau<0(\bmod X)$ or
$A(\tau) \subseteq X \&:+\tau>0(\bmod X)$
If α_{3} has a conjunct $x+\tau=0(\bmod X)$ then α is false
By the Cases Lemma $X=\emptyset$ o: $X \neq \emptyset$, a conjunct in α In the case $X=\emptyset$ $\alpha(x) \equiv \alpha(0) \mathrm{QED}$

Let σ be the set of pars (p, r) occurning in γ through $F(p, r, t(x)), D(p, r, c, t(x))$ or $E(p, r, c, t(x))$ Let s be the least common multiple of the numbers $p^{\prime}(p, r) \in \sigma$

Lemma 10.3. If $x \equiv y(\bmod s)$, then $\gamma(x) \equiv \gamma(y)$

Proof. Clear

Below $F(s, t) \subseteq X$ and $E(s, c, t)$ are used as abbreviations for $\wedge\{F(p, r, t) \subseteq X(p, r) \in \sigma\}$ and
$\wedge\{E(p, r, c, t)(p, r) \in \sigma\}$ respectively
(cf, Corollary 14)
Suppose $\left(x+\tau_{0}=k(\bmod X)\right)$ is a conjunct in $\beta W \log g$ it is the only conjunct in β Indeed it implies that

$$
(x+\tau) R l(\bmod X) \equiv\left(\tau-\tau_{0}\right) R(l-k)(\bmod X)
$$

Wiog $\tau_{0}=0$ Indeed,

$$
\begin{aligned}
& \exists x\left[A(x)=X \& x+\tau_{0}=k(\bmod X) \& \gamma(x)\right] \equiv \\
& \quad \equiv \exists x\left[A(x)=X \& x=k(\bmod X) \& \gamma\left(x-\tau_{0}\right)\right]
\end{aligned}
$$

Let $\alpha_{u}(x)=E(X) \& \gamma(x) \& F(s, x) \subseteq X \& E(s, k, x)$
Lemma 10.4. $\exists x \cdot(\because) \equiv \exists x \alpha_{t}(x)$
Proof. $\alpha(x)$ implics $\alpha_{0}(x)$ Conversely, suppose $\alpha_{0}(x)$ Because of $F(s, x) \subseteq X$ there exists $y \in X^{+}-X$ such that $y \equiv \mathrm{r}(\bmod s)$ Clearly $\alpha_{0}(y) \& A(y)=X$ holds Therefore $y=k+n s(\bmod X)$ for some n Let $u=1(\bmod X)$ Then $\alpha(y-n s u)$ holds

Let every conjunct in β be an inequality Note that

$$
\begin{aligned}
& x+\tau_{1}<k_{1}(\bmod X) \& x+\tau_{2}<k_{2}(\bmod X) \equiv \\
& \quad \equiv x+\tau_{1}<k_{1}(\bmod X) \& \tau_{2}-1_{1} \leqslant k_{2}-k_{1}(\bmod X) \vee \\
& x+\tau_{2}<k_{2}(\bmod X) \& \tau_{1}-\tau_{2} \leqslant k-k_{2}(\bmod X)
\end{aligned}
$$

So it can be assumed that β has at most one conjunct of a form $x+\tau<$ $k(\bmod X)$ and $($ simularly $)$ at most one conjuct of a form $x+\tau>k(\bmod X)$ It also can be dssumed that $E(X)$ or $\neg E(X)$ is a conjunct in γ

Case 1β has at most one conjunct Let α_{1} be $F(s, x) \subseteq X \& X \subset X^{+} \& \gamma(x)$

Lemma 10.5. $\exists x \alpha(x) \equiv \exists x \alpha_{1}(x)$
Proof. $\alpha(x)$ implies $\alpha_{i}(x)$ Conversely, suppose $\alpha_{1}(x)$ W log $A(x)=X$, see the proof of Lemma 104 If α has no exile-atoms then $\alpha(x)$ nolds Let $\beta=x+\tau<$ $k(\bmod X) \quad($ respectively $\beta=x+\tau>k(\bmod X))$ Let $y>0(\bmod X)$ Then $\alpha(x-n s y)$ (respectively $\alpha(\AA+n s y)$) holds for sufficiently large n

Case $2 \beta=\tau_{1}+k_{1}<x<\tau_{2}+k_{2}(\bmod X)$ and $\neg E(X)$ is a conjunct in γ It can be assumed that $k_{1}=k_{2}=0$ if $k_{1} \neq 0$ or $k_{2} \neq 0$ then α is false Let $\alpha=\alpha_{1} \& \tau_{1}<$ $\tau_{2}(\bmod X)$

Lemma 10.6. $\exists x \alpha(\lambda) \equiv \exists x \alpha_{2}(1)$
Proof. $\alpha(x)$ implies $\alpha_{2}(x)$ Conversely, suppose $\alpha_{2}(x) W \log A(x)=X$ The Archemedean o-group X^{+} / X is somorphic to some dense ordered subgroup of the o.group of reals So there exists $y>0(\bmod X)$ such that $s y<\tau_{2}-\tau_{1}(\bmod X)$ Ther $\alpha(\lambda+n s y)$ holds for some n

Case $3 \beta=\tau_{1}+k_{1}<x<\tau_{2}+k_{2}(\bmod X)$ and $E(X)$ is a conjunct in y Let δ be $\tau_{1}+k_{1}+2 s<i_{2}+k_{2}(\bmod X)$ It can be assumed that δ or $\neg \delta$ is a conjunct $\operatorname{mo} \gamma$ But in the case $\neg \delta$ we can replace β by one of the atoms $x=\tau_{1}+k_{1}-l, 1 \leqslant l-2 \mathrm{~s}$ and use Lemma 104 So it can be assumed that δ is a confunct in γ Let $\grave{\alpha}_{3}=F(s, x) \subseteq X \& \gamma$

Lemma 10.7. $\exists x \alpha(x) \equiv \exists x \alpha_{3}(x)$
Proof. $\alpha(x)$ implies $\alpha_{3}(x)$ Conversely, suppose $\alpha_{3}(x)$ Wlog $A(x)=X$ The Archemedean o-group X^{+} / X is ison orphic to the o-group of integers Lot $y=$ $1(\bmod X)$ Then $\alpha(x+n s y)$ holds for some n

PART 3. CONVEX SUBGROUPS THEORY

11. Decidability theorem

The Convex Subgroups Language CSL is a first order language whose non-logical constants are " $<$ ", the one-place predicate symbol E and the one-place predicatc symbols $p(s, k)>r$ where p, s, k and r are naturals, p is prime and $1 \leqslant k \leqslant s$ Every o-group G gives the natural model ΔG of CSL as follows Elements of ΔG are proper conven subgroups of G (a convex subgroup $X \subseteq G$ is proper if $X \neq G$) $X<Y \equiv X \subset Y$ The predicates $E(X)$ and $p(s, k, X)>r$ are defined according to Section 1 The Convex Subgroups Theory CST is the set of CSL-formulas holding in all ΔG

Theorem 11.1. CST is decidable

Let σ be a finte set of quadruples (p, s, k, r) of naturals where p is prime and $1 \leqslant k \leqslant \mathrm{~s}$ Let L_{α} be a sublanguqge of CSL whose non-logıal symbols are $<, E$ and $p(s, v)>r$ where $(p, s, k, r) \in \sigma$ Let $T_{\sigma}=L_{r} \cap$ CST

Theorem 11.2. T_{σ} is unformly decidable on σ

Clearly Theorem 112 mplies Theorem 111
Let $\Delta_{\sigma} G$ be the corresponding L_{σ} projection of the natural CSL-model ΔG Evidently T_{σ} is the theory of all $\Delta_{\sigma} G$

Let $\sigma_{1} \sigma_{2}, \sigma_{3}, \sigma_{4}$ be the corresponding projections of σ and $s=\max \sigma_{2}$ According to Theorem 11 it can be assumed that s is the only element of $\sigma_{2} \mathrm{~W} \log$ it can be ass, amed also that if $p \in \sigma_{1}, 1 \leqslant k \leqslant s$ and $0 \leqslant r \leqslant \max \sigma_{r}$, then $(p, s, k, r) \in \sigma$

The following abbreviations are used

$$
\begin{aligned}
& p(k, x)>r \text { for } p(s, k, x)>r, \\
& p(k, x)=0 \text { for } \neg(p(k, x)>0), \\
& p(k, x)=r+1 \text { for } p(k, x)>r \& \neg(p(k, x)>r+1), \\
& p(x)=0 \text { for }\{p(k, x)=0 \quad 1 \leqslant k \leqslant s\}, \\
& p^{\prime}(x)=0 \text { for }\{p(k, x)=01 \leqslant k<s\}, \\
& y=x^{+} \text {for } x<y \& \neg \exists z(x<z<y) \vee x=y \&(\forall u>x) \exists z(x<z<u)
\end{aligned}
$$

A model A of L_{σ} is called a σ-chain (a complete σ-chain) it A is a ctain (a complete chain) The definition of complete chains is found in Section 14
K_{σ} is the class of complete σ-chans satisfying the following axioms (where $p \in \sigma_{1}$ and $\left.r, r+1 \in \sigma_{4}\right)$
(K1) $\quad \exists x \forall y(x \leqslant y)$,

$$
\begin{equation*}
x<y \supset \exists z\left(x \leqslant z<z^{+} \leqslant y\right) \tag{K2}
\end{equation*}
$$

(K3) $\quad p(k, x)>r+1 \supset p(k, x)>r$,

$$
\begin{equation*}
p^{\prime}(x) \neq 0 \supset \exists y(x<y) \&(\forall y>x) \exists z(x<z<y \& p(z) \neq 0) \tag{K4}
\end{equation*}
$$

(K5)

$$
E(x) \supset\left(x<x^{+} \vee \forall y(y \leqslant x)\right) \& p(s, x)=1
$$

Th K_{σ} is the theory of K_{σ} in $L_{\text {, }}$
Lemma 11.1. ThǨ is unuformly decidable on σ
Proof. Let C_{r}, be the theory of all contlete σ-clans in $L_{v i}$ By Theorem $152 C_{G}$ is unformly deridable on σ But ${ }^{\top} T h K_{\sigma}$ is finitely axiomatizable in T_{σ}

Lemma 11.2. $山_{s} G \in K_{r}$
Proot. Pidently $\Delta_{u} G$ is a complete σ-chain and satisfies axioms (K1)-(K3) For axioms (K4) and (K5) see Theorems 12 and 13

In Section 12 we buid a class M_{σ} of σ-chans such that $\operatorname{Th} M_{\sigma} \subseteq \operatorname{Th} K_{\sigma}$ According to Sectwo 13 for every $C \in M_{o}$ there exsts an o-group G such that $\Delta_{r} G \cong C$ So $T_{\sigma} \subseteq\left(a c c o r d i n g\right.$ to Section 13) $\operatorname{Th} M_{\sigma} \subseteq($ according to Secuon 12)

Th $K_{v} \subseteq$ (by the Lemmd 112) $\subseteq T_{\sigma}$ So, $T_{x}=T h R_{\text {, }}$ and Lemma $\|$ I imph Theorem 112

12. σ-chains

Definition 12.1. A o-chan S is the internal ordinal sam $\Sigma\{A, I \in I\}$ of its convex submodels A_{1} on a chan I it
(1) $S=\bigcup\{A, t \in I\}$ and
(2) $:<1 x \in A_{i}, \quad, \in A_{i}$ imply $x<v$

Definition 122. An external ordinal sum $S=\Sigma\left\{A_{i}, t \in I\right\}$ of σ-chams A_{1} on d chan I is defined as follows Elements of S are pars (t, λ) where $t \in I$ ard $x \in A$, $(l, x)<(j, y)$ iff $t<1$ or $t=\rho$ and $x<v$ And tor every one-place predicate sumbol P in $L_{\sigma}, S \vDash P(t, x)$ iff $A_{1} \vDash P(x)$ An ordinal mult,ple $A \quad I=\Sigma\left\{A_{1}, \in I\right.$ and $\left.A_{1}=A\right\}$

Notations. Let A and B be σ-chans, B is one-element and $b \in B$ The following abbreviations are used
$p(k, B)=r$ for $B \neq p(k, b)=r$
$E(B)$ for $B \vDash E(b)$,
$p^{\prime} A=0$ for $\wedge\{p(k a)=0 a \in A$ and $k<s\}$,
$p A=0$ for $\wedge\{p(k a)=0 \quad a \in A$ and $k \leqslant s\}$
Let U_{σ} be the class of such one-element σ-chans B that $\rightarrow E(B)$ Let 0_{σ} denote every σ-chain $B \in U_{r}$ such that $\left(\forall p \in \sigma_{t}\right) p B=0$ Let ω (respectively ${ }^{*}{ }^{*}$) be the naturally (resp inversely) ordered set of natural numbers Let \mathbf{R} be the chan of reals

Definition 12.3. Let F be a finite set of σ-chams An ordinal sum $\Sigma\left\{A_{1}, \quad \in I\right\}$ is called F-dense if
(1) $\forall l(\exists B \in F) A_{1} \cong B$,
(2) $(\forall B \in F)\left(\left\{1 A_{i} \equiv B\right\}\right.$ is dense in $\left.I\right)$ and
(3) I has nenther minmal nor maximal elements

Lemma 12.1. Every two F-dense σ-chains are elementary equivalent
Proof. By the Ehrenfeucht Criterton [2]
Definition 12.4. An ordinal sum $S=\Sigma\left\{A_{r} r \in \mathbb{R}\right\}$ is called an F-shuffing and is denoted by πF if
(1) S is F-dense,
(2) $(\exists B \in F) B$ is not one-element,
(3) $(\exists B \in F)\left\{r A_{r} \nexists B\right)$ is countable and
(4) if $\left\{r A_{r} \neq B\right\}$ is countable and B is one-element then $B=0_{\sigma}$

Definition 12.5. Let M. be the least class of σ-chans such that
(1) If σ-chain A is one-element and $p^{\prime} A=0$ then $A \in M_{\sigma}$,
(2) If $A, B \in M_{\sigma}$ then $A+B \in M_{\sigma}$,
(3) If $A \in M_{v}$ then $A \omega \in M_{\sigma}$,
(4) 'f $A \in M_{c}, B \in U_{\sigma}$ and $\left(\forall p \in \sigma_{1}\right)\left(p A=0 \supset p^{\prime} B=0\right)$, then $B+A \omega^{*}$ $\in M_{s}^{*}$,
(5) $C+\tau F \in M_{\sigma}$ if $C \in U_{\sigma}$ and finte $F=F_{1} \cup F_{2}$ where non-zero $F_{1} \subset\left\{A+B \quad A \equiv M_{\sigma}\right.$ and $\left.B \in U_{\sigma}\right\}$ and $F_{2} \subset U_{\sigma}$, and

$$
\left.\left(\forall p \in v_{1}\right)[(\forall D \in F) p D=0) \supset p^{\prime} C=0\right]
$$

Theorem 12.t. Th $M_{\sigma} \subseteq \operatorname{Th} K_{\sigma}$
Proof. It 1 enough to prove that for every $n=1,2$, every $A \in K_{x}$ is n. equivalenı to some $B \in M_{\sigma}$ Fix n

Definition 12.6. σ chain A will be called good if it satisfies one of the following requirements
(Gi) $\quad A$ is n-equivalent to some $B \in M_{\sigma}$,
(G2) $\quad A$ does not have the minmal element and $B+A$ satisfies (G1) for every $B \in U_{\sigma}$ such that, for every $p \in \sigma_{\text {, }}$ and $a \in A$, if $p^{\prime} B \neq 0$ then $(\exists c \in A)(c<a$ and $p c \neq 0)$,
(G3) $\quad A$ is onc-element and $\left(\exists p \in \sigma_{3}\right) p^{\prime} A \neq 0$ and
(G4) $\quad A \cong A^{\prime}+B$ where A^{\prime} satisfies (G1) or (G2) and B satisfies (G3)
Lenma 12.2. If a good $\left(-\right.$-chain $A \in K_{s}$, then A satusfies (G1)
Proof. Clear
Definition 127. σ chim A is cailed quast-good if every non-vord half-closed interval $[x, y)=\{z \quad x \leqslant z<y\}$ in A is good

Lemma 12.3. Every quast-good σ-chatn is gooa
Proof. See the proof of Lemma 143

Lemma 12.4. Every r-chain in K_{g} is good
Proof. See the proof of Lemma 144
Theorem 121 is proved

13. Constructing o groups

Theorem 13.1. For every σ-chan $A \in M_{c r}$ there exists an o-group G s ch that $j_{,} G$ is somorphic to A

Proof. Ey an induction on A Desired o-groups will be constructed as subgroups of levicographic sums of countable Atchimedean o-groups The operations of gluing at interlacement of Section 5 preserve this property

Eet A be one-element $T h e n\left(\forall p \in \sigma_{i}\right) p^{\prime} A=0$ If the only element of A satisfies the redicate E then the naturally ordered group of natural numbers is a desired o-group Let $A \in U_{\sigma}$ By the Gluing Theorem of Section 5 it can be assumed that $\forall p(p A=0)$ or $p A=1$ for some p and $q A=0$ for every $q \neq p$ So O or O_{p} (see Section 3) is a desired o-group

Let $A=B_{1}+B_{2}$ and $B_{1} \cong \Delta_{g} H_{1}, l=1,2$ Then the lexicographic sum $H_{1}+H_{2}$ k a df sired o-group

Let $A=B \quad \omega$ and $B \cong \Delta_{c} H$ Then $H \omega=L \Sigma\left\{H_{1} \quad \imath \in \omega\right.$ and $\left.H_{1}=H\right\}$ a a des red o-group

Let $A=C+B \omega^{*}, \quad B \cong \Delta_{\sigma} H$ and $C \in U_{\text {ar }}$ If $C \cong 0_{\sigma}$ then $H \quad \omega^{*}=$ $L \Sigma\left\{H_{1} \quad \iota \in \omega^{*}\right.$ and $\left.H_{1}=H\right\}$ is a desired group L $\epsilon: p(k, C) \neq 0$ for some p and k

It can be assumed that $p(k, C)=1$ and $q(l, C)=0$ if $q \neq p$ or $l \neq k$ Indeed iet $p\left(k, C_{p k}\right)=1$ and $q\left(l, C_{p k}\right)=0$ if $q \neq p$ or $l \neq k$ and let $\Delta_{v} H_{p k} \cong C_{p k}+B \omega^{*}$ Then a suitable interlacement of o-groups $H_{p \neq}$ (see the Interlacement Theorera in Section 5) is a desired o-group

It H is not p-divisible then the o-group G of Section 2 is a desired group Let H be p-divisible

It can be assume that H is a lexicographic multiple of Q Indeed, let $H^{\prime}=$ $L \Sigma\left\{H_{2} \quad \imath \in \Delta_{\sigma} H H_{1}=Q\right\}$ and $\Delta_{\sigma} G^{\prime} \cong C+\Delta_{r} H^{\prime} \omega^{*}$ Then a glung of $H \omega^{*}$ and G^{\prime} is a desired o-group It can be assumed that $H=Q$ Indeed if $H \neq Q$ then H is an interlacement of Q and some H^{\prime} Let $\Delta_{\sigma} G^{\prime} \equiv C+Q \omega^{*}$ Then a surtable interlacement of $H^{\prime} \omega^{*}$ and G^{\prime} is a desired o-group

Now the group G of Section 3 is a desired o-group
Suppose

$$
\begin{aligned}
& A=D+\tau\left(F_{1} \cup F_{2}\right), \quad D \in U_{\sigma}, \\
& F_{1}=\left\{B_{i}+C_{1} \quad 1 \leqslant i \leqslant m \text { and } B_{1} \cong \Delta_{c} H H_{i} \text { and } C_{1} \in U_{\sigma}\right\}
\end{aligned}
$$

nd

$$
F_{2}=\left\{C_{1} m<_{1} \leqslant n \text { and } C_{1} \in U_{\sigma}\right\}
$$

Wlog $D=0_{\sigma} \quad$ Indeed let $\Delta_{\sigma} G^{\prime} \equiv 0_{\sigma}+\tau\left(F_{1} \cup F_{2}\right)$ Then $\Delta_{\sigma}\left(G^{\prime} / X\right) \equiv$ $B_{1}+C_{1}+\tau\left(F_{1} \cup F_{2}\right)$ for some convex subgroup $X \subset G^{\prime}$ and $A \cong$ $D+\Delta_{\sigma}\left(G^{\prime} / X\right) \omega^{*}$ See the previous case

Let $A=0_{\sigma}+\left\{D_{r} r \in \mathbf{R}\right\}$ and

$$
R_{t}= \begin{cases}\left\{r \in \mathbf{R} \quad D_{r}=B_{1}+C_{i}\right\}, & \text { if } \imath \leqslant m, \\ \left\{r \in \mathbf{R} \quad D_{r}=C_{\imath}\right\}, & \text { if } m<l\end{cases}
$$

W $\log m=1$ If $m>1$ let $A_{1}=0_{\sigma}+\Sigma\left\{F_{r} r \in \mathbf{R}\right\}$ where

$$
F_{r}= \begin{cases}B_{1}+C_{1}, & \text { if } r \in R_{1}, \\ C_{m}, & \text { if } r \in R, \text { and } m<J, \\ 0_{\sigma} & \text { in other cases }\end{cases}
$$

and for $1<1 \leqslant m$ let $A_{1}=0_{o}+\Sigma\left\{F_{r} r \in \mathbf{R}\right\}$ where

$$
F_{r}= \begin{cases}B_{t}+C_{t} & \text { if } r \in R_{t} \\ 0_{\sigma} & \text { in other cases }\end{cases}
$$

Let $\Delta_{s} G_{1} \cong A_{l}, t=1, \quad m$ Then the corresponding interlacement of o-groups G_{1}, \quad, G_{m} is a desired o-group

Below $B=B_{1}$ and $H=H_{1}$
W $\log C_{1}=0_{c}$ and $\mathbf{R}-R_{t}$ is countable for scme $t>1$ Indeed, by the definition of shuffing in Section 12, some $\mathbf{R}-R_{;}$is countable and if $t>1$ then $C_{i}=0_{\sigma}$ Let $\mathbf{R}-R_{1}$ be countabie There exists a representation $R_{1}=\bigcup\left\{R_{1,} t \in I\right\}$ where summands R_{1} are countable, dense in R and disjomt Let $u \in I$ and $A_{1}=$ $0,+\Sigma\left\{F_{r}^{\prime} r \in \mathbf{R}\right\}$ where

$$
F_{t}^{t}= \begin{cases}B+C_{1}, & \text { if } r \in R_{i}, \\ C_{i}, & \text { if } t=u, r \in R_{t} \text { and } t>1, \\ 0_{\sigma} & \text { in other cases }\end{cases}
$$

Let $\Delta_{g} G_{2} \cong A_{t}$ The corresponding interlacement of o-groups G_{t} is a desired o-group

W $\log C_{1}=0_{\sigma}$ If $C_{1} \neq 0_{\sigma}$ let $R_{1}=S_{1} \cup S_{2}$ where summands S, are derse in R and disjomt Let $A_{t}=0_{\sigma}+\Sigma\left\{F_{t r} r \in R\right\}$ where

$$
\begin{aligned}
& F_{i r}= \begin{cases}B+0_{r} & \text { if } r \in S_{1}, \\
C_{1}, & \text { if } r \in S_{2}, \\
C_{1}, & \text { if } r \in R_{t} \text { and } t>1, \\
0, & \text { in other cases }\end{cases} \\
& F_{2 r}= \begin{cases}C_{1}, & \text { if } r \in S_{1}, \\
B+0_{s}, & \text { if } r \in S_{2}, \\
J_{c} & \text { in other cases }\end{cases}
\end{aligned}
$$

Let $\Delta_{s} G_{i} \cong A_{2}$. Then the corresponding interlacement of G_{1} and G_{2} is a desired o-group

Let $s=\Sigma\left\{p\left(k, C_{1}\right) p \in \sigma_{1}, k \in \sigma_{3}, 1<l \leqslant n\right\}$.
W Log $s \leqslant 1$ The staiement is proved by mduction on s Let $C_{1,} C_{2} \in U_{\sigma}$ and every $p\left(k, C_{i}\right)=p\left(k, C_{11}\right)+p\left(k, C_{2 t}\right)$. Let $R_{1}=S_{1} \cup S_{2}$ and the summands S_{t} are dense in R and disjunctive Let $A_{1}=0_{c}+\Sigma\left\{F_{;}, r \in \mathbf{R}\right\}$ where

$$
F_{r}^{\prime}= \begin{cases}B+0_{\sigma}, & \text { if } r \in R_{1} \\ C_{n}, & \text { if } r \in R_{1} \text { and } 1<!, \\ 0_{\sigma}, & \text { in other cases }\end{cases}
$$

Let $\Delta_{\sigma} G_{1} \equiv A_{1}$ Then the corresponding interlacement of G_{1} and G_{2} is a desired o-group

If $s=0$ then the lexicographic multiple $H \quad R_{1}$ is, a desined o-group
Suppose $s=p\left(k, C_{-}\right)=1$ (and so $\left.F_{1}=\left\{B_{1}+0_{\sigma}\right\}, F_{2}=\left\{C_{2}, 0_{r}\right\}\right)$
Case $1 H$ is not p-divisible There exists a repiesentation $R_{1}=\bigcup\left\{R_{1 t} t \in R_{2 f}\right.$ such that $R_{1:} \cap R_{1 u}=\emptyset$ if $t \neq u$ and evely chain $R_{1:} 15$ isomorphic to ω^{t} and $\lim R_{14}=t$ For every $t \in R_{2}$ let $A_{1}=C_{2}+B \quad R_{4}$ and σ_{2} be the o-group G of Section 2 Then $\Delta_{v} G_{t} \cong A_{t}$ and the interlacement of o-groups G_{t} is a desired o-group

Case $2 H$ is p-divisible $W \log H$ is a lexicographic multiple of the rational o-group Q Indeed, let subchan $I=\left\{X \in \Delta^{*} H X \subset X\right\}, H^{\prime}=Q \quad I$ and $t_{1}=$ $0_{\sigma}+\Sigma\left\{F_{r} r \in \mathbf{R}\right\}$ where

$$
F_{r}= \begin{cases}\Delta_{\sigma} H^{i}+0_{v}, & \text { if } r \in R_{1} \\ C_{2}, & \text { if } r \in R_{2} \\ 0_{\sigma} & \text { in other c ses }\end{cases}
$$

Let $\Delta_{\sigma} G_{1} \cong A_{1}$ and $G_{2}=H \quad R_{1}$ The: the corresponding gluing of G_{1} and G_{2} is desired o-group

W $\log H \cong Q$ Suppose that H is not isomorohic to Q Then H is isomorphic to lexicographic sum $H_{1}+Q+H_{2}$ where H_{1} or H_{\sim} can be zero-group Lei $A_{1}=$ $0_{o s}+\left\{F_{r} r \in \mathbf{R}\right\}$ where

$$
F_{r}= \begin{cases}\Delta_{c} Q+0_{\sigma r}=0_{\sigma}+0_{s}, & \text { if } r \in R_{1} \\ C_{2}, & \text { if } r \in R_{2} \\ 0_{\sigma}, & \text { in other cases }\end{cases}
$$

Let $\Delta_{a} G_{1} \cong A_{1}$ and $G_{2}=\left(H_{1}+H_{2}\right) \quad R_{1}$ Then the corresponding inter lacement of G_{1} and G_{2} is a destred o-group

Lemma 13.1. Let $X_{1}, X_{2}, Y_{1}, Y_{2}$ be countable dense subsets of the chain \mathbf{R} of reals and $X_{1} \cap X_{2}=Y_{1} \cap Y_{2}=\emptyset$ There exists an automorphism $\phi \mathbf{R} \rightarrow \mathbf{R}$ such that $\phi X_{i}=Y_{1}, l=1,2$

Proof. Let $X=X_{1} \cup X_{2}$ and $Y=Y_{1} \cup Y_{2}$ It is enough to construct an isomor phism $\phi X \rightarrow Y$ such that $\phi X_{i}=Y_{i}$ Indeed this somorphism can be extended as follows $\phi\left(\lim x_{n}\right)=\lim \phi x_{n}$

Fix a numeration of $X \cup Y$ by naturals A 1-1-function f is called adm,ssible if dom f is finte and $\operatorname{mg}\left(f \mid X_{i}\right) \subseteq Y_{i}$ A sequence f_{0}, f_{1}, of admissible functions is constructed as follows $f_{0}=0$ If $n=2 k$ and x is the element in $X-\operatorname{dom} f_{n}$ of the minmal number then f_{n+1} is an admussible extension of f_{n} such that $x \in \operatorname{dom} f_{n=3}$ If $n=2 k+1$ and y is the element in Y-rng f_{n} of the minmal number then f_{n+1} 1s ant
adm ssible extension of f_{r} such that $y \in \operatorname{mg} f_{n+1}$ Evidently $\lim f_{n}$ is a destred isomorphism

Now it is clear that the o-group G of Section 6 is a desired o-group Theorem 131 1s. proved

APPENDIX. COMPLETE CHAINS WITH ONE-PLACE PREDICATES

A chain is a linear ordered set A chain A is complete if A satisfies the following second order axiom

$$
\begin{gathered}
(\forall X \subseteq A)(\forall Y \subseteq A)[X \neq \emptyset \& Y \neq \emptyset \&(\forall x \in X)(\forall y \in Y) x<y \\
\supset \exists z(\forall x \in X)(\forall y \subseteq Y) x \leqslant z \leqslant y]
\end{gathered}
$$

The decidability of the weak monadic second order theory of complete chains is proved in Section 14 The proof uses [11] and [12] The decidability of the weak mondic second order theory of complete chains with one-place predicates is proved in Secuon 15, where this theory is reduced to the predecessor theory A similar reduction was used in [5] The decision procedures are primitively recursive

14. Complete chains

L_{0} 's the weak monadic second order language whose only non-logical constant is " $<$ " K_{0} is the class of complete chans, Th K_{0} 's the L_{0}-theory of K_{n}

Defimion 14.1. A chain S is the internal ordinal sum $\Sigma\left\{A_{i} i \in I\right\}$ of its convex subchans $A_{\text {, }}$ on a chan I if
(1) $S=\bigcup\{A, \quad t \in I\}$ and
(2) $i>J, x \in A_{i}, y \in A$, imply $x<y$

Definition 1a.2. An external ordinal sum $S=\Sigma\left\{A_{,}, i \in I\right\}$ of chams A_{1} on a chain I is def ned as follows Elements of S are pars $(, x)$ where $l \in I$ and $x \in A_{\text {; }}$ $(1, x)-(j, y)$ iff $t<j$ or $t=j$ and $x<y$ In particular $A+B=\Sigma\left\{A_{i} \quad t \in\{0,1\}\right.$, $\left.0<1, A_{0}=A \quad B_{0}=B\right\}$ The ordinal product $A \quad I=\Sigma\left\{A_{1} \quad t \in I\right.$ and $\left.A_{i}=A\right\}$

Below ω (respectively ω^{*}) is the naturally (respectively inversely) ordered set of naturai numbers and \mathbf{Q} is the chain of rationals

Definition 14.3. Let F be a finite set of chans An ordinal sum $\Sigma\{A, i \in I\}$ is calld F-dense if
(1) every $A, \in I$,
(2) for every $B \in F$ the subset $\left\{1 \quad A_{t}=B\right\}$ is dense in A and
(3) I has netther minmal nor maximal elements

Definition 14.4. In the case $I=Q$ an F-dense sum is called a shuffing of F and is denoted by τF

Every two shuffings of F are isomorpuic

Lemma 14.1. Every two F-derse chains are Li-equivalent

Proof. By the Ehrenfeucht Criterion [2]

Let M be the mmmal class of chams such that
(1) M contams all one-element chams,
(2) if $A B \in M$ and etther A contams the last slement or B contans the first element then $A+B \in M$,
(3) If $A \in \mathrm{M}$ and A contans either the first or he last element then $A \omega$ and $A \quad \omega^{*}$ belong to U,
(4) If a finte $F C M$ and every member of F contans the first anc the last elements then $\tau F \in M$

Let $\operatorname{Th} M$ be the L_{0}-theory of M

Lemma 14.2. Th $\mathrm{K}_{n} \subseteq$ Th M

Proof. It is enough to prove that every $A \in M$ is L_{r}-equivalent to some $A^{\prime} \in K_{1}$, An induction on A and the Ehrenfeucht Criterion 12] are used The case of one-element A is trivial $(A+B)^{\prime}=A^{\prime}+B^{\prime},\left(\begin{array}{ll}A & \omega\end{array}\right)^{\prime}=A^{\prime} \quad \omega$ and $\left(A \quad \omega^{*} i^{\prime}=\right.$ $A^{\prime} \omega^{*}$ Let $A=\tau F$ and $F^{\prime}=\left\{B^{\prime} B \in F\right\}$ Then A is Lu-equialent to every F^{\prime}-dense sum $\Sigma\left\{A_{i} l \in R\right\}$ where \mathbf{R} is the chan of seals

Theorem 14.1. $\mathrm{Th} \mathrm{M} \subseteq \mathrm{Th}_{\mathrm{k}}$
Proof. It is enough to prove that tor every $n=1,2$, every $A \in K_{i}$ is n equivalent to some $B \in M$ Fix n Chain A will be called good if it is equivalent to some $B \in \mathrm{M}$ Chain A will be called quasi-good if every non-void half-closed interval $[x, y)=\{z \quad x \leqslant z<y\}$ of A is good

Lemma 14.3. Every quast-good chain is good

Proof. There exists L_{0}-sentence a such that a chain A is good iff it satisfes a. $\beta(x, y)$ be obtaned from α by the restriction of the quantifiers to the nterval $[x$,) Lemma 143 states that $\forall x y(x<y \supset \beta(x, y))$ mphes α So it is enough to prove Lemma 143 only for countable chans Let A be a countable quasigood chan

Case 1 A has the mumal element a If $A=[a, b]=\{a b]+\{b\}$ then A is good Suppose A does not contan the maximal element and B be a subset of A such that $B \equiv \omega$ and $(\forall x \in A)(\exists y \in B) x<y$ Let $\{x, y\} \sim\{u, v\}$ iff the mervals
$[x y) \cup[y, x)$ and $[u, v) \cup[v, u)$ are non-vord and r-equivalent By the Ramsey Thr orem [14] there exists an infinite $C \subseteq B$ such that every pair of different elements of C are equivalent Let $b, c \in C$ and $b<c$ By means of the Ehrenfeucht Crirerion [$[7$ it is easy to check that A is n-equivale it to $[a, b)+[b, c) \omega$ So A is gocd
(ase 2 A does not contam the minmal elemen Similarly it is proved that there exists mfinite $C \subseteq A$ such that $(\forall x \in A)(\exists y \in C) y<x$ and if $x, y, u, v \in C$ and $x<y, u<v$ then $[x, y)$ and $[u, v)$ are n-equivalent Let $b, c \in C$ and $b<c$ Then A is n-equivalent to $[b, c) \omega^{*}+\{x \quad c \leqslant x\}$ and A is good

Lemma 14.4. Every complete chain is good

Proof. Let A be a complete chan For $x, y \in A$ let $x \sim y$ iff $x=y$ or $x \neq y$ and $[x, y) \cup[y, x)$ is quasi-gond The introduced relation is an equivalence relation Every $\bar{x}=\{y \quad x \sim y\}$ is convex, quast-good and good Let $\bar{A}=\{\bar{x} x \in A\}$ be ordered as follows $\bar{x}<\bar{y} \equiv x<y \bar{A}$ is a dense chain If \bar{A} is one-element Lemma 144 is proved Suppose (reductio ad absurdum) \bar{A} is not one-element For $\bar{x}<\bar{y}$ let $F(\bar{x}, \bar{y})$ be a minimal subset of M such that every $\bar{z} \in(\bar{x}, \bar{y})$ is n-equivalent to some $B \in F(\bar{x}, \bar{y})$ Let $F=F(\bar{u}, \bar{v})$ have the minmal possible power Then $\bigcup_{\{\bar{z}} \vec{u}<\bar{z}<$ $\bar{v}\}$ is n-equivalent to an F-dense cham and is quast-good This contradicts to density of \bar{A} Lemma 144 is proved

Theorem 14 in proved

Theorem 14.2. Th M is decidable

Proof. We assume the kiowledge of [12] Let $n \geqslant 2$ We cay that n-type t is l-good (r-good) if $t_{n}(A)=t$ imples $A \vDash \exists x \forall y(x \leqslant y)(A \vDash \exists x \forall y(y \leqslant r))$ The predrcates " l-goud" and " r-good" are effective Let S_{n} be the least set of n-types such that
(1) n-type of one-element chains belongs to S_{n},
(2) if $s, t \in S_{n}$ and enther s is r-good or t is l-good then $s+n t \in S_{n}$,
(3) it $s \in S_{n}$ and s is ether l-good or r-good then $\omega_{n}(s), \omega_{n}^{*}(s) \in S_{m}$,
(4) it $X \subseteq S_{n}$ and every $s \in X$ is l-good and r-good then $\sigma_{n}(X) \in S_{n}$

It's easy to see that S_{n} is the set of n-types of M and S_{n} effectively depends on n So Th M is decidaule

Lenma 142 and Theorems 141 and 142 imply

Theo em: 14.3. Th Kr is dectdable

15. Adding one-place predicates

Let L_{m} be the weak monadic second order language whose non-logical constants are " $<$ " and the one-place predicate symbols $P_{1} \quad, P_{m}$ Let K_{m} be the class o^{f} such L_{m}-models A that $L_{0}-$ eduction of A is a complete cham Let K_{m}^{\prime} be the class of such models $A \in \mathrm{~K}_{m}$ that A satisfies the following axioms
$\vee\left\{P_{i}(x) 1 \leqslant i \leqslant m\right\}$ and
$P_{1}(x) \supset \neg P_{1}(x)$ where $1 \leqslant 1<1 \leqslant m$
(In other woids $A \vDash \forall x \exists^{\prime}{ }_{l} P_{1}(x)$)
Let Th_{m} (respectively $\operatorname{Th} \mathrm{K}_{m}^{\prime}$) be the L_{m}-theory of K_{m} (resp, K_{n}^{\prime})

Lemma 15.1. Th K_{m} is unformly on m reducible to Th_{n}^{\prime} where $n=2^{m}$
Proof. Clear
Theorem 15.1. Th K_{n}^{\prime} is uniformly on n reduced to Th K_{0}
Proof. The following abbreviations are use *
(1)

$$
\begin{aligned}
& y=x^{+} \text {for } x<y \& \neg \exists z(x<z<y) \\
& \quad \vee x=y \&(\forall u>\imath) \exists z(x<z<u) .
\end{aligned}
$$

(1)

$$
\begin{aligned}
& y=\lambda \text { for } \\
& y<x \& \neg \exists z(y<z<x) \\
& \vee x=y \&(\forall u<\lambda) \exists z(u<z<1)
\end{aligned}
$$

(iii) $R_{l}\left(\lambda_{1}\right)$ for $\left\{\begin{array}{lll}x_{1}=x_{1}^{+}, & \text {if } j=1, \\ \exists x_{2} & x_{1}\left[\wedge\left\{x_{1}<x_{1}^{+}=x_{i+1} \quad 1 \leqslant t<j \& x_{1}=x_{1}^{+}\right],\right. & \text {if } 1<j<n, \\ \exists x_{2} & x_{n} \wedge\left\{x_{1}<x_{1}^{+}=x_{1+1} \quad 1 \leqslant 1<n\right\}, & \text { if } j=n\end{array}\right.$

Let β be an L_{n}-sentence and β^{\prime} be obtained from β by
(1) the restriction of quantufiers by $x=x$ and
(2) the replacing of every P b b R,

Let $\alpha=\left(\beta^{\prime} \& \exists x\left(x=x^{-}\right)\right)$

Lemma 15.2. β has a model in K_{n}^{\prime} iff α has a model in K_{0}
'3roof. Let $A \in x_{i,}$ and $A \neq \alpha$ Let $A^{\prime}=\left\{x \in A \quad x=x^{-}\right\} \quad A^{\prime}$ is complete The definitions $P_{1}(x) \equiv R_{1}(x)$ turn A^{\prime} to an L_{n}-model satisfying β

Let $B \in K_{n}^{\prime}$ and $B \vDash \beta$ Let A be the ordinal sum $\Sigma\left\{C_{b} b \in B\right\}$ of chams C_{b} which are defined as follows Let $B \vDash P_{1}(b)$ If $x<x^{+}$let $C_{b}=\imath+\omega^{*}+\omega$ (where \imath denotes a chan contaning exactly t elements) If $x=x^{+}$let $C_{h}=l+\omega^{*}$ In is easy to check that A is complete and $A \leqslant o$

Because β is an arbitrary formula of L_{n}, Lemma 152 implies Theorem 151 From Theorem 14 3, Theorem 151 and Lemma 151 we obtan

Theo. em 15.2. Th K_{t} is uniformly decidable on m

References

[1] P Cohen Decision procedure for real and p-abic fields, preprint, (Stanford, 1967)
[2] \& Ehrufeucht, An application of games to the completencss problem for formaln'ed theories Fundmenta Mathematicae 49 (1) (1960) 128-141
[3] L Fuchs, Partally ordered algebraic systems (Pergamon Press, New y ork, 1963)
[4] Y Gurevich and A Kokonn Unversd equivalentness of ordered Abelan groups (Russian) Algebra and Logic 2 (1) (1963) 37-39
[5] Y Gurevich, Elementary propertie of ordered Abehan groups, American Mathematical Society Translations 46 (1965) pp 165-192
$16 \mid$ Y Gurevich, The decision problem for st me algebraic theories, Doctor of Mathematics dissertation, U S S R , Sverdlovsk, 1968
[7] Y Gurcuch Evpanded Theory of ordered Abehan groups, Abstacts of 11-th Souet Algebrac Colloqu um, Kıshnev (1971) p 249
[8] Y Gurevich Decision procedure for the Exponded Thecrs of ordered Abelan groups (Abstrart), Sther an Mathematical Journai 15 (1) (1574)
[9] Y C irevich, A contribution to the ele nentarv theory of latice ordered Abelan groups and K-1ntals, Sovet Mathematics, Doklady 8 (1967) 987-989
[10] MI Kargapolov Classfication of orders d Abehan group bv elementary properties (Russian) Algebra and Logic 2 (2) (1961) 31-46
[11] H Lauchli and J Leonard On the element ry theory of hneal order, Fundarenta Mathematicae 50 (1) (1966) 190-116
[12] H Lauchlt, a decision prosedure for the weak second ordsr theory of hinear order, in "Contubutuon to the math Logic" (Nortm-t olland Amsterdam, 1968) pp 189-197
[13] A G Pinus, On convex subse's theory, Sibe an Mathemancal Iournal 13 (1) (1972) 218-224
[14] F Ramsey, On a problem of firmal logic, Pro.eeding, of the London Matheriatical Society ser 2 30 (1929) 264-286
151 A Robinson and E Zakon, Elementary propertes of ordered Abelian groups Transaction of the American Mathematical Sockety 99 (6) (1960) 222-236
[1n] § Shelan The monadic theory of order Annais of Mathematics 102 (1975) 379-419
[17] W Srmelew, Ele nentary properthes of Abchan groups Fundamenta Mathematicae 41 (2) (1955) $201-271$

