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The theory of ordered Abehan groups w~th quanhflcat~rm o,'er con'~ex subgroup,, ~, ",)uehcd 
An ehmmat~on of the elementar', quant~fiers ts presented and a ptHmtl,,¢ 1,, lcctlrsl~c d~.tl',lrm 
procedure for th~s theory is constructed 

O. Introduction 

For the sake of brevlty the terms "group",  "o-group'  and "chain" will bc u',ed 

for "Abehan  group",  "hnearly ordered Abehan group" and '" ,neat  ly ordered set 

respectively 
AlgebratcalTy speaking an o-group G is a group a rd  a chain, and tol ever ,  

x, y, z E G, x < y  l m p h e s x + z < y + z  
Let G be an o-group It is easy to check that G t,, to~sioa free, has neither 

minimal nor  maximal e lement  and ts e~the- dtscretely or densely ordered A subset 

X C G is called a convex subgroup of G lff X ~s a subgroup and X is convex (the 

latter means that for every x,, x2 ~ X and each y ~ G, 'f ~cl < y < x, then y E X) 
Convex subgloups play a fundamenta l  role m non-formahzed theory of o-groups 

(see [3]) It is easy to check that convex subgroups of G are hnearly ordered by 

mclusmn 

Let us rewew the history 
G is called Archlmedean 1tt for every posltwe x, y E G there exists a natural n 

such that x < ny G is Arch~medean fff {0} and G are the oplv convex subgroups of 

G Archlmedean o-group is embeddable  hatO the naturally ordered addmve grovp 

of reals (see Holder 's  Theorem m [3]) The elementary theory of Archlmc~can 

o-groups was studied by Robinson and Zakon (see [15]) Here are their mare 

results G is called n-regular  lff for e,,ery xl, , x. E G there exists y ~_ G ,,uch 
that x~< < x ,  ~mphesx~< ny ~<x., G lscalled regularlff It is n-regular  for each 

posmve integer n Each Archlmedean o-group ~s regular Each regular o-group ~s 

elementarily eqmvalent  to some A~.chmaedean o-group Two des~.rete (respectwdy 
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dense) regular o groul~ are elemei tardy equivalent 1ff they ,are elementz~nty 
equivalent as groups 

The mare result of Kargapolov's paper [10] is a classification of the o-groups of 
fimte rank by their elementary propemes (a torsion free group has a t~mte ra,qk ~ff it 
is embeddable in a firute &mens~onal vector space over the rational field) 
According to [4], every two o-groups are universally equwalent 

In [5], all o-groups were classified b) their elementary properties, and the 
elementary theory of o-groups was algonthmlcally reduced to the elementarily 
theory of chains Toge, her w~th [11] it gwes a decision procedure for the 
elementary theory of o-groups An elmmatlon of quant~fiers in the elementary 
theory of o-groups was presented m [6] Together wlth [12] it gwes a primitively 
recurswe decision procedule for the elementary theory of o-groups The part of [6] 
relating )3 o-groups was never published 

Here we study the theory of o-groups w~th quantification over convex subgroups 
We ehmmate the elementary quant~fiers, and construct a pnmltwely recurswe 
decision procedure for ~hls theory The main ~'esults of the present paper were 
announced m [7 t An earlier verslor~ of a part .~f this paper may be found tn the 
Sowet Instltute of Scientific and Techmcal Information (Moscow), number 
6708-73, [8] Is the corresponding abstract 

Let us summm~ze the contents of the present paper 
Part 1 of the present paper ts puroly algebraic The key notion here ~s the functor 

F(s,x) (called the ~-fundament of r)  
In Part 2 we define the Expanded Theory of o-groups, and ehmmate the 

elementary quar~t~fiers The Expanded Theory ~s the theory of o-groups with 
quantification over convex subgroup enriched by some definable predicates The 
ehmmatlon of elementary quantlfiers reduces the Expanded Theory to so-caned 
Convex Subgroups Theory The latter is an elementary theory of the chains of 
convex subgroups with some surplus one-place predicates (each o-group provides 
us w~th a model of the Convex Subgroups Theory) 

In Part 3 we ax~omatlze the Convex Subgroups Theory m the elementary theory 
of complete chains wlth surplus one-place predicates in such a way that for ea~.h 
sentence a ,n the language of the Convex Subgroup~ Theory one can easily select a 
ftmte number of axioms dec~dmg c~ 

In the Appendix we prove that the weak mona&c second order theory of 
complete chains w)th surplus one-place pre&cates is pnmmvely recurswe (Th~s 
strengthens "he result of [13], but was ootamed s~multaneously and independently) 
Toge~he~ wl~h the prewous pa, ts z( gwes a pnmmvely recurswe decision procedure 
for the Expanded Fheory of o-groups 

Some words about possible generahzat~or~s The theorem about ehmmat~on of 
elementary quantlfiers can be easily generalized by enriching the part of the 
language concerning convex sutgroops Generahzat~ons of the dectdablhty result 
are restricted by undeeld~b~hty res,Ats m theor~ ot chmns For example allowing 
quantification over arbitrary subsets of convex subgroups leads to undec~dable 
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theory if the Cont inuum Hypothesis holds Th~s follows from undecldablhty ,~f the 
monadlc theory of the real hne, see Shelah's paper [161 One of the possible 
generahzatmns ~s obtained by mlo ~vmg quantification over fimte subsets of con~ ex 
subgroups The elementary quanhfiers can be ehmmated,  and the e,,rlched theory 
remains pnmmvely  recurs~ve One can have some generahzataons of the form t h l  ¢, 

specific theory of o-group ts recurslve modulo that spe,.'lfic theory of chains About  
declsmn problem for lattice ordered Abehan groups see [9] 

Some words about notatmn It a group H is the (internal) d~rect sum of its 
subgroups H, ~ I ,  w e w n t e H = Z { H ,  z~. I} I n t h l s c a s e e a c h h ~ .  H t sequa l t~ )  
some fimte sum h,, + + h,,, where h,, ~_/-I,,, , h,. E H,° The extmnal direct st~w 
of groups H,, i ~ I, is also denoted by Z{H, t E I} I he elements of the exlermd 
dlrect sum are functions f I ~ U{H,  z E I} such tha~ ] 0 )  ~/-I, and {, f 0 )  / 0} ~s 
fimte We can write J = Y_.f(t ) Now let I be a chain and H, 's  (z ~ I)  be o-groups P,,, 
LY.{H, ~ E I} we denote  the lex~cographlc (or o)-le~lcograph~c) sum of H, 's  It ,s 
the d~rect sum Y.H, ordered as follows Zh, > 0  ~lI }2h , /0  and h~ > 0  wbe)e 
I = max{t h , #  0} The lex~cograph~c multiple H I ol an o-group H ~s ";{H, ~ ~ I 

and H, = H} 
"w I o g " ~s an abbrevmtmn for "without loss of ,generahty" 
A I Kokorm persuaded me (after [5] was pubhshed) to continue t,) work ~m 

algorithmic problems for ordered groups (I have returned to o-groups alter 
Cohen 's  preprmt [1] demonstrating potentmlmes of ~he method of ebmmal~o~ of 
quanhfiers) Jonathan Levm corrected the Enghsh of an earher ~ersmn of tht,, 
paper The referee found some places winch had to be corrccted I a,n grateful to ~)ll 
these people 

PART 1. ALGEBRA 

1. Fundamental subgroups 

Throughout  this section G is an o-group, x,y, : ~ G and X, ~ are c'm~c× 
subgroups of G Here and below p is a prime number  

Definition 1.1 ([5]) For an integer s #  (, we define 

F(s, x ) = U { X  Vy (x + sy ~ X)}, F(p, ,, x ) = F(p',  x ) 

F(s, x) is called the s-fundament of y 

Corollary 1.1. F(s, x)  ts a convex subgroup or 0, F (s, x) = 0 tff x =~ 0 (rood s) 

Corollary 1.2. Let a , b#O be integers Then F(ab, b x ) = F ( a , x ) ,  F(a,x)C_ 
F(ab, x), F(a, b~ ) C F(a, x ) I f  a an~ b a'e ,elatwely prime, then F(a b~ ) = F(a, x) 
and F(ab, x ) =  F(a ,x )U F(b ,x)  
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Corollary 1.3. Let a = p'b where b ~ ~ (rood p)  Then F(p, k. x) = F(p, k + t, ax) 

Corollary 1.4. Let s = p'? p'~ Then F ( s , x ) =  F(p~,t~,x)U U F(p~.,~,x) 

Corollary 1.5. F(s,x  + y ) C F ( s . x ) t _ ) F ( s , y )  and if F ( s , x ) ~  F(s,y) .  then 
F(s, x + y ) = F(s, ~ ) U F(s, y) 

A proof  is easy For example, we will show that F(ab, x)  C_ F(a, x)  t3 F(b, ~;) ff a 
and b are relatwely prim ~. Suppose ~t Is nut trt, e, then F(ab, x)  contains some 
x + a y  and x + b z  Because a and b are relatively prime, c a + d b = ~  for some 
integers c and d, and so 

ca(x + bz)~ db(x + a y ) =  x + ab(cz + d y ) E  F(ab, x)  

However,  ~h~s is JmFc~slble 

Definition 1.2. F~(s,X) is the subgroup {x F(s , x )C  X} 
(n) Fz(s, X )  Is the subgroup {x F(s, x) _C X}, 

(m) F ( s ,X )J s  the factor group F:(s, X)/F~(s, X), 
(iv) F(p, k . X ) =  F(pk, X )  and the same for F~ and F_. 

It ~s more precise to write F(s, X. G)  instead of F(s, X )  and the same for F, F~, F.. 
Th~s more precise notation ~s ueed ,n the following tv, o lemmas 

Lemma 1.1. Let ~ bar denote the natural homomorphtsm G--->G/X Then 
I'(~, X, G)  ts lsomorphtc to F(s, X, G)  

Proof. For every Y ~ X, F(s, x) C_ Y lff IZ (s, ~ ) C Y Now it ~s easy to check t~:at the 
correspondence x + F~(s, X)---~ £ + F~(~, )f)  is a required isomorphism 

Lemma 1.2. Let A C Y Then F(s, X, C)  ts tsomorphtc to F(s, X, Y)  

Proof. Fhe corre~pordence x +F,(s,X~ Y)--~x ~F~(s,X, G)  is an isomorphism 
~om F(s. X. Y)  ~nto F(s, X, G)  

A group I'(~. ~() satisfies the axiom Vv (st, = 0) and so it has a representation as a 
direct sum of c2,1~c grollps 

Definition 1.3. p(s, k, X)  is the cardinal number  of cyclic direct summands of the 
order  p~ in a representzt:on of F(p. s ,X )  as a dtrect sum of cyclic groups 

Definiltion 1,4 (of, [17]) E~ements vl, ,on of a group H are independent 
(strongly independent) modulo pk if, for every integer ax, ,a., Y~a,v, = 0  
(Y-a,v, ~ 0 ( m o d p k ) ) l m p h e s  a ~  - = a . = 0 ( m o d p  k) A s u b s e t  M C H I s  rode- 
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pendent (strongly independent) modulo /:" ~f every 5r~te subset of M ~s ',o 
p~(p, k, H)  (p~(p, k, H ) )  ~s the power  olr a maximal independent  (strongly indepen- 
dent) modulo p~ subset M C H such that every element "~f M ha~ the order  p~ 

Corollary ]l.6. Let H = F(p, ~, X )  and t <~ k <~ ~ Then 9~(p, k,/:: ,  = p(s, k, X )  and 
p ~ ( p , k , H ) = E ( p ( s , ~ , X )  k <~t<~s} 

A proof ~s easy 

L e m m a  1.3. Let F(p , s , x )={O}  and ~ -- ~ + F~(p, s, {0}) ~ F(p, ,,{0}) 
(1) The order of ~ ~s p~ tff 0 = F(p, s ,p~x)C  F(p ,s ,p  ~ ~x)= {0} 
(2) If  the order o[ ~ ts p~ then ~ - ~ 0 ( m o d p '  ~) 

A proof  ~s easy 

Theorem 1.1. p ( s , k , X ) = p ( s + l , L X )  for k < s  a n t  p(s ,s  k ) = p ( ~ + l , ~ ,  '~) 
+ p ( s + l  s +  I , X )  

P r o o f .  W 1 o g X - {0} (see L e m m a  1 1) To  slmphfy no atlon we sometimes omit p 
and {0} Let a bar (respectwely prime) denote  the na ural homomorph l sm from 
I':(s) onto F(s)  (resp from F2(s + 1) onto F(s + 1)) Note that 

(1) x ~ Fz(s) lff px ~ F:(s + 1) and 
(u) tf x ~ F:(s), then :~ and (px)' have the same order  
Case k < s Let U (resp V) be the family of strongly independent  modulo p~ 

subsets of F(s)  (resp F(s + 1)) conszstmg of e lements  of order  pk U and V arc 
partially orde led  by inclusion Let {~, i ~ I} be maxima m U It is enough to check 
that {(px,)' t ~ I} belongs to V and is maximal there Flr,;t we check the strong 
independence Suppose that Ea, (px,)' = p~u' t e Ea,p~, = pku + p'~'v  for ~ome 
Then Ea,p£, = pk(~ hence there exist b, 's such that o,p = p~b, By Lemma I 3, 
x. = p~-ky, for some y, So pku -- Epkb.p'-ky, _ p~*~v and u = pw for some w Then 
Ea.px, = pkpw +p '+~v  and Ea,Y~. = p k ~  which lmphes a. --=0(modp k) for every s 
Now we check the maxlmahty Let y'  be of order  p~ By Lemma  1 3, y = pz for 
some z There  exist a. 's,  b and u such that b # 0 ( m o d p  ~) and b~ = Ea.L ~-p~fi, 
since {£. ~ E r }  ~s maximal Then b z = E a ~ x . + p k u ( m o d p ' ) ,  by=Ea ,px ,~  
p ~pu (mod p ' * ' )  and by' = Ea, (px.)' + p k (put'  

Case k = s  By Corollary 1 6 it is enough to check that p~(p ,~ ,F(s ) )=  
p~(p, s, F(s  + 1)) Let U (resp V) be the famdy of independent  meduls pk subsets 
of F(s)  (resp F ( s +  It)  consisting of e lements  of order  p~ Let ~, t ~  I} be 
maximal m U We check that {~x,)',Y. I} belongs to ~' and is maximal there If 
Ea,(plc.)'----0 then Ea,px,~O(modp'+~),  Ea,x, ~ - 0 ( m o d p ~ ,  Ea,~, = 0 ,  and a, = 
0 ( m o d p  ~) for every ~ The  maxtmaht~ ~ checked as ~bove (but u = 0) 
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Definition 1.5. {t) A(x)= [,J{X x ~ X}, 
(11) X = ( ' I {Y  X C Y } I f  X ~ G  and X ÷ = G  l f X = G  

Corollary 1.7. A (x)  ts a convex subgroup or O, A ( x ) =  (3 tff x = 0 

Corollary 1.8. For any integer c, ,~ (cr)  C A (x)  If  c ~ O, then A ( c t )  = A (~) 

Corollary 1.9. A(x + y ) _ C A ( x ) k J A ( y )  If A(x )~A(y ) ,  then A ( x + ) ) =  
A ( x ) U A ( y )  

Corollary 1.10. ¥ C X ~ tff 3x  ( X  = A ( x ) )  

A prooi ~s easy 
Note Cf the defimnon of A(x)  and Defimtlon 1 1 

Definition 1.6. Let a bar denote the natural homomo, phlsm G---~G/X,  R E 
{< ~ ,  = ~>,>} and a # 0  be an integer 

(I) xRO (mod X) ~ :~R0, 
(2) [r = l ( m o d X ) ] - = 0 <  f and - a 3 y  (0<)7 <,f) ,  
(3) E (X)  ~ 3x (x = 1 (mod X)), 
(4) [x = a (modX)]--- 3y (y -- l (mod X) a rc  .f = a]) ,  
(5) xRy  (rood X) ~ yR)7 

Let a and b be mtegers and b > 0  Then 

Corollary 1.I1. xRy  (rood X )  =- bxRhy (rood X) --- ( -  b y ) R ( -  bx)(mod X) 

Corollary 1.12. xRa  (mod X )  =- bxRba (rood X )  -- ( -  b a ) R  ( - bx )(rood X) 

Theorem 1.2. Let X C Y, k < s and 

V Z ( X C Z C  Y t mphe ~  A { p ( ~ , t , Z ) = 0 * t ~ s } )  

Then p(s, k, X )  ~: 0 

Proof By l.emmas 1 1 ant I 2 ~t cao be assumed that X = {0} and Y = (7 Let a bar 
de~mtc the natural homomorphism G ~ G/p~G Clearly every F(p, s, x ) C  {0} Let 
(reductlo ad absurdum) p(, , / , ,  {~}) > 0 Then there exists x such that .f ~ 6 (rood p) 
and p ~ £ = 0  The last means pkx = p ' y  tot some y But F(p,s,y)_C{0} and 

~ F(p, s, {0}) and g = ,c -k~7 which contradicts g ~  0 (mad p) 

Th:orem 1.3. E ( X )  trnpiLes X C X ÷ and p(s, s, X )  = 1 

Proof. Let E ( X )  X C X + follows clearly from the defimtlon of E In order to 
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prove that p(s, s X ) =  1 it can be assumed that X = {0} and X = G, see Lemma~ 

1 1 and 1 2 Then G is i somorphic  to the  r~aturally ordered  addmve  group of natur,~l 

numbers  and G / p ' G  is the cychc group of the o rde r  p '  

Definition 1.7. 

D ( p , s , k , x ) - ~ [ x  ----0(rood 9", v ny  [F(p, ~,x - p k y ) C  F(p  ~, ~c)= F(p, ~, y)]] 

Corollary 1.13. Let 0 / F(p, ~. x)  = X and a bar denote the natural homomorphlsm 
F2(p , s ,X ) -*  l " ( p , s , X )  Then D(p,  s,k, ~) ts equwalent to 27 ~ O ( m c d p  k) 

A proof  is easy 

Lemma 1.4. Let F(p ,s ,x )={~;}  Then D ( p . s , k , x ) - = ~ y z [ F ( p , s , y ) = { O }  and 

x = p ~ y + p * z ]  

A proof  is easy 

Lemma 1.5. Let O / F ( p , s , x ) = X  and c = p ' d  where d ¢ O ( m o d p )  Tt,en 
D ( p , s , k , x ) - = [ F ( p , k , x ) C  X and D ( p , s  + t ,k ,c~)] 

Proof. According to Corol lary 1 13 and Lemma 1 1 It can be ,assumed that d = 1 

a n d X = - { 0 }  We also u s e L e m m a  14 
(1) Let F(p .  s, y )  = {0} and x = p~y + p~z Then F(p ~, x )  -~ f~ and 

F(p, s + l , p ' y )  = {0} and p'x  = p~(p ' y )+p~* ' z  
(2) Let F ( p , k , x ) = O ,  F ( p , . ~ , + t , y ) = { 0 }  and p ' x = p k y + p ' " z  Then x ~  

0 (rood p k ), y = p ,y ,  for some y ', F(p, s, y ') = F(p, s + t. y ) = {0~ and t = p ky, + p ~z 

Defini'd,m 1.8. Fo r  any integer  c, E ( p , s , c , x ) - ~ 3 X 3 y [ X = F ( p , s  x )  and 

y = ~ ( m o d X )  and F ( p , s , x -  c) )C X] 

Corollary t .14. Let X = F ( p , s , x ) ,  y = l ( m e d  ~2) and a bar denote the natura t 
zsomorphlsm 1 2(p, s, X)---~ F(p, s, X )  Then E(p,  s. c, x)  t~ equtvalent to ~ ; cg 

Corollary 1.15. I f  x = 0 ( m o d p  ). or X = F(p, ~,x) and --n E ( X ) ,  or c = O. then 

~E(p,s ,c ,x)  

Corollary 1.16. I /c  -= d (rood p ), then E (p, ~, c, x )  ~ E (p, ~, d, x)  

A proof  is easy 

Lemma 1.6. Let  c = p 'd where d T~ O (mod p ) 7hen E (p, s, k, ~ ) ~ 
E(p,s + ~,ck, cx) 
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Proof. F(p, ~, ~ - ky ) = F(.p, s + ~, cx - cky ) 

2. First special o-group 

Let H be an o-grc up, h E H a r ,  d h ~ 0 (mod p ) m H Let k and s be integers and 
t ~< k ~< s w(co*) is the chain (the reverse chain) of naturals  

Lemma 2.1. There extsts a subgroup H'  C I I  such that pkh E H'  and 
pkhNO(modp)  m H'  and the factor group H / H '  has the pov~er pk 

Proof. By reasons of mduchon it is enough to prove the lemma for k = 1 The  

factor group H / p H  Is a vector  space over  the field of power  p Let  S be a maximal  

subspace m H/pH such that h + pH ~ S The  full p re- lmage  of S m H is a r eqmred  
subgroup 

For  every n ~ co ~et [ .  H .  --~ H be an o-group  ~somorphlsm, H "  = f - ' (H' )  alld 

h,, = [ -~(h)  Let G~= LE{H,', n ~co*}. Gz = L E { H .  n ~co*~ and G be the legist 

subgroup of G~ containing Go U{h, ,-h, ,+~ n ~ w} Let  X,,, be the subgroup 
LE{H.  n />  m } of G, 

Lemma 2.2° Every factor group Xm f3 G/X,.+~ f3 G ts o-isomorphic to H 

A proof  is easy 

Lemma 2.3. p~ho~O(modp)  m G 

Proof. L ~ t f  G , - - - ~ H b e d e f i n e d a s t o l l o w s  f ( x . +  + x , ) ) = f . x , , +  +foXo I t l s  
easy to check that f ,s a group lsomorphlsm, [ G  = [Go = H' and f (pkh . )  = pkh But 
pkh~-O(modp) m H'  

Lemma 2.4. F(p, k, pkho)C{O} zn G 

Proof. h ),~ enol:gh to prove that e, 'er)  X,~ N G D F(p,k,  pkho) But pkho=--- 
pkh,. ( m o d p  ~) in G and pkh,n ~ X , .  A G  

Lemma 2.5. F(p.l,p~h,,) = =F(p,k,p~ho)={O} m G 

P r o o l . { 0 } C ( b y  the Lemma 23 )  F(p,l,pkh,,)C_ C F(p,k,  pkho)C(by the 
Lemma 4) {0} 

Let  an a,.tensk denote  the natural  group homomorph l sm G --~ G/p 'G  and F be 
the group F(p,  s. 10}) of G Clea,  ly F C G *  and (p~ho)* E F 
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Lemma 2.6. (p~h0)* ha~ the order p" in F 

ProoL F(p~,pkp'bo) = F( l .pkho)  = 0 m G and F(p '  pk ~p~h,,) = F(p.p~h~O .-: {0} m 
G by L e m m a 2 5  By Lemma 13 m Section 1 the order of (p 'h .)  ~ m F l spk  

Lemma 2.7. Every x* E F ~s a mutttpte of (p 'h.) ~ 

ProoL L e t x * ~ l "  I n G , . . t  = x . +  + a , , f , ~ r s o m e n  a n d x , ~ H ,  lt ~s easy to see 
that x --=-0(modp') m G~ Let t, = p'y, ano y, = a,h, +h' ,  where h' ,CH',  ~lhen, 

) X = ~ p'(a,h,  + h ; ) - - -~  p'a,h, ~ ' . ~  a, p ' ho (modp  ) m  (.; 

Lemma 2.8. In G. p(s .k ,{0})= 1 and p(s, ,,{0})= 0 for every l#: k 

ProoL See Lemrnas 2 6  and 2 7  

3. Second special o-group 

Let Q be the naturally ordered addltwe group of rational numbers 

Lemma 3.1. Every p(s, k,{0})= 0 m Q 

Proof. Clear 

Fix an integer s >I 1 and a prime p Let Qp be the least subgroup of Q containing 
all quotmnts a/a where a and b are integers and b ¢ 0 ( m o d p )  

Lemma 3.2. In Q~. p(s. s.{0})= I. and p(s, k,{0})= (; for k ~ , 

Proof. Clear 

For every n E o~ let f,, H,, + Q be an isomorphism of o-groups and H;, = f '(Qr,) 
a n d h . = f - ' ( 1 )  Let G o = L E { H "  n ~ t o * } a n d G ~ = L E { H ,  n e r o  "}whereo~ "~s 
the reverse ordered set of natural numbers Let G be the least subgroup of G~ 
containing G.U{(h,,,  - h.,+,)/p " m, n ~ to}, and X,,, be the subgroup LE{H,, n >~ 

m} of G~ 

Lemma 3.3. For every m, G /X., N G ts dwlstble and X,,. N G /X,..~ A G ~s isomor- 

phic to Q 

Proof. Clear 
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Lemma 3.4. ho # O (mod p ) m G 

Proof. L e t f  G,---~ Q be defined as follows ] ( x , +  + x o ) = f ~ x , +  • +JoXo I r i s  
easy to check that / ls a group lsoraorphlsm, [G = [Go = Qp and fho =-" 1 But 

1 # 0 (mod p )  m Qv 

Lemma 3.5. F(p, 1, ho) = = F(p. s, ho) = {0} m G 

Proof. See the proofs  of Lemmas 2 4 and 2 5 m Section 2 

Let an asterisk denote  the natural  homomorph l sm G---> G / p ' G  and F be the 

g loup  F(p, s, {0}) of G It ls easy to see that  F 1s a subgroup of G *  and h 7, ~ F 

Lemma 3.6. h 'd f;as order p" m F 

Proof. W e  need only prove that p h o # 0* But, F(p, s, p ' " h o )  = F(p, 1, ho) # 0 

by L e m m a  3 5 

Lemma 3.7. Every x* ~ F is a multiple of  h *,, 

Proof. Let x * ~ F  Iv, G ~ , x = x n +  + x o f o r s o m e  n a n d x ,  E H ,  T h e r e e x l s t a  

natural  number  m, integers a., , ao and e lements  y., ~ H,', , yo ~ H i  such that 

p"x,, -: a.h. + p ..... y., , p ' x o  = aoho+ p .... yo 

Now we count m G p " x  --x--Xa,h, ~ (X~, , )ho(modp  "~')  By Lemma 3 4, Xa, = p " b  
for some integer  b Then x =--bho(moctp~), ~ e x*  = bh* 

Lemma 3.8. In G, p(~, s, {0}) = 1 and k'(s. k, {0}) = 0 for every k < s 

Proof. See Lemmas  3 6 and 3 7. 

4. Third special o-group 

D~finltion 4.1. A successwn ts a function a w -*  ~o such that for some n, a n ~  0 
and (Vl > n)  a t  = 0. That  n is called the length of ~ucce~sion a 
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In thls ~ectmn c~,/3,3' and 8 are successions The re~mcnon of ,~ to n - -  
{~E~o ~ < n } l s d e n o t e d b y  a l n  

Definition 4.2. ~ is the set of suc~es;mns ordered as to~low~ a -</3 ff there e×la|s n 
such that a I n =/3 I n and an  > /3n  

C~rollary 4.1. Fh~ c h , m  S :~ dense and  has netther r n a x m m l  nor mmm~a[  
sttccesston 

Corollary 4.2. If  c~ < 13 < 3~ and  a I n = y In, then 13 I n = c~ I n 

Corollary 4.3. I f  the length of  ct l~ n and  ~ I n ~- l -- [3 I n .L 1, then (3 <~ ~x 

Definition 4.3. 13=¢k(a ,n )  ~f [3 In  = ce fn,  [3n = ( a n ) *  l, 0 = ~ ( n ~ - t ) :  
/3(n + 2) = 

Corollary 4.4. Va  Vn ~¢3 [/3 = ~/,(ot, n)] and V/~ 3 4  ~n [/3 = 4)(0~, n)] 

Corollary 4.5. 4'(~, n) = mf{r ,, I a + 1 = ~ I n + l} and o~ - sup{4,(a, n) , ,-= ,o} 

Corollary 4.6. d)(a, m ) = 6(13, n ) t s e q m v a l e ' ~ t t o m  = n and  a In  -+ I = ~ In  ~ I 

F~x a natural k > 0 About  Q and Qp ~ee Sect,on "~ For ~very succe~,,mp o: let 
f .  H,~--~O be an isomorphism of o-group~ aa'~ f;~(Q~)= H;,, f ~(1)= h. Let 
G o = L E { H ' .  a ~ S } ,  G ~ = L E { H ~  a ~ S }  and G be the beast subgroup of O. 
containing Go and sucla that a I n = f I n always lmphes (h,, - he ~/p"~ ~ G In o~her 
words ff o ~ I n = 1 3 1 n  then h , , ~ h ~ ( m o d p  "~) in G Let X,. be the subgroup 
G ~ L E { H o  13~<a} a n d Y , . = X  2 m G 

It ~s ewdent  mat X,  = A ( h , )  m G and that for every x ~ G there exists c~ such 
that A ( x ) =  X. m G 

; ,emma 4.1. Y~, /X,  ts tsomorphtc to Q 

r,-oof. Clear 

Lemma 4.2. I f  13 = ch(a. n )  then Y~ C_ F(p,  nk  + 1 h,,) 

Proof. Let f GI--~ Q be defined as :ollows f ( E a , h , )  = E{a, /3 ~- 31} Clearly f is d 
group homomorphlsm and f Y ~  ={0}, f G o = Q , ,  fh~ = 1 If l~(p, nk  4 l~h,,)C Y,, 
then fh,, ~ 0 ( m o d p  "k*l) in f O  So it as enough to prove that if x ~ G then f x  ~ a 
mulnple of  l ip  Èk G is constructed from Go and elements ( h , -  h~)/p '~ v, here 
3 ' 1 1 = S I z  If x ~ G o  then f x  is a multiple of 1 Let x = ( h , - h ~ ) / p ' "  where 
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Y t t = 6 i l  and let y < 6  It /3<3,  or 6~<fl then f x = O  Let 3' ~<,8</5 Then 
[x --- lip '~ By Corollary 4 2,/3 1 t = fi I By Corollary 4 3, ~ ~ n So f~¢ is a multiple 
of t /p "k 

Lemma 4.3. l f  fl = ~b(ot, n), then F(p. nk + k.h,,)C_ Ye m G 

Proof. If 3 , 1 n + t = o t l n + l  then h . - h . ( m , ) d p  "k~k) 
F(p, nk + k, hr)C-_- Xv Let /3 = q~(a, n) By Coro:lary 45, 

I n + t }  SoF(o ,  nk+k,h~)C_Ye 

and F(p, nk + k , h . ) =  
Y~=f"~{X~, y l n + l =  

Corollary 4.7. ff /3 = ~b(o~,n), then F(p, nk +l ,h ,~)=  
m G 

=F(p,  nk + k h . ) =  Yo 

Proof. See Lemma 42  and Lemma 43  

Lemma 4.4. In G. ff F (p ,m ,h~)=  F(p ,n ,h , ) ,  then h.-=ho (modp")  

Proof. The case m = 0 or n = 0 is trw~at Let tk < m <~ :,, + k, lk < n <~ i k + k and 
F(p, m, h.)  = F(p, n, he) By Corollary 47, if(a, t) = ~(/3,1) By Corollary 46, z =1 
and a l t + l = / 3 t ¢ + l  and so h,.==-ho(modp '~'~) 

Lemma 4.5. In G, tf F(p, m, ah.)  = F(p, n, bh,), then bh~ ---- bh~ (modp")  

Proof. Let a =p ' c  and b = p ' d  where c , d ~ O ( m o d p )  and let F(p,m,  a h . ) =  
F(p,n, bh~) Then F ( p , m - t h ~ ) = F ( p , n - l , h ~ )  and by Lemma 44, h.--- 
h~ (rood p ~"). I e ,  bh. - bh~ (rood p ") 

Lemma 4.6. in G, tf O /  F(p,s, x )=  Y, then p"r  = ah, + y and F(p.s  + n, y ) C  Y 
for some n, a, y and y 

Proof. Let O ~ F ( p , s , x ) = Y  and p " x = E a . h .  Let an asterisk denote the 
natural homomomhlsm G - - ~ G / l ' , ( p , s + n , Y )  By L~.'nma 45  it it can be 
assumed that (p ' x )*=E(b .h . )*  where a ~ / 3  and a , ,~0  and a o ~ 0  lmphes 
F(p. ~ + n, b,,k,~)~ F(p, s + n, boh~) Let F(p, s + n, b~h~) = max.F(p, s + n, b~h~) 
Then (p"x ) ~ = (hflz~)* 

Corollary 4.g, I f  O / F ( , , ,  s ,x )=  Y m G, then Y = Yo for some/3 

Proof. See Lemma 46  and Corollary 47  

Fix fl = ~b(a, n) ~,nd s ~ ~ Let an asterisk denot~ lhe natural homomorphlsm 
G--~ G/FI(p, s, Ye) and F --F(p, s, Ye) Clearly F ~s a subgroup of G*. 

Let g = p~- k (h~ - ho)/p .k 
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Lemma 4.7. g* ts an element of I" of order p ~ 

Proof, F ( p , s , g * ) = ( b y  Corollary 13 m Sectmn 1) F ( p , k + n k  h ~ . - - h ; ) =  
F( ,p , k+nk .h*~)= Y~ by Corollary 4 7  So g * E F  

Clearly. F(p,s ,  pkg *) = ~ But 

F(p, s,p~-~g *) = F(p. 1 + nk. h ~ -- h ~) = F(F t + nk, h ~,) = Y ;  

by C o r o l l a r y 4 7  St) t b e o r d e r o f  g* lsp~ t'y Lemma 13 m Sectmn 1 

Lemma 4.8. Every ~ ~ F ls a multiple of  g* 

Proof. By Lemma 4 6 p"x = ah, + y and F(p , s  + n, y ) C  Y tot some n, a, 3/ and y 
Let a = o ' b  where b ~ 0 ( m o d p )  By Lemma 45  a h , = - a h , , ( m o d p  .... ) W l o g  
3 ' = a  By Corollary 4 7  n k + l - < - s + n - t ~ n k  ~-k Let m = 
('~k + k ) -  (s ~- n - t) So p"x * = p'bh ~ = p 'b (h .  - h~)* and p~"' kx ~' --- 
p ' b p " k ( h .  - ho)* = p'bp"~g TM and x * = p'~bg ~ 

Corollary 4.9. p(s ,k ,  Yg)=  1 and p(s.t.  Yr3) = 0 for t / k  m G 

5. Gluing and interlacement 

Definition 5.I.  A *G ,s the set of all convex subgroups of an o-group G orderer', by 
mclusmn 

Lemma 5.1. Let H be a subgroup of  an o-group G and ~ J * H --, ~ * G be de]uwd 
asfollows crY = U { X  E A * G  X 3 H  C Y} Then ( l ) c r Y f ' l H =  Y a n d  (2) t r t s a  

monomorphtsm 

Proof. (1)Clear ly  O - Y f q H C  Y Let h ~. Y and Z = A ( h , G )  The latter means 
that Z is A ( h )  c,~Llculated m G Then Z ' N H C  Y and h ~ Z*C .o -Y  

(2) Y, C Y2 lmphes o-Y~ C o-Y2 
Indeed, trY., - o-Y, D ( o ' Y : -  o-Y~) N H = Y2 - Y, 

Definition 5.2. Tile monomorphlsm o- of Lemma 51 wdl be called canomcal 

Theorem 5.1. Let a &rect sum G = E H ,  be Imearl3, ordered and every 
o-, A "1":1, ~ A *G be the canomcal monomo,phtsm Let X E ~ *G and Y, = X fq H, 

Fhen every 

p(s, k X, G )  = E{p(s, k, Y,, H,) o',Y, = X}  

Proof. Let r = p" 
(1) El(r, X)  = ~':/",(r, Y,, H;) 
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Indeed, let h ~ F , ( r . Y , , H , ) ,  l e  som" h + r h ' E Y ,  Then h + r h ' E X  and 
h 

Conversely, let Zh, E F~(r, X ) ,  i e some 2h, + rVh', ~ X Then h, + rh ', E Y, and 
~, E F,(r, Y .  H,)  

(2) F2(r X)  = Z{F,(t, Y,,/4,) X C o-, Y } + Y{F2(r, I1,./4, ) X = tr, Z } 
Indeed, let h ~ F2(r, Y,. I'L), I e for every Y, C Z, E A "H, some h + rh' E Z, 

And let tr, Y, = X C Z ~ A * G  "Ihen Y, C Z  r lH ,  and some h + r h ' ~ Z A H , .  t e  
h ~ r,.(r, x )  

Conversely, let Eh, E F 2 ( r , X ) .  l e  for every X C Z E A * G  some 
Nh, + r~.h ', E Z 

Case 1, Let X C or, Y, = Z Then some Zh, + rEh', ~_ Z and h, + rh', E Z t-) H, = 
Y , ,~e  h , @ F ~ ( r , Y  t~,) 

Case 2 Le~ X = or, Y, and Y, C Z, ~ A */4, and tr, Z, = Z Then X C Z and some 
E ~ , + r ~ h : ~ Z ,  h , + r h ' , ~ Z ' , ,  ~e h , @ l ~ ( r , Y , , H , )  

(3) r(r ,  x )  -~ :f,{r(r, E.  H,)  ~¢ --- o-, Y, } 
Statement (3) follows f :om statements (1) and (2) and maphe~ the statement of the 
Theorem 5 1 

Definition 5.3. A charn C is compact ff 

( V X  C C ) ( 3 y ,  z ~ C ) ( X ¢  0 D y = m f X  and z = sup ~') 

Definition 5.4. Let C be a chain and x @ C Then 

fmf{y x < v } ,  ~ f x ~ m a x C  and 
x + 1 kx, ff x = max C 

Definition 5.5. Let H be an o-group and C be a compact  chain Monomorph~sm 
o ~ A *H--> C is regular ff 

(1) Y C Y+ lmphes ~rY < (trY~ + and 
(2) every o"f  = mf{crZ Y C Z C Z*} 

Theorem 5.2 (Interlacement Theorem) t.et 
(I) C be a compact chain and C ~  Vx Vy ] z  (x < y D x -~: z < z ~ <~ y).  
(2) {/4, I E r} be a famdy  of o-groups and ~b, d * H , ~ C  be a regular 

monomorphtsm and 
(3) ( C N  x < x  ~) tmphes ( ] v t ) ( x  ~ rng4,,) 
Then thero extst an o -group G and an t~omorphtsm c~ C --> Zl * G such that eve-y 

p ( ~ , k , X , G ) = Z { p ( ~  k I ' ; ,H,)  O ~ , Y , = X }  
and 

I-L ~ E ( Y )  tmphes G I= E(dp~b,Y). 

Proof. Let $,h, be an abbreviatlor for q~,A(h,,H,) 
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Lemma 5.2. h,, h, ~d 0 and ~/,h, = ~h, onphes ~ = ] 

Proof. Let h, h ~ / 0  and x = tb, h, = q/,h, Then x < ~ + because ,~f regularity of t~ 
Now use (3) from Theorem 5 2  

Let G be the &rect sum ZH, ordcred as follows 
max{tp,h, h, ~ 0} then g > 0 if[ h, > 0 

Let qSx = {>2h, every O,h, < x} 

If g = E h ,  and ~p,h, = 

Lemma 53.  ck ~s an ~somorphtsm from C onto ~ ~G 

Proof. (1) Evidently qSx E A * G  
(2) Let x < y  Then (see (1) Theorem 5 2 )  x ~ z < z  ~ < y  for some (see (3) 

Theorem 52)  z = ~/J,h, and h, ~ q~y - 4.x 
(3) Let X ~ A ~ G  a n d x  =sup{(~,h,) + h, E X }  

We state that 4,~ = X It Is enough Io prove that always X N/4, = 4,x N/-r, Cteark 
X fq/4, C tkx Conversely, let h, E ,;bx Then t~,h, < (~h,)+ for some h, E X There- 
fore, 4~,h,<~t~h, a n d [ h , l  < n t h ~ l  m G Because X ~sconvex, h , ~ X  

Lemma 5.4. The monomorphtsm ~bt~, A *H, --~ A *G ts canomcal 

Proof. (1) ~b~,Y c3/4, = Y Indeed, 
h ~ Y - A ( h , H , ) C  Y=-tp~h <t~,Y=--h CqS~[s,Y 

(2) X 6- zI*G and X f3 H, C Y imply X C thO, Y 
Indeed, let X = ~x ~ zI*G and X fq H, C Y And let (reducho ad absurdum) 
~bt/J,Y C ~bx, l e t~,Y < x Because of regularity of ~,. there exists, h E/4,  ~uch that 
~,Y  <~ ~,h ~ x Then h ~ (d,x N H,) - Y which cc, ntradlcts X fq H, C_ Y 

Proof of Theorem ~.2. Now the first statement of Theorem 5 2  tollows from 
Theorem 51 The second statement is evident Theorem 5 2  ~s proved 

Lemma 5.5. Let Ht and H2 be countable Archemedean o-groups Then there extsts 
an Arehemedean ordering of zhe dtrect sum H~ + H2 preserving the ordermgs of me 
summands  

Proof. By Holder 's  Theotem (see [3]) 1~ can be as, umed that H, and H~. ate 
subgloups of the naturally ordered addmve group R o~ reals For any real r / 0 ,  H, 
Is Isomorphic to the subgroup {r~ x E/-t,} So it can be zssumed that H~ f3 Hz = {0} 
But m that case the statement of the Lemma 5 5  is clear 

Let G be an o-group, x ~ G  and X = A ( x )  m G Then X C X  ~ and the 
Archemedean o-group X ~ / X  is called an Archemedean factor of G 
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Theorem 5.3 (G.umg l'heorem) Let G, be an o-group and all Archemedean factors 
of G, are countable t =1 ,2  Let tp A * G ~ A * G . .  be ar tsomorpht~m of the 
chains Then there extsts an o-g~ ap Go (a glumg of G~ and G._) and chain 
tsomorphtsms ~, A*Go-~A*G, such that qS:=~d)~ and tvery p(s,k,X,  Go) = 
p(s, k, 4,,x, G,) + p(s, ~, 4,,_x, G~) 

ProoL For x ~ (3,, let/4, (x)be  the Archemedean factor of G, corresponding to x 
If H~(x,)= Y*,/Y, and tpY~ = Y~., fix an Archemedean order of H~(x,)+ H~.(x2) 
preserving the orders of the summands 

Let Go be direct sum G)+G2 ordered as follows Let g,)=gz+g2~O and 
H, (g,)= Y~/Y If ~bY~ C Y: (respectwely Y., C 4~Y~) then go> 0 ~fi g_. > 0  (respec- 
rarely g~>0) If ~pY~= Y~ then go>O ~ff the element (g~+ Y,)+(g~+ Y~_) of the 
Archemedean o-group H)(g 0 + H,_(g,) ~s positive Go ~s a desired o-group 

6. Fourth special o-group 

Let us fixp, ~ and k where t ~< k ~< ~ Let Q andQp be as in Sectlon 3 We budd a 
cou~table o-group G ~atlsfymg the following conditions 

(0 if x ~ 0  then A+(r) /A(x)  ,s tsomorphlc to Q, 
((Q the chain ({A(x) x ~  0}, C) ~s order isomorphic to Q, 

(m) G xs q-dwlslble for each prime q,~ p, 
0v) if p(s , t ,X)= r > 0  then t = k, r = 1 and X is different fr,~m any A(x) ,  
(v) for each x.p(s, k,A+(x)) = O, 

(vQ l f X  ~C Y then : I Z ( X  + C Z C Y  and p(s, k, Z)  = l) 
Here ts the idea of the construction Let G '  be a copy of the third s t eclal o-group 

G '  satisfies c(,ndmons 0)-0v) and (v0 For each non-zero x E G' ,  "-,~ove" another 
copy of the third specml o-group "between' A ~(x) and G'/A +(x) Do the same for 
the new copies of the third specml o-group Repeat the process 

Now we construct the deslred o-group Let a,/3 range over the successions of 
'~e,.tlon 4 and S be the chain of successlons ~S ~s the set of functions t n ---> S 
;,here n ~ o )  We o r d e r ' S  as follows t~<t2 lff t~Ct~ c,r 3m(t~Im =t~lm and 
t~(m ) <" t,~(m )) We imagine elements of '°S as sequences, hence it ~s clear what ;~a 
means 

For each tO2 "S let H, be an o-group, isomorphic to Q,.f, H,---~Q be an 
isomorphism, H',=f.'(Q~,) and h,=f?~(1) Let U,=LZ{h/.~ a ~ S } ,  W =  
LL{H,.,, a E S } ,  V,={(h, .o-h, .¢)/p "~ a l n = / 3 ) n }  and G, be the least sub- 
group of IV, conta nmg L,; ~..I V, Clearly, G, ts a copy of the third special o-group 
Let W = L E { H ,  t T~S} and '3 be the least subgroup of W containing 
t..,/{G, t / 0 }  It is not 61fficult te check that G Is ~hc destred o-group 



E*:panded h~eo,v of ordered AbMtan grauo~ 209 

PART 2. ELIMINATION OF QUANTIFIERS 

7. Ehmination theorem 

The e lemen(ary  language of o-groups  E L L  is thc first order  language with an 

equahty  sign whose non-logical  constants  are the individual constant "0"  the 

symbol  " - "  of one-place  ope la t ion  the symbol  " +  '" of two-place opera t ion  and 

the s y m b o l "  < '" of two-place pxedlcate The  e lementary  theory of o-group,, ELT is 

gwen m E L L  by axmms of (Abehan)  groups,  axioms of chains 0 e hnear  o rder  
axmms) and by the following axmm 

VxVyVz(x<y Z D x + z < y + z )  

Terms  of E L L  are called elementaG terms t, - t2 ~s the abbrevmtlon for tj + ( - t2) 

An Expanded  Theory  of o-groups EXT is now defined Let L2 be the monad,c 
second order  language corresponding to ELL Every o-group G gwcs us a m ,  tural 

model  of L2 by the following defimtmn second order  variables range over  the set 

A*G U{0} (the convex subgroups of G and the empty  set) Let T2 bc ~he se, of 

L2-formulas whmh are t rue m all these na tmal  models  We shall esscnt).41y be 

studying the tbeory  T2 but  m order  to ehmmate  quantff~ers some mes~eahal 

extensmn of T2 Is more convement ly  used ~.n Expanded  Language of o-gn'~up'~ 
E X L  Is ob ta ined  from L2 by adding some non-logical  constants 

Definition 7.1 (of second o rde r  terms (superterms) of EXL)  

(I) Second order  variables of E X L  (1 e second order variable~ of L2~ are 
~uperterms, 

(2) 0 is a super tmm,  and for each e lementary  term t, A ( t )  is a super term,  

(3) F(p,s, t)  is a super te rm for every e lementary  term t, prime p and 

natural  s ~ 1, 
(4) tf T is a superterm,  then so is T* 

Definition 7.2 (Of a toms (atom fmmulas)  of E X L  Here  t is an elementary term, 

T, T~, 7",, are super terms,  p is a 0nine number ,  k, s, r are naturals  and 1 ~ k ~ ~ and 

I is an integer)  
(I)  D(p ,  s, k, t), E(p, s, l t) are atoms, 
(2) T~= T~, TIC T2, E f T )  and p(s, tq T ) >  r are atoms. 

(3) t ~ T ~s an a tom and 
(4) t = l (mod T),  t < l ( m o d  T), t > l (rood T) are atoms 

A natural  model  of E X L  is obta ined  from a natural  model  of L2 by mean" of 

def inmons of Section 1 and the following def inmon 
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Definition 7.3. (1) 0 + Is the zero-subgroup  {0}, 

(2) T, = T2 and T~ C T2 are defined naturally,  

(3) E, 0) is false, 
(4) p(~, k . 0 ) >  r is always false and t = I (mod 0), t < l (rood 0). t > l (mod0)  are 

always f . l se  

So every o-group gives us one na tma l  model  of E X L  A n  E x p a n d e d  Theory  

of o-groups E X T  ts the set of EXL- fmmulas  which are true m all these natural  

models  
The at )ms of T2 are expressible  m E X T  

It, = t..] ~ -  [ t ~  - t2 = 0 (mad 0")], 

It, < L,] ~ [t, -- ;2 < 0 (mad 0~)] 

The m,,erse s ta tement  ~s also true but we do not need n and we do not prove ~t 

Theorem 7.t (Ehmmanon  Theorem)  For every EXL-formula a there exzsts an 
EXL-formula a* such that c~* has no bound elementary variables and ,~ -o<* 

m EXT 

The E h m m a n o n  Theorem ~s t t e  oblec t  of Part  2 (SecUons 7-10) Tlae proof  

below gwes a pnmmve ly  recurswe procedure  for building a *  from a A n d  of 

course ce" has the same free variables as a 
The  Convex Subgroups Theory,  CST, is defined m SecUon ! 1 As  a corol lary of 

Theorem 7 1 we have the following 

Theorem 7.2. There extsts a pnmmvely recurstve algonthm whtch for every EXL-  
~enteme c< budds a CSL-sentence a* such that a E E X T  tff a *  ~ CST 

Proof. Let  a be an EXL-sen tence  o~ does  not contain free e l emen ta ry  variables 

By Theorem 7 1, a does not contain e lementary  variables at all 

W I o g the trldwldual constant  0 does not occur m o~ Indeed  D(p , s ,  k ,0)  is 

always true, E(p, s, k, 0) is always false, 0 E T ~ 0 C T and it is easy to ehmmate  0 
from atoms 0 =- l (mad  T), 0 > l (mad  T),  0 < l (mad  T) 

Fur ther ,  

( Y = X ~ ) ~ ( X C  Y & - n 3 Z ( X C Z C  Y)) 

v(V=X & ( v u n  x ) 3 z  ( x  c z c u)) 

So It can be assumed that every super term of a ~s a variable or  0 We also admit  a 
new individual con,;taPt U which denotes  the  maximal  (non-proper)  convex 

subgroup 
W 1 o g all quantJhcatmns m ~ are restr icted by 0 C X C U Indeed,  : : IXf l (X)  

~(0) v/3(u) v ~ x  (/~(x) & (Oc x c u))  
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W 1 o g the mdwdual  constants 0 and U do not occur m a Indeed, E(O). E ( U )  
p ( s . k ,O)>r ,  p(s, k, U)  > r, U C 0  are false 0 = 0 ,  OCU;  U =  U are true And  

because every variable m a ts bounded  by the open interval (13 U) we can replace 

0 =  X by the proposmonal  constant "raise". 0C X by the "true'" and so on 

As a matter  of fact we now have a desired fromula ce" 

An EXL-formula  a is called open if a has no bound elementary van,~bles 

Below. we write "o~ =- f l "  instead of "o~ ~/3  in EXT".  "o~ implies B" instead t~ " a  

lmpl, es /3 in E X T "  and so on 

The El iminat ion Theorem is proved by an mducnon on ~ The only non-tr|,,tel 

case is the following 

Lemma 7.1 (Main Lemma) For every open EXL-formula a ( x )  ~here eusts an open 

EXL-formula cr ~ such that 3 x c r ( x ) ~ a  ~ 

The following snnple s tatements ate used often 

Lemma 7.2 (Cases Lemma) It ct m~phes V [3,, then 3 ~ a  -~ V 3x  (a & [3,) 

Lemma 7.3. Let a be an EXL-formula and [3 be a sub]ormula of c~ ,inch tha~ any 
free occurrence m [3 of any variable ts never bound m a Let c~, (respectluely %) be 
obtained from c~ by replacing [3 by the proposmonaI constant ' t rde" Uespectwely 
"false ") Then 3 x a  - 3 x  ([3 & c~,) v :tx (--7 [3 & m)  

Lemma 7.4. Let a be an EXL-formula  and T be a superterm tn c~ such that any 
occurrence m T of  an)' variable ts never bound tn ce Let a '  be obtained from ce by 
replacmg Tby  a new second order variable X Then 3x  a - 3 X  3x  (X  = F & c~') 

8. Primary case 

An EXL-formula or(x) zs called a p.-formula tf x can occur in a ( x )  only through 

F(p, r,t), D ( p , r , c , t )  or E ~ , r , c , t )  In other words a p-formula contains neither 

A ( t ) ,  tRc (mod T) nor F(q,r , t ) ,  D(q , r , c , t ) ,  E (q , r , c , t )  where q /  p 

Theorem 8.1. Let a ( x )  be an open p-formula There extst~ an open p-formula a 
such that 3x  a (x)  =- ct * 

Theorem 8 1 ~s the object of this section Let R be the set of numbers  r occurring 

In oL through F(p, r, t(x)),  D(p,  r. c, t (x))  or E(p, r, c, t (x) )  Let s = max R It can be 

assumed that s is the only e lement  ot R, see Corollary 1 3 and Lemmas 1 ~ and ~ 6 

m Section 1 Below we write F(t) ,  D(c,  t), E(c,  t) instead ot F(p, s, t), D(p, s, c, t), 
E (p, s, c, t) respectively t~ - t2 ts an abrevtanon for F (tt -- L) =- 0 
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Note that x - y  Imphes o~(x) -c~(y)  Every elementary term t of a can be 

represented m a form ax + b~y~ + + b~y,. where 0 ~ a, b, < p~ Moreover,  ~t can 

be assumed that a = p", see Corollary 1 3 and Lemmas 1 5 and 1 6 m Sectlon 1 

Below "r ~s an elementary term w~thout x and M ~s the set of terms ~" occurring m 

through F(ax + r),  D(c, ax + T) or E(c, ax + "r) It can be assumed that ff ~- ~ M 

then pT ~_ M 
By the Cases Lemma ~t can be assumed that for k = 1, . , s ,  a has conjuncts  

F (p  ~-kx + ~'k) _C F(p~-kx 4- r )  for some ~-~ and every ~" ~_ M Let tk = p ' -~x + ~'k 

and t~ = 0  Then a lmphes F(to)C_F(t,)C CF(t~)  Indeed,  F(tk)C_ 
F(p~ kx +p~'~+,) = E ( p .  &+,)C_ F(tk. ,)  

By the Cases Lemma 7 2 it can be assumed that (F(&)C F(tk÷O) or ( F ( & ) =  

F(tk~j)) 1~ a conlunct  m c~ In order to avoM using radices we assume that 

= F(t,,)= = F( t , )C F(t,~,) = : F(t ,)  C F(t,~,) = = F(t~) 

Evidently 

~1 p'-~p~ 'x =--p'-~(t, - r , ) - ~  -p ' -~z , ,  ff k <~, 

p~-~x =- i P ' - ~ P ~ ' x ~ P ' - ~ ( t J - % ) "  d t < k  <~]' 
p '-~x :---p'-~(t~ - r~), ff ] < k ~< s 

Let a'(x,, x,) be a formula such that a (x) - ct'(t, t~) 

Lemma 8.1. 

3 x a ( x  ) ~ 3x, 3x, [ce'(x,,x,) & p' '(x, - %) = - r, & p~-'(x~ - "c,) = x, -- T,] 

Proef. a (x) ~mphes a ' ( t .  t~ ) Conversely a ' ( x .  x~) imphes a (x, - .r,) 

Corollary 8.t. It ts enough to prove Theorem 8 1 ]or a ( x )  such that a ( x )  has 
conp.mcts p kx = 'ro and 0 C F (x )  C F(p 'x  + "r) for some 1 <~ k < ~ and ~',, and every 
O ~ t  < k  and ~ . ~ M  

Lct N - - : I p ' x a - r  0 ~ < t < k  & T ~ M }  W l o g  N l s t h e s e t  of all e lementary 

terms t(x ) m a 
W l o g  (X  ~ F(x )) Is a conjunct m a, see L e m m a 7 4 m  Section 7 

Lemma 8.2 W i o g  a ha~ conlunct~ F(T)C_X, T E M  

Proof. Let ~" ~ M By :hc Cases Lemma it can be assumed that F ( r ) C X  or 

X C F(~-) ts a conwnct  of a But F(x)  --: X C F( ' r )  implies F(p'x  + T) = F(z) ,  

D(c,  p'x + z) ~ D(c,  T) and E(c,  p'x + ~') =- E(c,  T) So we can t.ancei ~" flora h i  

Lemma 8.3. The cot /uni t  pkx = t o  can be replaced m a by p~ '70=-0 & 
F(p kx - T,,) C X 
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Proof. Let a'(x)  be the result of the leplaceinent or(x) lmphes c~'(x) Con~(rselv. 
suppose a'(x)  T h e n p k x - ~ - , , = - v  for some y ~ X  andp~ ~v---O.~e y = p ~ z  for 
some z It ~seasv to check that c t ( x - z ) ~ s t r u e  

Ewdentlv o~ lmphes F(t)= X f o i l  E N 

Corollary 8.2. W l o g  a = a,, & cr,(n) &/3(x)  where t~,, ts ?' ~r,,-~f) & 0 C  "4 & 
A { F ( r ) C X  r E M } , o ~ t s F ( p ~ x - ' r 0 ) C X &  A { F ( t ) = X  JE N}andxcano~<ur 
m ~(x)  only through atoms D(c, t) lz(c, t) 

Lemma 8.4. Let c¢(, and E(X)  tmply 3x (a) & /3) =- Y and c~,, and --7 E ( g )  imply 
gx (a ,  & /3)=--6 Then, 3 x a  ~cr,, & E ( X )  & Y ~ a,, & ~ E ( X )  & 6 

Proof. Clear 

So it is enough to find the corresponding Y and 8 
Suppose a0 and E ( X )  By the Cases Lemma ~t can be assumed that /3 has a 

conlunct E ( a , x ) ,  1 <~ a < p' Therefore we can replace D 0 ,  t) by {E(b p', t) I 
o < p ' - ' } ,  E(b,p'x + "r) by E(b - a p', "r). F(p'x + -c) = X by -7 E ( -  ap' r) 

As a lesult o~j(x) & f l(x) =- F(x) = X & E(a, x) & a' for some ()pen c~' wlihout 
x And,  

::1~, (~, & f l ) ~ a '  & ::Ix (F(x)  = X & E(a ,x) )~c~ '  & E ( X )  

Suppose ac, and -n E ( X )  
W 1 o g every atom in/3 has a form D 0, t(x)) Ind, ed, let/3,, be an atom ,n j5 (x) 

If/30 = E(I, t(x)) then /3o can be replaced by "false" Let /3,) ~ ot contain x By the 
Cases Lemraa it can be assumed that /3o or ~/3,, is a conlunct of ° ( x )  It ca,~ be 
assumed that /30 occurs only once m fl(x) t.e,. c ~ & / - =  ± f lo&o~ '  ;Pen 
a-.x (a, & /3 ) ==- +- /3,, & 3xa '(x ) 

Let a bar aenote  tile ha," ral isomorphism F2(p, s,X)--,  g(p ,s ,X)  Let a be 
p~.~ = ?o & A{/ '#  0 t ~ N} and/3 '  be obtained from/3 by replacement of D 0, t) by 
t ' ~ 0 ( m o d p ' )  Evidently 3x (a,(x) & /3 (x ) )~3~  (c~'~($) & /3'(y~)) 

Let K(p, s) be the class of (Abehan)  groups satisfying the axiom p '  v = 0 L~.t a 
first order language L (p, s) be obtained from the elementary language of groups by 
adding the atoms t = 0 ( m o d p ' )  Let T(p,s) be the theory of K(p.s)  m L(p.s)  

Lemma 8.5. T(p, s) admtts a quanttfier ehmmatton 

Proof. It is easy to check Lemma 8 5 w~th the aid of [17] or even without it 

According to Lemma 8 5 the formula ::1.~ (a'~(.~) & fl '(~)) is equwalent m T(p, ~) 
to some Boolean combination of atoms ? = 0  and " ? ~ 0 ( m o d t ? ' )  Then 
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3X (a , (X)& [3(X)) Is eqmvalent to the correspond, ng Beolean combmahon of 
atoms F(~-)CX and D0 ,  z ) Theorem 8 1 is proved 

9. Without exiles 

Superterms A (t(x)) and atoms t ( x )Rk  (rood T) wdl be called exiles 

Theorem 9.1. Let c~(x) be an open EXL-formula wtthout exdes There erzsts an 
open EXL-formula a* such that 3xa(x)=-c~ ~ 

Proof. Let tr be the set of pairs (p,r) occurring m a through 
F(p,r , t (x)) ,  D(p,r,c~t(:~)), E(p , r , c , t ( x ) )  Let ~r={p 3 r ( p , r ) ~ t r }  and ~p= 
max{p (p, r) @ o'} 

Lemma 9.1. W l o g  a ( x ) = [ 3 &  A { a p ( x ) p E T r }  where every a~,(x) ts a p- 
formula and [3 does not conta,n x 

Proof. See Lemmas 7 3 and 7 4 

Lemma 9.2. 3xa(x)---[3 & A { 3 x a ~ ( x )  p E ~r} 

Proof. Suppose [3 and o~e(xp), p ~ ~r There exist integers ap such that ap 
! (mod se) and ap--= 0 (mod Sq) for q E 7 r -  {p} It ~s easy to check that a(Zapxp) 
holds 

Now Theorem 8 1 ~mphes Theorem 9 1 

10. Banishment 

Supcrterm~ A (t(x)) and atoms t ( x )Rk  (mod T) are called exu's  

Theorem 10.1. Let a (x )  be an open EXL-formala There exists an open EXL- 
]ormula a*(x)  wtthout extle~ such that 3xcc(x)=--Sxa*(x)  

Theorem I0 1 ms the object of this ,,cchon The Mum Lemma of qectlon 7 follows 
from Theorem 10 1 and Theorem 9 1 

Below r ~ an elerne~tarv ,'erm without x 

Lemma 10.1. W l,o.g, ever) elementary term t ~  ) m a has a form x + "c 

Proof. Every t (x)  can be represented m a form ax + ~" for some integer a Let 
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S = { a g  O ax + r occurs m a} l e t  b b e t l a e l e a s t c o m m o n m u l t ~ p l e o f n u m b c r , * o  
S It can be assumed that  o is the only e lement  of S. see Corollarxes 12, 18, t 12 

and Lemmas  15,  t 6 Let ex'(x~ be the formula ~uch that ce(x) = oL'(b~c) Then 

3x  a ( t )  - =Ix [od(x) & F(b, t )  = 0] Now Corol lary  14 ts used 

Lemma 10.2. W l o g  a = - ( A ( x ) =  X ) &  fl & y where 

(1) ~ t s  a conlunctton of exde atoms (~ + r ) R k  (rood X),  
(2) fl has no eonluncts x + ~- = q (rood X) .  
(3) 3' has no extles at all, 

(4) for every conlunct (x + 7 )Rk  (rood X )  m/3 there ert~ts a conlunct A ('r) C_ X ,,n 
y and 

(5) X / 0  zs a conlunct m 3' 

Proof. Let M be the set of terms r occurring m a through A ( x  + r) o~ 
(x 4 - r )Rk  (rood "/) By the Cases [ , emma ~t can be assumed that ( A ( x  +';,,) = 
A (x + -r)) or  (A (x + "ro) C A (x + "r)) Is a conjunct  m c~ for some fixed ~'. and ever) 

r (E M Because of Bx a (x)  =- 3x  ~ (x - r,,) it can be assumpd r,, = 0 Moreover  it can 

be assumed that ( A ( x ) =  A ( x  + r ) )  is a conjunct  m a, r ~ M Indeed,  A ( x ) C  
A ( x  + r )  is equivalent  to A ( x ) C  A ( r )  and lmphes (,c + r ) R k  (mod T)-=- 

rRk  (mod T)  So a = a ~ & a 2 w h e r e  a , =  A {A (~ )= A (x + r)  r U. M} 
W l o g  c , 2 = ( A ( x ) = X ) & c e ~ , s e e  L e m m a 7 4  W l o g  a ~ h a s  no exfle super-  

terms L e t ~ = ( x + r ) R k ( m o d T ) b e a n e x t t e a t c m m a ~  W l o g  F =  x2 Indeed,  
tt can be assumed that  T C X ,  T = X  or X C T  l s a  conjunct  m u,  In the case 
X C T  we can replace /3 b y f 2 R k ( m o d T )  In the case T C X  arid k # 0  we can 

replace t3 by E ( T ) & ( x + r ) R O ( m o d X )  In the case T C X  and k = 0  we car~ 

replace/3  by (x + ' r )R0  (rood X )  W 1 o g /3 or  --1/3 is a conjunct  m a~, see Lemma 
7 3  It can be assumed that /3 is a conjunct  because of 

- 'n(x + r < k ( m o d X ) )  -= (x t - ,  = k (rood X))  v (x + r > k (rood g ) )  

and stmflarly for o ther  cases 
A conjunct  A ( x ) =  A ( x  + r)  m at can bc replaced by 

A ( r ) C _ X  & ~ + r < 0 ( m o d X )  or 

A(r)C.___X & '. + . > 0 ( m o d X )  
If c.,~ has a conjunct  x + r = 0 ( m o d X )  then a ~s false 
By the Cases L e m m a  X = 0  o~ X ' / 9 ~ ,  a conjunct  m a In the case X =  

a ( x ) - e l ( O )  Q E D  

Let cr be the set of pairs (p, r) occurring m T through F(p, r, t ( r ) ) ,  D(p, r, c, t (r  )) 
or E(p, r, c, t (x ) )  Let s be the least common mult iple of the numbers  p '  (p. r) E o- 

Lemma 10.3. I f  1¢ -~y ( roods) ,  then y ( x ) ~ y ( y )  
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Proof. Clear 

Below F(s, t)C_ X and E(s, c, t) are used as abbrevtatmns for 

A { F ( p , r , t ) C X  ( p , r ) E o ' }  and 

A {E(p. r, c. t) (p, r) E o-} respectively 

(cf,  Corollary 1 4) 

Suppose (x + ro = k (mod X))  Is a conjunct  m 13 W I o,g it is the only conjunct  m 

/3 Indeed it nnphes that 

(x + r)Rl (rood X)-~ ( r -  ro)R ( l -  k)(mod X )  

W i o g  r . = O  Indeed. 

=Ix [A (x ) = X & x 4- r,, = k (rood X) & y(x)]  =- 

~-3x  [A(x )  = X & x = k Imod X)  & y(x - to)] 

Let ao(x) = E(X)  & y(x) & F(s.x)C_X & E(s ,k ,x )  

Lemma 10.4. ::Ivy ( ' :)  ---- 3xa,)(x) 

Proof. a(x)  lmphcs a,)(x) Conversely, suppose ao(x) Because of F ( s , x ) C X  
there exists y ~ X* - X such that y =- r (mod s) Clearly ao(y) & A (y) = X holds 

Therefore y = k + ns (modX)  for some n Let u = l ( m o d X )  Then a ( y  - nsu)  

holds 

Let every conjunct  m /3 be an mequahty Note that 

x + r, < k, (mod X )  & x + "r. < k.~ (rood X)  - 

- x + rt < k~(mod X)  & r2 - ,, ~< k2 - k,(mod X )  v 

x + 7"2 < k2(mod X )  & r, - r2 ~< k - k2(mod X)  

So ~t can be assumed that /3 has at most one conjunct  of a form x + r <  

k (rood X)  and (smularly) at most one conjuct of a form x + r > k (rood X)  It also 

can be ass~med that E(X)  or ~ E ( X )  l:, a conjunct  m y 

Case 1 /3 has at most one conjunct  Let a~ be F(s, x) C X & X C X* & y(x)  

I,emma 10.5. 3xa(x )~3xeL , (x )  

ProoL o~(x) tmphe~ a , (x)  Conversely, suppose a~(x) W 1 o g A(x )  = X, see the 

proof of Lemma 10 4 I', a has no exde-atoms then a(x)  holds Let g = x + r < 

k ( m o d X )  (respectwely / 3 = x + r > k ( m o d X ) )  Let y > 0 ( m o d X )  Then 

o~(x - n s y )  (respectwely a ( ,  + nsy)) holds for suflimently large n 
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Case 2 [3 = r~ + k~ < ~ < r2 + k : ( m o d  X)  and --T U ( X )  ls a conjunct  m 3, It can 

be assumed that k ~ = k 2 = 0  I f k ~ / 0 o r k 2 / 0 t h e n o ~  is false Let ~ =o~t&r~--~ 

'r~. (rood X)  

Lemma 10.6. 3x~(x)~3~cc~2(~. )  

Proof. o~(x) unphes o~,(x) Conversely, suppose cr2(x) W l o g  A t x ) =  X ~rne 

Archemcdean o-group X * / X  ~s isomorphic to some dense ordered subgro~p (~f the 

o-group of reals So there exists y > 0 (rood X) ~uch that ~y < r~ - r~ (rnod X) Fhen 

o~(x + nsy)  holds for some n 

Case 3 [3 = r~ + k, < x < r~_+ k 2 ( m o d X )  and E ( X ) l s a c o n j u n c t  ,n 3, L e t O b e  

r~ + k~ + 2s < ~ ,+  k 2 ( m o d X )  It can be assumed that 8 m ---18 is a <onjunct m 7 

But m the case --n ~5 we can replace/3 by one of the atoms ~ = r, +/~, - l, 1 -<- I ~" _'~ 

and use Lemma 104 So ~t can be assumed that 8 ~s a conlunct  m -,/ Let 

"a~= F ( s , x ) C  X & 3' 

Lemma 10.7. 3 x a ( x ) = = 3 r a ~ ( x )  

Proof. u ( x )  Imphes a , ( x )  ConverCely, supposc ot~(x) W l o g  A ( x ) =  X The 

Archemedean o-group X + / X  is lsoa orphic to the o-group of mtcgcrs Let y = 

l ( m o d X )  Then a ( x  + nsy)  holds for some n 

P A R T 3 .  CONVEX SUBGROUPS THEORY 

11. Decidability theorem 

The Convex Subgroups Language CSL is a first order language who'~e non-logical 

constants are " <  ", the one-place predicate symbol E and the one-place predicate 

symbols p (s, k)  > r where p, s, k and r are naturals, p is prime and 1 ~ k <~ s Evcry 

o-group G gwes the natural model A G  of CSL as follows Elements  of A G  are 

proper convex subgroups of G (a convex subgroup X C G is proper if X / G  
X < Y ---- X C Y The predicates E ( X )  and p(s,  k , X )  > r are defined according to 

Section 1 The Convex Subgroups Theory CST is the set of CSL-formulas hotd~ng 

in all AG 

Theorem 11.1. CST ts decidable 

Let o" be a finite set of quadruples (p, s, k, r) of naturals where p is prime and 

1 <~ k <~ ~ Let L,, be a sublanguage of CSL whose non-logv'al symbols are < ,  E 

and p(s, k ) > r where (p, s, k, r) E o" Let T, =- L,, f3 CST 
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Theorem 11.2. T~, ts umformlv dectdable on or 

Clearly Theorem 11 2 lmphes Theorem 11 1 
Let A,.G be the corresponding L,. projechon of the natural CSL-model  ,..4G 

Evidently T. ~s the theory of all A,.G 
Let o-~ or2, a~, o', be the corresponding projections of cr and s = max or. Accord-  

mg to Theorem 1 1 tt can be assumed that s ~s the only element of or_. W 1 o g ~t can 
be assamed also that f fp  E o't, i ~< k ~< s and 0 ~ r ~ max o-~, then (p, s, k, r) ~ o- 

The following abbrevmtlons are used 

p(k , x )>r  f o r p ( s , k , x ) > r ,  
p(k,x)=O f o r " n ( p ( k , x ) > 0 ) ,  
p ( k , x ) = r - r l  for p ( k , x ) > r  & " n ( p ( k , x ) > r  + l), 
p(x)-~O f~or {p(k,x)=O t<~k ~s},  
p ' ( x ) = 0  for{p(k,x)=O l<~k <s}, 
y = x  + f o r x < y & - - n 3 z ( x < z < y ) v x = y & ( V u > x ) 3 z ( x < z < ' u )  

A model A of L,~ is called a o '-cham (a complete o '-cham) 11 A is a ct 'am (a 
complete chain) The definmon of complete chains is found m Section 14 

K,, is the class of compIete o--chains satisfying the following a,~loms (where 
p Eo-~ and r.r+ 1Eo'4) 

(K1) 3x Vy (x ~ y), 

(K2) x< y D~z(x<~z<z+<~y) ,  

(K3) p ( k , x ) > r + l D p ( k , x ) > r ,  

(K4) p ' ( x ) / - O D 3 y ( x < y ) & ( V y > x ) 3 z ( x < z < y & p ( = ) ~ O ) ,  

(K5) E ( ~ ) D ( x < x + v V y ( y < ~ x ) ) & p ( s , x ) = l  

ThK.  is the theory of K~, m L, 

Lemma 11.1. ThK,, ts umformly decidable on cr 

Proof. Let C.  be the theory of all complete o--cl,ams m L,. By Theorem 15 2 C.  ~s 
uniformly decidable on o- But 'ThK,.  is fimtely axlomatlzable m T~. 

Lemma 11.2. J,,G ~- K,, 

Proot. Yv,dently A~G is a coruplete or-chain and satisfies axioms (K1)-(K3) For 
axioms (K4) and (K5) see Theorems I 2 and l 3 

In Section 12 we braid a class M,T Of ~r-chams such that ThM~,CThK,,  
According to Sectv,a 13 for every C E M~, there exists an o-group G such that 
A~,G ~ C So T,, _C (~ccordmg to Sectlol~ 13) ThM,, _C (according to Secuon 12) 
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ThK,~C(by the Lemma l l 2 )¢7~,  So, ~ E ~ = T h ~  and Lemma t I ~ ~mpl', 
Theorem 11 2 

12. cr- chains  

Definition 12.1, A o -chain S is the internal ordinal s,~m F2(A, l ~ I} ot lt~ conve\  
submodels A, on a chain I zt 

(I) S=I , , J{A,  t & I }  and 
(2) t < ]  x ~ A , ,  ¢ E A ,  imply x < v  

Definition 12 2. An external ordinal sum S = Z{A, l C I} ot cr-chama A, on a 
chain I is derived as tollows Elements of S are pmrs (I..~) whele z C I ar,d t ~ A, 
0, x ) < ( / , Y ) ~ f f z < l o r t  = l a n d x < v  A n d t o r e v e l y o n e - p l a c e p r e d t c a t c w m b o l P  
m L~,, S ~ P O ,  x ) 1If A , ~ P ( ~ )  An ordinal multiple A I = E { A ,  , & I  and 
A, = A }  

Notations. Let A and B be ~r-chams, B is one-element and b ~ B Th, f~Tlowmg 
abbrewatmns are used 

p ( k , B ) = r  for B ~ p ( k , b ) = r  
E ( B )  for B b = E(b),  
p 'A  = 0 f o r  A{p(k a ) = 0  a ~ A  and k < s } ,  
pA = 0  for A{p(k a ) = O  a ~ A  and k-<-<~} 
Let U,, be the class of such one-element o--chains B that --n E ( B )  Lel 0,, denote 

every o'-cham B ~ U,, such that (Vp ~ cq)pB = 0 Let to (respechvely o)~ be the 
naturally (resp m~ersely) ordercd ~et of natural numbers Let R bc the ~.ham 
of reals 

Definition 12.3. Let F be a fimte set of cr-cham~ An ordinal sum E{A, i C I} is 
called F-dense if 

(1) Vt ( 3 B  E F~A, ~ B, 
(2) ( V B ~ F ) ( { t  A,------B} is dense m 1) and 
(3) I has neither minimal nor ma×lmal elements 

Lemma 12.1. Every two F-dense o'-chams are elementary eqmvatent 

Proof.  By the Ehrenfeucht  Cntermn [2] 

Definition 12.4. An ordinal sum S = E{A, r E R} ~s called an F-shuffling and is 
denoted by rF  ff 

(I) S is F-dense,  
(2) ( 3 B  ~ F)B is not one-element,  
(3) ( 3 B  ~ F) {r A r j  B] ~s countable and 
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(4) ff {r A ~  B} is countable and B is one-element then B = 0= 

Definition 12.5. Let M, be the least class of o--chains such that 
(1) If o--chain A is one-element and p'A = 0 then A ~ M,~, 

(2) It A , B ~ M ~  then A + B ~ M ~ . ,  
(3) If A ~ M .  then A o:~.M,,, 
(4) 'f A~M~.,  B G U , .  and ( V p ~ o ' ~ ) ( p A = 0 D p ' B = 0 ) ,  then B + A  

EM,~, 
(5) C + ¢ F E M ~  ff C ~ U .  and fimte F = F z U / : 2  where 

/ : ' , C { A + B  A EM,~ and B ~ U . }  and F~CU, . , and  

(Vp ~ o,I[((VD ~ F)pD = O) D p'C = O] 

Tt~eorem 12d, ThM,. _C ThK~ 

ProoL It 1,~ enough to prove that for every n = 1,2, 
equivalem to some B ~ M~ Fix n 

non-zero 

every A ~ K ,  is n- 

Definition !2.6. cr chain A will be called good ff st satisfies one of the following 
requirements 

(Gi) 

(G2) 

(G3) 

(G4) 

A is n-equwalent to some B ~ M=, 

A does not have the minimal element and B + A satJsfie~ (G1) for every 
B E U ~  such that, for every p~cr,  and a ~ A ,  ff p 'B~O then 
(~c ~ A)(c < a and pc~O), 

A is onc-element and (3p ~ cr,)p'A ~ 0 and 

A ~ A ' +  B vhere A'  sallsfies (G1) or (G2) and B satisfies (G3) 

Le,nma 12.2. If a gogd c--chain A ~ K~, then A sansfies (G1) 

Proof. Clear 

Definition 12 7. cr ch,un A is called quasl-good if every non-void half-closed 
mterval [x, y) --- ]z r ~ < z < y } l n  A lsgood 

Lemma 12,3. Every qua~t-good or-chain zs gooa 

Proof. See the proof of Lemma 14 3 

Lemma 12.4. Every ~r-cham m K. ts good 

Proof. See the proof of Lemma 14 4 

Theorem 12 1 is proved 
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13. Constructing o groups 

Theorem 13.1. For every cr-cham A ~ M,. there exists an o-group G s ,ch that &,G 
ts somorph~c to A 

Proof.  13y an mductmn on A Desired o-group~ will be constructed as subgroups of 

lex~cographlc sums of countable  Arch lmedean  o-groups The  opera t ions  of gluing 
au ~ in ter lacement  of Section 5 preserve  this proper ty  

~- et A be  one-e lement  Then (Vp E cr~)p'A = 0 If the only e lement  of A satisfies 
the predica te  E then the natural ly o rdered  group of natural  numbers  is a de~ red  

o-group Let A E U~ By the Gluing Theorem of Secnon 5 it can be assumed that 

Vp (pA -- 0) or  p A  = 1 for some p and qA = 0 for every q / p  So O or Op ('~ee 
Section 3) is a desi red o-group 

Let A = B~ + B2 and B, ~ ..4oH,, l = -~,2 Then the lexlcographlc sum H~ + H.  v, a 

dr sired o-group 

L e t A  = B  o 2 a n d B ~ A ~ H  T h e n h r ~ o = L E { H ,  z E c a a n d H , = H } l s a d e s l , ' e d  

o-group 

Let A = C + B  ca*, B ~ A t ~ H  and C E U , ~  If C ~ 0 , ,  men H fo*= 

LZ{H, i ~ o9" and H, = H} is a desi red group Le: p(k, C) / 0 for some p and k 
It can be assumed that p ( k , C ) = l  and q(l,C)=O f f q / p  or l / k  Indeed ~et 

p(k, Cvk ) = 1 and q(l, Cpk) = 0 if q~ p or l / k  and let A,.Hp~ ~- Cpk + B ca* Then 
a suitable in ter lacement  of o-groups tte~ (see the In ter lacement  Theorerq m Sectmn 
5) is a desi red o-group 

It H Is not p-divis ible  then the o-grot~p G of Section 2 is a desired group Let H 
be p-divis ible  

It can be assume that H is a lexlcograph~c multiple of O Indeed,  let H ' =  
LZ{H, t E A , , H  ,... H, = O} and A~G'~ C+A.H '  ca* Then a gluing of H ca '  

and G '  is a desi red o-group It can be assumed that H = O Indeed if H,~ 0 then H 
is an in ter lacement  of O and some H '  Let A , , G ' ~  C +  O~o* Then a statable 
Inter lacement  of H'ca* and G '  is a des i red  o-group 

Now the group G of Section 3 ~s a desired o-group 

Suppose 

nd 

A = D + ~-(F, U F2), D ~ U,., 

F ~ = { B , + C ' ,  l ~ < l ~ r n  and B ,~A,d - / ,  and C,@ U~} 

F:={C, m < l < . n  and C E U , . }  
W l o g  D = 0 , ,  Indeed  let A~,G'~O~+~'(F~UF2) Then &,(G' /X)~  

[4, + C~ + ~'(F~ U F~) for some convex subgroup X C G '  and A 

D t-&,(G'/X) to* See the previous case 

~et A = 0 , , + { D ,  r ~ R }  and 
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R = I { r E R  D,=B,+C,},  1 f rom,  

[ { r E R  D , =  C,}, 1fro <:l  

W l o g  m = 1  I f m ' > l  letA,=O~+E{F, r E R }  where 

{ B~+C,, If r ~ R , ,  
E = C. If r~.R, and m <1,  

0~. m other  cases 

a n d f o )  l < r ~ < m  let : ~ , = 0 ~ + E { E  r E R t w h e r e  

F = i B , + C ,  f f r ~ R , ,  

[ 0,, m other  cases 

Let /tjG, ~ A,, 1 = 1, m Then the corresponding in ter lacement  of o-group~ 

G .  , G,. is a des i red  o-group 

Below B = B~ and H = H~ 
W 1 o g C, = 0,. a)~d R - R, ts countable  fo," scme i > 1 Indeed,  by the def inmon 

of  shummg m Sechon 12, some R -  R, ~s countable  and ff t > 1 then C, = 0,. Let  
R - R ~  be countable  There  exists a representa t ion  R~ = !..J{R. t ~ I} where 

s~.nmands R,,  are countable ,  dense m R aad  d~sjomt Let u ~ I and A,  = 
O, + E{F'. r E R} where 

{ B+C~. I f r E R . .  
F ' , =  C~, : t = u ,  r ~ R ,  and t > l ,  

0,, m other  cases 

Let A,,G, -~ A, The corresponding in ter lacement  of o-groups G, ~s a deslred 
o-group 

W l o g  C~=O~ I f C ) ¢ O , ,  let R ~ = S ~ U S 2 w h e r e s u m m a n d s S ,  a r e d e r . s e m R  

and d~sjomt Lel A, = 0~ + E{F,, r E R} where 

B+O.. ff rESt ,  
FI, = C1, If r E Sz, 

(_~, If rER,  and t > 1 ,  

0,, m other  cases 

CI, )f rES1,  
;~, --- B ~-0,,, ti rES:,  

9,. in o ther  cases 

Let A,.G, ~ A, Then the corresponding in te r lacement  of G,  and O._ ~s a desired 

o-group 
Let s=Z{p(k,C,) p~a~,kEtr3,1<t~<n}. 
W I o g ~ ~ I The statement Is proved by mductlon on s Let C,,, C2, E U,, and 

every p ( k , C , ) =  p(k,C~,)+p(k, C2,). Let  R~ = S~ U S~ and the summands  S, are 

dense m R and disjunctive Let  A, = 0~ + E{F', r ~ R} where 
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{ B + O ~ ,  It r E R ~ ,  

F'~ = ,~,,c", If r ~ R, and I < l, 

O~ m other  cases 

Let A~G, ~ A, Then the corresponding inter lacement  o[ G, and G2 is a desired 
o-group 

If s = 0 then the lexmographlc mulnple  H R~ l~ a de sued  o-group 

Suppose  s = p(k, C:) = 1 (and so F, = {B, + 0,,}, F,  = {C2,0,,}) 
Case i H is not y-&vis ib le  There  exists a rep lesen ta t lon  Rz = U { R .  t ~ R2j 

such that R .  f 3 R , . - - 0  if t / u  and evel3 chain R .  as asomorphac to a~* and 

h m R z , = t  For  every t ~ R 2  let A , = ( 2 ' . _ + B  R .  aim G, be the o-group G of 

Secnon 2 Then A..G, ~ A, and the anterlacement of o-groups G, is a desired 

o-group 
Case 2 H is p-dlvls lble  W l o g H as a lexacographlc mult iple of the ratmnal 

o-group Q Indeed.  let subcham I = { X E A * H  X C X  }, H ' = Q  I and A I =  

0,. + Z{E r E R} where 

I A~H'40, , ,  ff rER~ ,  
E = C.,, af rER,_, 

0~ m other  c ises 

Let A~G~=- A ,  and G2 = H R~ The, the corresponding ghung of G~ and G:  )s 
desared o-group 

W l o g H ~ O Suppose that H a~. not asomorohlc to O Then H is asomorphlc te 
lexlcographm sum H~+ O + H2 where Hj or H can be zero-group I_el A j = 
0 ~ + { E  r ~ R }  where 

{ A ~ Q + O , , = O ~ + O ~ ,  ff r ~ R , ,  
E = C~, ff r E R2, 

0,, m other  cases 

Let zLG3 ~ A~ and G2 = (Hi + H2) R~ Then the corresponding m)ealacement  of 

G, and G2 is a des i red  o-group 

Lemma 13.1. Let X~, X~_, Y~, Yz be countable dense subsets of the chain R of real~ 
and X~ N X,.= Yj fq Y z = 0  There exzsts an automerphtsm 49 R - ~ R  such that 
49X, = Y~, t = 1,2 

PraoL Let  X = X~ U X.~ and Y = Y~ U Y2 It Is enough to construct an asomor 
phlsm th X--* Y such that qSX~ = Y, Indeed  this asomorphlsm can be ex tended  as 

follows" ~b(hm x . )  = hm 4,x. 
Fix a numera t ion  of X Lt Y by naturals  A l - l - f u n c t i o n  f as called adm,s~ble ff 

d o m f  ;s fimte and rng(f  I X , ) C  Y, A sequence f~).f~, of admissible funcnons ~s 

constructed as follows ]o = 0 If n = 2k and x as the e lement  m X - dora f. of the 

minimal  number  then f.~ ~ ~s an admissible ~.xtensmn of f .  such that x ~ dora f.~ ~ If 
n = 2k + 1 and y ~s the  e lement  m Y - r n g / .  of the minimal  number  then f,, ~ v, an 
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adm sslble extension1 of fi such that y E rngf.+~ Evidently hmfi, is a desired 

~somorph~sm 
Now st is clear that the oogroup G of Section 6 is a destred o-group Theorem 13 1 

is proved 

APPENDIX. COMPLETE CHAINS WITH ONE-PLACE PREDICATES 

A chmn is a hnear ordered set A chain A ~,., complete ff A satisfies the following 
second order axiom 

( V X C A ) ( V Y C A ) [ X ~ O &  Y ~ O &  (Vx ~- X)(Vy E Y ) x  < y  

::lz (Vx E X)(Vy ~_ Y)x ~< z ~ y] 

The decidability of the weak monadlc second order theory of complete chains ~s 
proved m Sectmn 14 The proof uses [I1] and [12] The decidability of the weak 
monad~c second order theory of complete chains with one-place predicates ~s 
proved m Secuon 15, where th~s theory ~s reduced to the predecessor theory A 
s~mdar reduction was used m [5] The declsmn procedures are pnmmvely recurswe 

14. Complete chains 

L0 ,s tile weak monadlc second order language w~ose only non-logical constant ~s 
" <  " Ko is the class of complete chains, Th Ko .s the Lo-theory of Ko 

Defin)tion 14.1. A chain S ~s the internal ordtn~l rum E{A, 
subchams A, on a chain I if 

(1) S =  U { A ,  z ~ l} and 

(2) l > l ,  x U A , ,  y E A j  imply x < y  

1 E I} of its convex 

Definition la.2. An external ordmal sum S = E{A, ~ E I} of chains A, on a chain I 
is defned as follows Elements of S are pairs ( , x )  where t e l  and x C A ,  
(i,x)~-'(j,y) lff t < 1  or t = l  and x < y  In particular A + B = E { A ,  1C{0,1}, 
0 < I , A , , : - A  B~,= B} Theordmalproduc t  A I = Y { A ,  t e l  and A , = A }  

Below ,o (respectwely o)*) is the naturally (respectwely reversely) ordered set of 
natural numbers and Q is the chain of rationals 

Definition 14.3. Let F be a fimte set of chains An ordinal sum E{A, l E I} Is 
call~'d F-dense it 

(1) every A, ~ E 
(2) for every B E F  the subset {1 A, = B} ls dense m A and 
(3) I has neither mmlmal nor maximal elements 
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Definition 14.4. In the case I : Q an F -dense  sum ~s called a shuffling of F and ~s 
deno ted  by rF 

Every two shuflqmgs of F a le  ~somorpmc 

Lemma 14.1. Every two F-dev~e chains are L,,-equwalent 

Prooi .  By the Ehrenfeucht  Cri ter ion [2] 

Let M be the minimal class of chains such that 

(I)  M contains all one-e lement  chains, 

(2) if A B E M  and ei ther  A contains the last : lement  or B contains the fir~I 

e lement  then A + B E M, 

(3) ff A ~ M and A contains ei ther  the fir,,t or  he last e lement  then A co ,'nd 

A ~o* belong to U, 
(4) ff a fimte F C M  and every m e m b e r  of /: contains th~ first a n t  lhe last 

e lements  then ~'F E M 
Let Th M be the L, : theory  of M 

Lemma 14.2. r h  K,, c Th M 

Proof. It is enough to prove that every A C M is L,,-eqmvalent to some A'¢E K,, 

An mducnon  on A and the Ehrenfeucht  Cn te rmn  12] are used Thc ca~e ~,f 
one-e lement  A is trivial ( A + B ) ' = A ' + B ' ,  (A w ) ' = A '  co and (A ~,*i ' =  
A '  o9' Let A =~'F and F ' = { B '  B G F }  Then A ~s L,-equ~vale~t to c' ,erv 

F ' -dense  sum E{A, l E R} where R is the ch~'n of ~eal~ 

Theorem 14.1. Th M C Th K. 

Proof. It is enough to prove that for every n = 1,2, every A ~ K. Js n 

eqmvalent  to some B ~ M l:lx n Chain A wdl be called good ~f it is eqmvalent  to 
some B ~ M Chain A will be called quasi-good ff every non-vmd hatf-dos~.d 

interval (~c,y)={z x ~ < z < y } o f A  l s g o o d  

Lemma 14.3. Every qra~t-good chain t.s good 

Proof, There  exzsts Lo-sen~ence a such that a chain A ~s good ~ff ~t satisf, es c~ L~t 

fl(x, y )  be ob ta ined  from a by the restriction of the quant~fiers to the ,ntervat [x : ) 
Lemma 14 3 states that Vxy(x < y D [3(x, y)) imphes a So it is enough to prove 

Lemma 14 3 only for countable  chains Let A be a countable  quasi-good cba,n 
Case ! A has the minimal  e lement  a If A = [a ,b ]= [a  b ) + { b }  then A is 

good Suppose  A does not contain the maximal  e lement  and B be a subset ol A 

such that B ---- w and (Vx ~ A ) ( 3 y  ~ B)x < y Let {x, y} ~'{u, v} lff the m~ervafs 
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[x y ) U [ y , x )  and [u, v ) U  [v, u)  are non-void and ~-equwalent  By the Ramsey 
Th(orem [14] there exists an mfimte C C_ B such that every pair of different 
elements of  C are equwalent Let b, c ~ C and b < c By means of the Ehrenfeueht  
Cn)enon  [21 ~t ~s easy to check that A ~s n-eqmvale,~t to [a, b ) T  [b, c)to So A ~s 
good 

('ase 2 A does not contain the minimal elemen S~mdarly ~t ~s proved that 
there exists mfimte C C A such that (Vx ~ A ) ( ~ y  ~ C)v  < x and ff x, y, u, v ~ C 
and x< .~ ,  u < v  then [x ,y)  and [u. v) are n-equwalent  Let b, c f f C  and b < c  
Then A ~s n-equw0ient  to [b,c)o)*+{x c ~<x} and A ~s good 

Lemma 14.t. Every complete chain ts good 

Pioof. Let A be a complete chain F o r x ,  y ~ A  let x ~ y  l f f x = y  o r x / y  and 
[ x , y ) U [ v , x )  is quasi-good The introduced relanon Is an eqmvalence relatmn 
Evmy .~ ={y  x ~ y} is convex, quas~-good and good Let A = {f x E A} be 
ordered as follows .f < )7 -= r < y / i  is a dense chain If .4 Is one-element  Lemma 
14 4 Is proved Suppose (reductm ad absurdum) A is not one-element For £ < 37 let 
F(.f, )7) be a mmlmal subset of M such that every :? E (f. f )  is n-eqmvalent  to some 
B ~ F(~, 37) Let F = F(a, ~) have the minimal possible power Then U{z? ti < ~ < 
t3} is n-equwalent  to an F-dense  chain and is quasz-good l'hls contradlct~ to 
denstt~ of ft. Lemma 14 4 Js proved 

Theorem 1~ 1 is proved 

Theoreza 14.2. Th M l~ dectdable 

Proof. We assume ~he kt,owledge of [12] Let n />  2 We ~,ay that n- type t i s / -good  
(r-good) ff t . ( A )  : t Impl.es A l= :Ix Vy (x <~ y)  (A t = :Ix Vy (y ~< ~c)) The predi- 
cates " l -good"  and " r -good"  are effectwe Let S,, be the least set of n- types such 
that 

(J) n-type of one-element chains belongs to S., 
(2) if s,t E S. and either s is r -good or t Is / -good then s + n t E S., 
(3) ~ s ES,, and s 1~ e~ther / -good or r-good then to.(~), t o : ( s ) E  S., 
(4) ~t X C %, and every s E X ts /-good and r-good then or. (X)  E S,, 
It 's easy to see that So is the ~et of n-type~ of M and $,, effectwely depends on n 

So Th M is demdaule 

Lemma 14 2 and Theorems 14 1 and 14 2 imply 

Theo "era 1,1.3. Th K~, t~ dectdable 
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15. Adding one-place predicates 

Let L,. be the weak monadlc  second o rde r  language whose non-logwal constant .  

are "' < "  and the one-place  predica te  symbol~ P, , P,., Let K., be the class o ~ 

such L , . -models  A that L,,qeductmn ot A is a comple te  chain Let K;, be the clas ', 

of such models  A ~ K,. that A satisfies the following axioms 

V{P,('~) l < ~ t < ~ m }  and 
P , (x)  D --nP~(x) whine 1 ~<t <1  ~ m  

(In o ther  winds  A ~ Vx 3T tP, (x))  

Let Th K,n (respectively Th K',)  be the k,. ,-theory of Ko, (resp K',) 

Lemma 15.1. Th K,,, ts uatformly on m reducible to Th K;, ~,here :~ = 2" 

Proof. Clear  

Theorem 15.I. Th K~, :~ umformly on n reduced to Th Ko 

Proof.  The  following abbrevmttons  are use 

(,) y = x 

In) y = 

(ill) R,(x,)fm { 

~for  ~ < y  & - n 3 z ( x < ~  < .y )  

v x  = y & ( V u  > ~ ) 3 z  (x < z  < u ) .  

for y < r & - n 3 z  (y < z  < x )  

v ,c = y & ( V u  < ~ ) 3 z  (u < z  <,~).  

X1 ~ X / ,  

~x.. x , [ A { x , < x + = x , ~ ,  l ~ z < l  & x , : x , ~ ] .  
:~x.~ v. A { x , < x , ~ = x , ~ ,  1 - < l < n } .  

l | / = l ,  
ff 1 < ] < a, 
ff / = n 

Let  13 be an L,,-sentence and /3' be obta ined  from /3 by 
(1) the restriction of quantlfiers by x = x ~ and 
(2) the replacing of evmy P, by R, 

Let a = ( / 3 '&  =Ix (x = x- ) )  

Lemma 15.2. 13 has a model m K" 1ff a has a model m K. 

"roof .  Let  A ~ K , ,  anti A l = a  Let A ' - ~ { x E A  x = x - }  A '  Is complete  The 

def inmons P,(x)-= R , ( x )  turn A '  to an L . - m o d e l  sansf~mg /3 

Let B E K"  and B I =/3 Let A be the ordma~ sum E/Ch b ~ B} ot cham'~ G, 
which are defined as follows Let  B ~ P, (b) If x < x + let C. = ,  + o9" + co (whine z 

denotes  a chain containing exactly t e lements)  If ~¢ = ~¢~ let C,, = z + ~o ~ I~ is easy 

to check that A is comple te  and A t = o 
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B e c a u s e  /3 Is an a r b i t r a r y  f o r m u l a  o f  L,,, L e m m a  15 2 t m p h e s  T h e o r e m  15 1 

F r o m  T h e o r e m  14 3, T h e o r e m  15 I ~nd  L e m m a  15 1 w e  o b t a i n  

T h e o . e m  15.2. Th  K,,  ts u n t f o r m l y  d e o d a b l e  on  m 
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