MONADIC THEORY OF ORDER AND TOPOLOGY, 1

BY
YURI GUREVICH

Abstract

We deal with the monadic theory of linearly ordered sets and topological spaces, disprove two of Shelah's conjectures and prove some more results. In particular, if the Contınuum Hypothesis holds, then there exist monadic formulae expressing the predicates " X is countable" and " X is meager" in the real line and in Cantor's Discontinuum.

Introduction

The pure monadic language has two sorts of variables: for points and for sets of points. Its atomic formulae have the form $x_{t} \in X_{\text {. }}$. The rest of its formulae are built up from the atomic ones by means of the ordinary propositional connectives and quantifiers, both for point and set variables. The monadic language of order is obtained from the pure monadic language by adding a new point predicate " $<$ " (so the new atomic formulae have the form $x_{i}<x_{1}$). The monadic topological language is obtained from the pure monadic language by adding the closure operation (so the new atomic formulae have the form $X_{1}=\bar{X}_{y}$). Formulae in the latter language will be called topological.

For the sake of brevity, linearly ordered sets will be called chains. The monadic theory of a chain M is the theory of M in the monadic language of order when the set variables range over all subsets of M. The monadic theory of a topological space U is the theory of U in the monadic topological language when the set variables range over all subsets of U. A chain M can be regarded as a top. space. The monadic theory of this space is easily interpretable in the monadic theory of the chain M.

A short survey of results concerning the monadic theory of chains can be found in [12]. The monadic theory of topology was studied in [3]. The present
paper and its forthcoming continuation [5] are closely connected with [12]. We generalize Shelah's results, prove some of his conjectures, disprove several of the others and prove some more results. Some of the results are announced in [4] and [7].

We will now summarize the contents of the present paper. In the course of this summary we will have to mention some results which will be proved in [5] and [6].

Recall that a subset X of a top. space U is called meager (in U) iff it is a union of $\leqq \boldsymbol{N}_{0}$ nowhere dense sets. Otherwise X is of the second category (in U). Below, c is the cardinality of the continuum. We say that X is pseudo-meager in U iff it is a union of $<c$ nwd sets. Otherwise X is of the third category. X is hereditarily of the third category iff each perfect subset of X is of the third category.

Assuming

Shelah interpreted the true arithmetic (i.e. the first order theory of the standard model of arithmetic) in the monadic theory of the real line (see theorem 7.10 in [12]). Clearly ($*$) follows from the Continuum Hypothesis (CH). (*) follows also from Martin's Axiom (see [10]). It is well known that $(*)$ cannot be proved in ZFC.

Theorem 7.10 in [12] can be generalized as follows.

Theorem 1. The true arithmetic is interpretable in the monadic theory of the class of top. spaces which are dense, T_{3}, first countable, of cardinality c, and hereditarily of the third category.

In particular, the true arithmetic is interpretable in the monadic (topological) theory of Cantor's Discontinuum if $(*)$ holds. Assuming $V=L$ we can replace the true arithmetic by the full second order theory of c in Theorem 1. For a detailed proof of Theorem 1 in both its variants see [5], though most of the proof is given here in Sections 1-5.

The main results of the present paper concern expressibility. Let K be the class of top. spaces described in Theorem 1. Let $\mathrm{S} K=\{U: U \in K$ and U is separable\}. We say that a top. space U is quasi-separable iff for each non-empty open $G \subset U$ there exists a non-empty open separable $G^{\prime} \subset G$. Let QSK $=$ $\{U: U \in K$ and U is quasi-separable\}. If (*) holds then the real line and Cantor's Discontinuum belong to SK .

Theorem 2 (see §6). The predicate " $2^{|x|} \leqq c$ " is expressible by a top. formula in SK .

Theorem 3 (see §6). Assume $2^{\kappa}<2^{c}$ for each $\kappa<c$. Then the predicate $"|X|=c "$ is expressible by a top. formula in SK.

Corollary 4 (Martin's Axiom). The predicate " $|X|=c$ " is expressible in SK.

Corollary $5(\mathrm{CH})$. The predicate " X is at most countable" is expressible in SK.

Corollary 5 disproves Conjecture 7G in [12].
Theorem 6 (see §7). Assume that c is regular, and $2^{\kappa}<2^{c}$ for each $\kappa<c$. Then the predicate " X is of the third category" is expressible by a top. formula in SK.

Theorem 7 (see §7). Assume Martin's Axiom. Then the predicate " X is meager" is expressible by a top. formula in QSK.

Corollary $8(\mathrm{CH})$. The predicate " X is meager" is expressible in $\mathrm{QS} K$.
Corollary 5 gives the strongest result in a certain sense. According to $\S 8$, the predicate " X is at most countable" is not expressible in QSK even in the compact case. Neither " X is finite" nor "The space is compact" is expressible in SK even in the locally compact case. " X is finite" is easily expressible in the compact case. Finiteness and compactness are easily expressible in the monadic theory of chains. Under some set-theoretic assumptions" X is countable" is expressible in countably complete chains (see [5]) which implies categoricity and finite axiomatizability of the real line in monadic logic.

Modest spaces are defined in $\S 2$. A chain M is perfunctorily n-modest iff it has no jumps and for every everywhere dense subsets X_{1}, \cdots, X_{n} of M there exists a perfect $Y \subset M$ without jumps such that $Y \subset X_{1} \cup \cdots \cup X_{n}$ and each $X_{i} \cap Y$ is dense in Y. Cf. Remark 2 on page 409 in [12]. M is n-modest iff each subchain of M without jumps is perfunctorily n-modest. M is modest iff it is n-modest for every n. This paper was almost finished when I noticed that modesty plays a fundamental role in the monadic theory of rational chain. In discussions with Shelah it was cleared up that modesty plays a fundamental role in the monadic theory of all short (embedding neither ω_{1} nor ω_{1}^{*}) chains.

Theorem 9. A chain is monadically equivalent to (i.e. has the same monadic theory as) the rational chain Q iff it is dense, without endpoints, short, and modest.

Theorem 9 generalizes Theorem 6.2.B and 6.3 in [12] and has essentially the same proof. By [11], the monadic theory of Q is decidable.

Corollary 10. The monadic theory of short modest chains is decidable.
The proof of Theorem 9 really gives a kind of an elimination of quantifiers. In particular, for each sentence F in the monadic theory of Q there exists an n such that n-modesty decides F in the theory of dense short chains without endpoints. Together with a chain variant of Theorem 2.7 below this fact gives

Theorem 11. Assume (*). The monadic theory of Q is not finitely axiomatiz able in monadic logic (i.e. there exists no sentence F in the monadic theory of Q such that each chain satisfying F is monadically equivalent to Q).

Theorem 11 disproves Conjecture 03 in [12].
Let the modest theory of a chain M be the theory of M in the monadic language of order when the set variables range over the modest subchains of M which remain modest after adding an arbitrary countable subset of M.

Theorem 12 (Gurevich and Shelah). The modest theory of real line is decidable and coincides with that of any complete short chain without jumps and endpoints satisfying the following modest axiom $\exists X \forall y(y \in \bar{X})$.

Theorem 12 generalizes Theorem 6.5 in [12] and can be proved by methods of [12]. We give a detailed proof of Theorems 9,11 and 12 in [6].

Shelah noticed that assuming CH it is possible to interpret the true arithmetic not only in the monadic theory of the real line R but also in the monadic theory of each non-modest subchain of R. This gives rise to

Theorem 13 (see §9). Assume CH. For each $n \geqq 1$, true arithmetic is interpretable in the monadic theory of the class of first countable T_{3} space of cardinality c which are not n-modest.

Corollary $14(\mathrm{CH})$. The true arithmetic is interpretable in the monadic theory of each short chain which is not modest.

Corollaries 10 and 14 form a dichotomy.
Assuming $V=L$ we can replace the true arithmetic by the full second order theory of c in Theorem 13 and Corollary 14 (see [5]). For each $n \geqq 1$ let K_{n} be the class of top. spaces described in Theorem 13. Let SK_{n} (respectively QSK) be the class of separable (resp. quasi-separable) spaces belonging to K_{n}. Using §9 it is easy to check

Theorem $15(\mathrm{CH})$. Corollaries 5 and 8 remain true if SK and QSK are replaced by SK_{n} and $\mathrm{QS} K_{n}$ respectively.

By Theorem 6.2 and 6.3 in [12] the predicates " X is countable" and " X is meager" are not expressible in the monadic theory of modest chains.
At an earlier stage of the present work I conjectured that, in the case of the real line R, no top. formula discriminates between subsets of cardinality κ and subsets of cardinality λ if $2^{\kappa}=2^{\lambda}$. This conjecture fails (Magidor and Shelah) in the standard Cohen model for blowing c to ω_{3} (see the end of $\$ 6$).

I am deeply indebted to Saharon Shelah for his criticism and encouragement. I am grateful to Shalom Lappin for helping me with the English of this paper.

§0. Terminology and notation

[8] is used as the source of set-theoretic terminology and notation, but $X \subset Y$ is consistent with $X=Y$ here and the power set of X is denoted by $\operatorname{PS}(X)$. Additionally $\Sigma\left\{X_{i}: i \in I\right\}$ denotes $\cup\left\{X_{i}: i \in I\right\}$ in the case that $\left\{X_{i}: i \in I\right\}$ is disjoint, c is the cardinality of the continuum, and $\exp \kappa=2^{\kappa}$.
[9] is used as the source of topological terminology and notation. U denotes the top. space in which we work. $A, B, C, D, E, W, X, Y, Z$ are arbitrary point sets i.e. subsets of $U . G$ and H are non-empty open point sets. cl $X=\bar{X}, \operatorname{der} X$ is the set of limit points of X.
We deviate from [9] in using the notion of density. Here X is dense iff $X \subset \operatorname{der} X, X$ is dense in Y iff $Y \subset \operatorname{cl}(X \cap Y), X$ is nowhere dense in Y iff $Y-\operatorname{cl}(X \cap Y)$ is dense in Y, X is everywhere dense iff X is dense in U, X is nowhere dense iff X is nowhere dense in U. "Everywhere dense" and "nowhere dense" are abbreviated as "ewd" and "nwd" respectively.
We define:
$X \subseteq Y$ iff $X-Y$ is nwd,
$X \approx Y$ iff $X \subseteq Y$ and $Y \subseteq X$, and
$X<Y$ iff $X \subseteq Y$ and $Y-X$ is ewd.
We say that a top. formula $F\left(X_{1}, \cdots, X_{n}\right)$ holds in G iff $G \vDash F\left(G \cap X_{1}\right.$, $\cdots, G \cap X_{n}$). For example " $X \subset Y$ in G " means that $G \cap X \subset G \cap Y$. We define the domain of $F\left(X_{1}, \cdots, X_{n}\right)$ as do $F\left(X_{1}, \cdots, X_{n}\right)=\cup\left\{G: F\left(X_{1}, \cdots, X_{n}\right)\right.$ holds in $G\}$. For example do $(X \subset Y)=\cup\{G: G \cap X \subset G \cap Y\}$.
We use the term "regular" as a synonym of " T_{3} ". Below U is dense, regular, and first countable. The last property means that for each point $p \in U$ there exists a countable basis of neighbourhoods of p. In Sections 3-7 we also assume that U is of cardinality c and hereditarily of the third category.
"WLOG" and "nbd" abbreviate "without loss of generality" and "neighbourhood" respectively.

§1. Almost disjoint division

We work in a top. space U which is dense, regular, and first countable.
Definition 1.1. A point set $X \subset U$ is called Cantor (in U) iff X is perfect (i.e. $X=\operatorname{der} X \neq 0$) and nowhere dense. $\mathrm{Ca}(X)=\{Y: Y \subset X$ and Y is Cantor in the subspace $X\}, \mathrm{SCa}(X)=\{Y: Y \in \mathrm{Ca}(X)$ and Y is separable $\}$.

The following theorem generalizes the statement (*) on page 413 in [12]. We deal with a meager subset and use first countability instead of second countability.

Theorem 1.1. Let $\bigcup_{n<\omega} X_{n} \subset X$ where each X_{n} is ewd. Let $A \subset U-X$ be meager. Then there exists a family $S \subset \mathrm{SCa}(U)$ of cardinality c such that:
(1.1) each X_{n} is dense in each $Y \in S$,
(1.2) $Y \cap Z \subset X$ for every different $Y, Z \in S$, and
(1.3) each $Y \in S$ is disjoint from A.

Proof. Let $A=\cup A_{n}$ where each A_{n} is nwd. Let $f:\{0,1\} \times \omega \times \omega \rightarrow \omega$ be one-one and onto, and $\left(g n, h n, h^{\prime} n\right)=f^{-1}(n)$. Let s and t range over the finite sequences of natural numbers, lh s be the length of $s . s$ is regarded as a function from $\mathrm{lh} s$ to $\omega . t=s^{\wedge} n$ means that t extends s by $t(\mathrm{lh} s)=n$.

Lemma 1.2. There exist open sets $G(s)$ and points $p(s)$ such that:
(1.4) $\bar{G}(s) \subset U-\bar{A}_{\mathrm{ih} s,} \bar{G}\left(s^{\wedge} n\right) \subset G(s)$ and $\bar{G}\left(s^{\wedge} m\right) \cap \bar{G}\left(s^{\wedge} n\right)=0$ if $m \neq n$;
(1.5) $p(s) \in G(s), p\left(s^{\wedge} n\right) \in X_{n n}$ and $\lim p\left(s^{\wedge} n\right)=p(s) ;$ and
(1.6) If $p=\lim p\left(s_{n}\right) \notin X$ then there exists a strictly increasing sequence $t_{0} \subset t_{1} \subset \cdots$ such that $p \in \cap \bar{G}\left(t_{n}\right)$.

Proof of Lemma 1.2. Form $G(0)=U-\bar{A}_{0}$ and pick $p(0) \in G(0)$. Suppose that $G(t)$ and $p(t)$ are chosen for every t with $\mathrm{lh} t \leqq l$ and that the relevant cases of (1.4) and (1.5) hold. Let $\operatorname{lh} s=l$ and $B_{0} \supset B_{1} \supset \cdots$ be a nbd basis for $p(s)$. Pick consecutively

$$
p\left(s^{\wedge} n\right) \in G(s) \cap B_{n} \cap X_{n n}-\left(\bar{A}_{l+1} \cup\{p(s)\} \cup\left\{p\left(s^{\wedge} m\right): m<n\right\}\right)
$$

Using the regularity of U, choose consecutively disjoint $G\left(s^{\wedge} n\right)$ containing $p\left(s^{\wedge} n\right)$, and $H\left(s^{\wedge} n\right)$ including $U-G(s), \bar{A}_{1+1}, p(s),\left\{p\left(s^{\wedge} m\right): m \neq n\right\}$ and $\cup\left\{\bar{G}\left(s^{\wedge} m\right): m<n\right\}$. Therefore, (1.4) and (1.5) are proved.

Now we prove (1.6). Suppose that $p=\lim p\left(s_{n}\right) \notin X$. Then every $N_{1}=$ $\left\{s_{n} \mid(i+1): i<\operatorname{lh} s_{n}\right\}$ is finite.

In the other case take the minimal i with infinite N_{1}. Then there exists a subsequence $s_{n_{0}}, s_{n_{1}}, \cdots$ such that $s_{n_{0}}\left|i=s_{n_{1}}\right| i=\cdots$ and $s_{n_{0}}(i)<s_{n_{1}}(i)<\cdots$. Clearly $\lim p\left(s_{n_{k}}\right)=p\left(s_{n_{0}} \mid i\right) \in X$.

By König's Lemma there exists a sequence $t_{0} \subset t_{1} \subset \cdots$ such that $t_{1} \in N_{1}$. Clearly $\lim p\left(t_{n}\right)=p$. Lemma 1.2 is proved.
We continue the proof of Theorem 1.1. Let $S=\left\{\bar{Y}_{\xi}: \xi \in{ }^{\omega} 2\right\}$ where

$$
Y_{\xi}=\{p(s): \forall k(k<\operatorname{lh} s \rightarrow g(s(k))=\xi(k))\} .
$$

Note that $\lim _{\mu_{\rightarrow \infty}} p\left(s^{\wedge} f(\xi(\operatorname{lh} s), i, j)=p(s)\right.$. Hence Y_{ξ} is dense and X_{1} is dense in Y_{ξ}.
Y_{ξ} is nwd. For, if $p(s) \in G$ then there exists n such that $G\left(s^{\wedge} n\right)$ is disjoint from Y_{ξ} and intersects G.

So $S \subset \mathrm{SCa}(U),|S|=c$ and (1.1) holds.
We now prove (1.3). Let $p=\lim p\left(s_{n}\right) \in Y_{\xi}-X$. WLOG, the sequence s_{0}, s_{1}, \cdots is strictly increasing and $p \in \cap \bar{G}\left(s_{n}\right)$. Now use (1.4).

We prove (1.2) by reduction to absurdity. Let $p \in \bar{Y}_{\xi} \cap \bar{Y}_{\eta}-X$ where $\xi m \neq \eta m$. Then $p=\lim p\left(s_{n}\right)=\lim p\left(t_{n}\right)$ where $p\left(s_{n}\right) \in Y_{\xi}$ and $p\left(t_{n}\right) \in Y_{n}$. WLOG, the sequences s_{0}, s_{1}, \cdots and t_{0}, t_{1}, \cdots are strictly increasing and $p \in$ $\bar{G}\left(s_{m+1}\right) \cap \bar{G}\left(t_{m+1}\right)=0$.

Theorem 1.1 is proved.
Corollary 1.3. If $|Y|<c$ and Y_{0}, Y_{1}, \cdots are dense in Y, then there exists a countable $C \in \mathrm{Ca}(Y)$ such that $C \subset \cup Y_{n}$ and each Y_{n} is dense in C.

Proof. There exists a countable $X \subset Y$ such that $X \subset \cup Y_{n}$ and each Y_{n} is dense in X (use first countability). By Theorem 1.1 there exists $S \subset \mathrm{Ca}(\bar{X})$ such that $|S|=c$, each Y_{n} is dense in each $Z \in S$ and S is disjoint on $Y-X$. Hence there exists $Z \in S$ disjoint from $Y-X$. Build $C=Y \cap Z$.

In the following lemma we allow $H_{4}=0$.
Lemma 1.4. For each family $\left\{G_{i}: i \in I\right\}$ there exists a disjoint family $\left\{H_{1}: i \in\right.$ $I\}$ such that $H_{\mathrm{t}} \subset G_{\mathrm{t}}$ and $\Sigma H_{\mathrm{t}} \approx \cup G_{\mathrm{t}}$.

Proof. Consider functions f such that do $f=I$, $f i$ is an open subset of G_{i} and the range of f is disjoint. Take f with maximal $\Sigma f i$.

Lemma 1.5. If $\left\{H_{\alpha}: \alpha<\kappa\right\}$ is an open basis of U, and for each $\alpha<\kappa$, $\left|H_{\alpha} \cap X\right| \geqq \lambda \geqq \kappa$, then X can be partitioned into λ disjoint ewd parts.

Proof. WLOG, $|X|=\lambda$. Let $f: \kappa \times \lambda \rightarrow \lambda$ be one-one and onto, and $(l \alpha, r \alpha)=f^{-1}(\alpha)$. Pick $x_{\alpha} \in H_{l \alpha} \cap X-\left\{x_{\beta}: \beta<\alpha\right\}$. Build $X_{\alpha}=\left\{x_{f(\beta, \alpha)}: \beta<\kappa\right\}$.

§2. Modesty and Shelah's wonder sets

Definition 2.1. A subset D of U is κ-modest iff $\kappa=0$ or $\kappa>0$ and for every X and $\left\{X_{\alpha}: \alpha<\kappa\right\}$, if X is a dense subset of D and each X_{α} is dense in X, then there exists $C \in \mathrm{Ca}(D)$ such that $C \subset X$ and each X_{α} is dense in. C.

For each n, the predicate " D is n-modest" is expressible by a top. formula.
Lemma 2.1. If $1 \leqq \kappa \leqq \boldsymbol{N}_{0}, D$ is κ-modest, X and $\left\{X_{\alpha}: \alpha<\kappa\right\}$ are as above, then there exists a countable $C \subset \mathrm{Ca}(D)$ such that $C \subset X$ and each X_{α} is dense in C.

Proof. Using first countability choose a countable dense $Y \subset X$ such that each X_{α} is dense in Y.

Lemma 2.2. If each $C \in \mathrm{SCa}(D)$ is either of cardinality $<c$ or meager in \bar{C}, then D is $\boldsymbol{\kappa}_{0}$-modest.

Proof. Let $X_{0}, X_{1}, \cdots \subset X \subset D, X$ be dense, and each X_{n} be dense in X. By Theorem 1.1 there exists $C_{0} \in \operatorname{SCa}(\bar{X})$ such that each X_{n} is dense in $C_{0} . C_{0} \cap D$ is Cantor in D. If it is of cardinality $<c$ then, by Lemma 1.3 , there exists $C \in \mathrm{Ca}\left(C_{0} \cap D\right) \subset \mathrm{Ca}(D)$ such that $C \subset X$ and each X_{n} is dense in C. If it is meager in C_{0}, then $C_{0} \cap D-X$ is meager in C_{0} and, by Theorem 1.1, there exists $C_{1} \in \mathrm{Ca}\left(C_{0}\right)$ such that C_{1} is disjoint from $C_{0} \cap D-X$ and each X_{n} is dense in C_{1}. Let $C=C_{1} \cap D . C$ is Cantor in $D, C \subset X$, and each X_{n} is dense in $C . \square$

Suppose that $|U|=c$. (According to [1] each first countable compact top. space is of cardinality c.) Then U has an open base of cardinality $\leqq c$ (use first countability) and $|\mathrm{SCa}(U)|=c$.

Lemma 2.3. Suppose that for each $G, G \cap X$ is of the third category. Then there exists $E \subset X$ such that
(i) for each $G,|E \cap G|=c$, and
(ii) each separable Cantor subset of E is of cardinality $<c$.

Proof. Let $\left\{H_{\alpha}: \alpha<c\right\}$ be an open basis of U where each H_{α} occurs c times. Let $\left\{Y_{\alpha}: \alpha<c\right\}=\mathrm{SCa}(U)$. Pick $p_{\alpha} \in H_{\alpha} \cap X-\bigcup_{\beta<\alpha} Y_{\beta}-\left\{p_{\beta}: \beta<\alpha\right\}$. Then $E=\left\{p_{\alpha}: \alpha<c\right\}$ is the desired set.

Let us fix $D \subset U$. Let C range over $\mathrm{Ca}(D)$ and $P \subset \operatorname{PS}(D)$.

Definition 2.2. C is P-good iff there exists $A \in P$ such that $C \subset A . C$ is P-bad iff each P-good C^{\prime} is nwd in C. C is very P-bad iff there exists no $C^{\prime} \subset C$ which is P-good.

Note that if C is not P-bad then there exists G such that $C \cap G \neq 0$ and $C \cap \operatorname{cl}(C \cap G)$ is P-good.

Definition 2.3. W is a wonder set for P iff $W \subset U-D$ and for each separable C,
(i) $|\bar{C} \cap W|<c$ if C is P-good, and
(ii) $\bar{C} \cap W \neq 0$ if C is P-bad.

Lemma 2.4 (cf. lemma 7.4 in [12]). Suppose that for every separable $C, \bar{C}-D$ is of the third category in \bar{C}. Then there exists a wonder set for P.

Proof. First, note that if C_{1} is P-good and C_{2} is P-bad, then \bar{C}_{1} is nwd in \bar{C}_{2}. Because, if \bar{C}_{1} is dense in $\bar{C}_{2} \cap G$, then $\bar{C}_{2} \cap G \subset \bar{C}_{1}$ and $C_{2} \cap G=$ $D \cap \bar{C}_{2} \cap G \subset D \cap \bar{C}_{1}=C_{1}$.

Let $\operatorname{SCa}(D)=\left\{C_{\alpha}: \alpha<c\right\}$. If C_{α} is P-bad pick $p_{\alpha} \in\left(\bar{C}_{\alpha}-D\right)-\cup\left\{\bar{C}_{\beta}: \beta<\alpha\right.$ and C_{β} is P-good $\}$. Then $W=\left\{p_{\alpha}: C_{\alpha}\right.$ is P-bad $\}$ is the desired set.

Suppose that U is hereditarily of the third category.
Lemma 2.5. If D is 1 -modest and E is perfect, then $E-D$ is of the third category in E.

Proof. Suppose the contrary: $E-D=U\left\{X_{\alpha}: \alpha<\kappa\right\}$ where $\kappa<c$ and each X_{α} is nwd in E. Let $Y=E-\cup \bar{X}_{\alpha}, U$ is hereditarily of the third category hence Y is dense. As D is 1 -modest there exists a countable $C \subset Y . \bar{C}=$ $C+\cup\left(\bar{C} \cap \bar{X}_{\alpha}\right)$ and each $\bar{C} \cap \bar{X}_{\alpha}$ is nwd in C. So \bar{C} is pseudo-meager, which is impossible.

Theorem 2.6. If D is 1 -modest there exists a wonder set for P.
Proof. See Lemmas 2.4 and 2.5 .
Clearly R is not 1 -modest.
Theorem 2.7. Assume that the real line R is of the third category. Then for each $n \geqq 1$ there exists an ewd $X \subset R$ which is n-modest but not $(n+1)$-modest.

Proof. Let $D \subset R$ be countable and ewd. Partition D into $n+1$ disjoint and ewd parts: $D=D_{0}+\cdots+D_{n}$. Let $S_{0}=\{E: E \in \mathrm{Ca}(R)$ and there exists an i such that E is disjoint from $\left.D_{1}\right\}$, and $S_{1}=\left\{E: E \in \mathrm{Ca}(R)\right.$ and each D_{1} is dense in E \}.

Imitating the construction of Shelah's wonder set one can build W such that:
(i) $|E \cap W|<c$ if $E \in S_{0}$, and
(ii) $E \cap W \neq 0$ if $E \in S_{1}$.

Build $X=D+W . X$ is not $(n+1)$-modest. For, there exists no $E \in \mathrm{Ca}(X)$ such that $E \subset D$ and each D_{1} is dense in E.

We prove now that X is n-modest. Let Y and Y_{0}, \cdots, Y_{n-1} be subsets of X such that Y is dense and each Y, is dense in Y. We look for $E \in \mathrm{Ca}(X)$ such that $E \subset Y$ and each D_{1} is dense in E.

WLOG, there exists $f: n \rightarrow(n+1)$ such that for each $i<n, Y_{1} \subset D_{f}+W$.
We prove this as follows. There exist G_{0} and j such that $G_{0} \cap Y \neq 0$ and $Y_{0} \cap\left(D_{1}+W\right)$ is dense in $G_{0} \cap Y$. There exist $G_{1} \subset G_{0}$ and k such that $G_{1} \cap Y \neq 0$ and $Y_{1} \cap\left(D_{k}+W\right)$ is dense in $G_{1} \cap Y$. And so on. Now replace Y and Y_{0}, Y_{1}, \cdots by $G_{n} \cap Y$ and $Y_{0} \cap\left(D_{1}+W\right), Y_{1} \cap\left(D_{k}+W\right), \cdots$ respectively.

Hence there exists an i such that for each $j<n, Y, \subset X-D_{1}$. WLOG, $i=0$ and $Y \subset X-D_{0}$. By Theorem 1.1 there exists $S \subset \mathrm{Ca}(X)$ such that $|S|=c$, each $Y_{\text {, }}$ is dense in each $E \in S$, and S is disjoint on $X-Y$. There exists $E_{0} \in S$ which is disjoint from D_{0} (since D_{0} is countable). By (i), $\left|E_{0}\right|<c$. By Lemma 1.3 there exists $E \subset \mathrm{Ca}\left(E_{0}\right)$ such that $E \subset Y$ and each $Y_{\text {t }}$ is dense in E.

§3. Representation of a family of point sets

In this section a rather general family P of point sets is described by a top. formula (with a wonder set for P among the parameters) in such a way that the elements of P satisfy this formula and every X satisfying this formula coincides locally with elements of P.

As before we work in a top. space U which is dense, regular, and first countable. Until the end of $\$ 7$ we also suppose that U is of cardinality c and hereditarily of the third category.

Select a 2 -modest D. Let C range over $\mathrm{Ca}(D)$ and $X \subset D$.
Definition 3.1. Let $W \subset U-D . C$ is W-good iff \bar{C} is disjoint from $W . X$ is W-bad with witnesses Y and Z iff X is dense, Y and Z are dense in X, and there exists no W-good $C \subset X$ such that Y and Z are dense in $C . X$ is very W-bad iff there exists no $C \subset X$ which is W-good.

Let $P \subset P S(D), A$ range over P, and W be a wonder set for P.
Lemma 3.1. C is very \boldsymbol{P}-bad iff it is very \boldsymbol{W}-bad.
Proof. If C is not very W-bad take a W-good $C_{0} \subset C$. Select a separable
$C_{1} \subset C_{0}$. According to Definition 2.3, C_{1} is not P-bad. Hence there exists a P-good $C_{2} \subset C_{1}$. So C is not very P-bad.

If C is not very P-bad take a P-good $C_{0} \subset C$. Select a separable $C_{1} \subset C_{0}$. According to Definition $2.3\left|\bar{C}_{1} \cap W\right|<c$. Use Theorem 1.1 to choose a W-good $C_{2} \subset C_{1} . C$ is not very W-bad.

Lemma 3.2. If C is W-bad (with some witnesses), then it is P-bad.
Proof. Let Y, Z witness that C is W-bad. For reduction to absurdity suppose that C is not P-bad. Then there exists G such that $C \cap G \neq 0$ and $C_{0}=C \cap \mathrm{cl}(C \cap G)$ is P-good. C_{0} is W-bad with witnesses Y and Z. Using the 2-modesty of D take a countable $C_{1} \subset C_{0}$ such that Y, Z are dense in C_{1}. According to Definition 2.3, $\left|\bar{C}_{1} \cap W\right|<c$. Using Theorem 1.1 one can choose a W-good $C_{2} \subset C_{1}$ with Y, Z dense in C_{2} which contradicts the fact that C is W-bad with witnesses Y, Z.

Lemma 3.3. Suppose that P is disjoint, and X is dense and has no very P-bad subsets. Then for each G with $G \cap X \neq 0$ there exist $G^{\prime} \subset G$ and $A \in P$ such that $G^{\prime} \cap X \neq 0$ and A is dense in $G^{\prime} \cap X$.

Proof. Suppose the contrary. Then there exists G such that $G \cap X \neq 0$ and each A is nwd in $G \cap X$. Pick $x_{0}, x_{1}, \cdots \in G \cap X$ such that
(i) $x_{m} \in A$ and $m<n$ imply $x_{n} \notin A$, and
(ii) each $x_{m} \in \operatorname{cl}\left\{x_{n}: m<n\right\}$.

Using the 1 -modesty of D take $C \subset\left\{x_{n}: n<\omega\right\}$. C is very P-bad which contradicts the conditions of the lemma.

Select $D^{\prime \prime} \subset D$ and suppose that $\left\{A \cap D^{0}: A \in P\right\}$ is disjoint. For each Y let $Y^{\prime \prime}=D^{n} \cap Y$.

Lemma 3.4. Suppose that C^{0} has no very P-bad subsets and is dense in C. If C is P-bad, then it is W-bad with one of the witnesses in D^{0}.

Proof. Let g, h range over the non-empty open subsets of C. By virtue of Lemma 1.4 it is enough to prove that for each g there exists $h \subset g$ which is W-bad with one of the witnesses in $D^{\prime \prime}$. Select g. By Lemma 3.3 there exist $h \subset g$ and A which is dense in $h^{\prime \prime}$. Let $Y=h^{\circ} \cap A$ and $Z=h-A . Y$ and Z witness that h is W-bad. Because, let $C_{1} \subset Y \cup Z$ and Y, Z be dense in C_{1}. Using the 2-modesty of D take a countable $C_{2} \subset C_{1}$ with Y, Z dense in C_{2}. If C_{1} is W-good, then C_{2} is W-good. According to Definition 2.3, C_{2} is not P-bad. But C_{2} is P-bad.

Theorem 3.5. The following statements are equivalent:
(i) X has no W-bad subset with one of the witnesses in D^{0},
(ii) For every countable $C \subset X$, if C^{0} is dense in C, then $\cup_{A} \operatorname{do}(C \subset A)$ is dense in C, and
(iii) For each perfect $E \subset U$, if X^{0} is dense in $E \cap X$ then $E \vDash\left(\bigcup_{A} \operatorname{do}(E \cap X \subset A \cap E)\right.$ is ewd $)$.

Proof. (i) \rightarrow (iii). Without loss of generality $E=U$. For reduction to absurdity let $G \subset U-\bigcup_{A}$ do $(X \subset A)$. Then X^{0} is dense in G. By Lemma 3.3 there exist $G^{\prime} \subset G$ and A such that A is dense in $G^{\prime} \cap X^{0} \neq 0$. Let $Y=G^{\prime} \cap X^{0} \cap A$ and $Z=G^{\prime} \cap X-A$. Using the 2-modesty of D take $C \subset Y \cup Z$ such that Y and Z are dense in C. Now use Lemma 3.4 .

That (iii) \rightarrow (ii) is clear.
(ii) \rightarrow (i). Let $X_{1} \subset X$ be W-bad with witnesses $Y \subset D^{0}$ and Z. Take a countable $C \subset X_{1}$ such that Y and Z are dense in C. By Lemma 3.2 C is P-bad, hence $C \cap \operatorname{do}(C \subset A)=0$ for every A.

Let $\mathrm{St}^{\prime}\left(X, D, D^{0}, W\right)$ be a topological formula saying that $X \subset D$ and
(3.1) X has no W-bad subset, and
(3.2) If $Y \subset X^{0}, Z \subset D-X$, and Y, Z are dense in $Y+Z$, then Y and Z witness that $Y+Z$ is W-bad.

Lemma 3.6. Each $A \in P$ satisfies St^{\prime}.
Proof. By virtue of Lemma 3.2 A satisfies (3.1). If $Y \subset A^{0}, Z \subset D-A$, and Y, Z are dense in $Y+Z$, take $C \subset Y+Z$ with Y and Z dense in C. By Lemma 3.4, C is W-bad.

Theorem 3.7. (cf. lemma 7.7 in [12]). Suppose that X satisfies $\mathrm{St}^{\prime}, E \subset U$ is perfect, and X^{0} is dense in E. Then $E \vDash\left(\Sigma_{A} \operatorname{do}(E \cap X=A \cap E)\right.$ is ewd $)$.

Proof. Without loss of generality $E=U$. For reduction to absurdity let $G \subset U-\cup_{A} \operatorname{do}(X=A)$. By Theorem 3.5, there exist A and $G^{\prime} \subset G \cap$ $\operatorname{do}\left(X^{0} \subset A\right)$. Let $Y=G^{\prime} \cap X^{0}$ and $Z=G^{\prime} \cap A-X$. By (3.2), $Y+Z$ is W-bad. On the other hand, $Y+Z$ is included in A which has no W-bad subset.

Let $\operatorname{St}\left(X, D, D^{0}, W\right)$ say that $X \subset D$, and for each G there exists H such that $\mathrm{St}^{\prime}\left(H \cap X, D \cap H, D^{0} \cap H, H \cap W\right)$ holds in H, and $D \subset \operatorname{cl} X^{0}$. Let D be ewd.

Theorem 3.8. X satisfies St iff $X \subset D$ and $\Sigma \operatorname{do}(X=A)$ is ewd.
Proof is clear.

§4. Towers

Here we present a top. formula defining towers of point sets.
Recall that $X<Y$ iff $X-Y$ is nwd and $Y-X$ is ewd. Correspondingly $X<Y$ in G iff $X-Y$ is nwd in G and $Y-X$ is dense in G.

Definition 4.1. A quadruple $T=\left(D, D^{0}, D^{1}, W\right)$ is a tower iff it satisfies conditions (4.1)-(4.3) below where A, B range over $[T]=\left\{X: \operatorname{St}\left(X, D, D^{0}, W\right)\right\}$, $A^{\epsilon}=A \cap D^{\varepsilon}$ and $B^{\varepsilon}=B \cap D^{\varepsilon}$.
(4.1) D is 2-modest, $D^{0}+D^{1} \subset D, D^{0}$ and D^{1} are ewd, and $W \subset U-D$.
(4.2) $\operatorname{do}\left(A^{0}=B^{0}\right)+\operatorname{do}\left(A^{0} \cap B^{0}=0\right)$ is ewd, $\operatorname{do}\left(A^{1} \subset B^{1}\right) \cup \operatorname{do}\left(B^{1} \subset A^{1}\right)$ is ewd, and $\operatorname{do}\left(A^{0}=B^{0}\right) \approx \operatorname{do}\left(A^{1}=B^{1}\right) \approx \operatorname{do}(A=B)$.
(4.3) There exist no G and $P \subset[T]$ such that $P \neq 0$ and for each $A \in P$ there exists $B \in P$ such that $B^{1}<A^{1}$ in G.

Lemma 4.1. Suppose that (4.1) and (4.2) hold. Then (4.3) is equivalent to (4.3') There exist no G and W^{\prime} such that

$$
P^{\prime}=\left\{X: G \vDash \operatorname{St}\left(X, D \cap G, D^{0} \cap G, G \cap W^{\prime}\right)\right\} \neq 0
$$

and for each $X \in P^{\prime}$ there exist $A \in[T]$ and $Y \in P^{\prime}$ such that $A \cap G \approx X$ and $Y^{1}<X^{1}$ in G.

Proof. Suppose \neg (4.3). Pick $A_{0}, A_{1}, \cdots \in P$ such that $A_{0}^{1}>A_{1}^{1}>\cdots$ in G. By (4.2), $m<n$ implies $A_{m}^{0} \cap A_{n}^{0} \cap G \approx 0$. Let $X_{n}=\left(A_{n}^{0}-\cup_{m<n} A_{m}^{0}\right)+A_{n}^{1}$ and W^{\prime} be a wonder set for $\left\{X_{n} \cap G: n \in \omega\right\}$. $\neg\left(4.3^{\prime}\right)$ is proved.

Suppose $\neg\left(4.3^{\prime}\right)$. Pick $X_{0}, X_{1}, \cdots \in P^{\prime}$ and $A_{0}, A_{1}, \cdots \in[T]$ such that for each $n, A_{n}^{1}>A_{n+1}^{1}$ in G and $A_{n} \cap G \approx X_{n}$. Let $P=\left\{A_{n}: n \in \omega\right\}$. $\neg(4.3)$ is proved.

Corollary 4.2. The predicate " $\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$ is a tower" is expressible by a top. formula.

If $\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$ is a tower, then the elements of $\left\{X: \operatorname{St}\left(X, X_{1}, X_{2}, X_{4}\right)\right\}$ will be called storeys of this tower. In what follows $T=\left(D, D^{0}, D^{1}, W\right)$ is a tower, A and B range over the storeys of T, and $X^{\varepsilon}=D^{\varepsilon} \cap X$ if $X \subset D$ and $\varepsilon=0,1$.

Lemma 4.3. Suppose that $\cup\left\{G_{1}: i \in I\right\}$ is ewd. Given a family $\left\{A_{i}: i \in I\right\}$ of storeys one can find a disjoint family $\left\{H_{i}: i \in I\right\}$ and a storey B such that $H_{t} \subset G_{v}$, $\sum H_{1}$ is ewd and $B=A_{t}$ in H_{1}.

Proof. Use Lemma 1.4 to find appropriate H_{t} 's. Build $B=\Sigma\left(A_{1} \cap H_{t}\right)$.

Lemma 4.4. If P_{0} is a family of storeys and $P_{1}=\left\{A: B \in P_{0} \rightarrow B^{1}<A^{1}\right\} \neq 0$, then P_{1} has a minimal (according to \subseteq) element.

Proof. Suppose the contrary. By virtue of Lemma 4.3 there exists G such that for any $A \in P_{1}$ and $G^{\prime} \subset G, A$ is not minimal in G^{\prime}. By virtue of (4.3) it is enough to prove that for each $A \in P_{1}$ there exists $B \in P_{1}$ such that $B^{1}<A^{\prime}$ in G. Let $A \in P_{1} . A$ is not minimal in any $G^{\prime} \subset G$. Hence for each $G^{\prime} \subset G$ there exists B and $G^{\prime \prime} \subset G^{\prime}$ such that $B^{\prime}<A^{\prime}$ in $G^{\prime \prime}$. Now use Lemma 4.3.

Theorem 4.5. There exist an ordinal $h(T)$ (the height of T), a family $\left\{D_{\alpha}: \alpha<h(T)\right\}$ of T-storeys (a skeleton of T), and a non-empty open set $\operatorname{do}(T)$ (the domain of T) such that
(4.4) $\alpha<\beta<h(T)$ implies $D_{\alpha}^{1}<D_{\beta}^{1}$,
(4.5) For each $A, \Sigma\left\{\operatorname{do}\left(A=D_{\alpha}\right): \alpha<h(T)\right\}$ is dense in $\operatorname{do}(T)$, and
(4.6) If $\Sigma \operatorname{do}\left(A=D_{\alpha}\right)$ is dense in G for each A, then $G \subset \operatorname{do}(T)$.

Note. (4.5) is equivalent to
(4.5') For every A and $G \subset \operatorname{do}(T)$ there exist $G^{\prime} \subset G$ and α such that $A \approx D_{\alpha}$ in G^{\prime}.

Proof of Theorem 4.5. If $\left\{D_{\beta}: \beta<\alpha\right\}$ is already built let $P_{\alpha}=\{A$: for each $\beta<\alpha, D_{\beta}^{1}<A^{1}$ in $\left.U\right\}$. If $P_{\alpha} \neq 0$ let D_{α} be a minimal element in P_{α}. If $P_{\alpha}=0$ end the process and let $h(T)=\alpha$. Let $P(G)=\left\{A\right.$: for each $\alpha, D_{\alpha}^{1}<A^{1}$ on $\left.G\right\}$, $G_{0}=\cup\{G: P(G) \neq 0\}$, and do $T=U-\mathrm{cl} G_{0}$. By Lemma 4.3, $P\left(G_{0}\right) \neq 0$, hence do $T \neq 0$. (4.4) and (4.6) are clear. We check (4.5'). Choose A and $G \subset$ do T. $P(G)=0$ and (4.2) imply that there exist α and $G^{\prime} \subset G$ such that $A^{\prime}-D_{\alpha}^{1}$ is nwd in G^{\prime}. If α is the least possible such that this condition holds, then $D_{\alpha}^{1}-A^{1}$ is nwd in G^{\prime} by the construction of D_{α}. Hence $A^{1} \cap G^{\prime} \approx D_{\alpha}^{1} \cap G^{\prime}$ and by (4.2), $A \cap G^{\prime} \approx D_{\alpha} \cap G^{\prime}$.

§5. More about towers

Here we prove some auxiliary results which will be used later on.
If U is separable, then there exists a countable family $\left\{G_{n}: n \in \omega\right\}$ such that each G includes some G_{n}. In this case U is Suslin (i.e. each family of disjoint open subsets of U is at most countable) and for each ewd $X \subset U$ there exists a countable ewd $Y \subset X$. A separable chain is embeddable in the real line, hence it is second countable.

Lemma 5.1. If U is separable, then each tower is of height $<c^{+}$.

Proof. Let $\left\{D_{\alpha}: \alpha<h(T)\right\}$ be a skeleton of tower $T=\left(D, D^{0}, D^{1}, W\right)$. For each $\alpha<h(T)$ choose an ewd countable $X_{\alpha} \subset D^{0} \cap D_{\alpha}$. By (4.2), $X_{\alpha} \neq X_{\beta}$ if $\alpha \neq \beta$. So $|h(T)| \leqq c^{\aleph_{0}}=c$.

Definition 5.1. A tower T is exponential on E iff for each $X \subset E$ there exists a T-storey A such that $A \cap E \approx X$.

Lemma 5.2. Let $T=\left(D, D^{0}, D^{1}, W\right)$ be a tower. Suppose that T is exponential on D^{2} and for each $G,\left|D^{2} \cap G\right| \geqq \kappa \geqq \boldsymbol{N}_{0}$. Then $h(T) \geqq \exp \kappa$.

Proof. WLOG $\operatorname{do}(T)=U$ and $\left|D^{2}\right|=\kappa$. Because, there exist λ and $G \subset$ do T such that for each $G^{\prime} \subset G,\left|D^{2} \cap G^{\prime}\right|=\lambda$, and we can work in G.

Let $\left\{D_{\alpha}: \alpha<h(T)\right\}$ be a skeleton of T. By Lemma $1.5, D^{2}=\Sigma\left\{X_{\beta}: \beta<\kappa\right\}$ for some ewd X_{β} 's. Let $S=\{(\alpha, I): \alpha<h(T)$ and $I \subset \kappa$ and there exists G such that $D_{\alpha}=\Sigma\left\{X_{\beta}: \beta \in I\right\}$ in $\left.G\right\}$. For each I there exists α such that $(\alpha, I) \in S$. Hence $|S| \geqq \exp \kappa$. Each disjoint family of open subsets of U is of cardinality $\leqq \kappa$. Therefore, for each α there are at most κ different I 's such that $(\alpha, I) \in S$. Hence $\kappa \cdot|h(T)| \geqq|S| \geqq \exp \kappa$ and $h(T) \geqq \exp \kappa$.

Lemma 5.3. Suppose that ΣH_{1} is ewd. For each ilet $T_{i}=\left(D_{i}, D_{1}^{0}, D_{i}^{1}, W_{1}\right)$ be a tower in the subspace H_{1}. Then $T=\left(\Sigma D_{1}, \Sigma D_{1}^{0}, \Sigma D_{i}^{1}, \Sigma W_{i}\right)$ is a tower in U. If, for each i, T_{1} is exponential on $E_{t} \subset D_{t}$, then T is exponential on ΣE_{1}.

Proof. Lemma 5.3 is obvious.
Lemma 5.4. Suppose that D is 2-modest and for each $G,|D \cap G| \geqq \lambda \geqq \boldsymbol{N}_{0}$. Then there exists a tower $T=\left(D, D^{0}, D^{1}, W\right)$ with skeleton $\left\{D_{\alpha}: \alpha<h(T)\right\}$ such that $h(T) \geqq \lambda$ and $\left\{D^{\prime \prime} \cap D_{\alpha}: \alpha<h(T)\right\}$ is disjoint. Moreover, if $E \subset D, \lambda \geqq 2^{\kappa}$ and $\forall G \exists G^{\prime}\left(G^{\prime} \subset G\right.$ and $\left.\left|E \cap G^{\prime}\right| \leqq \kappa\right)$, then T can be chosen in such a way that $D^{0}+D^{1}$ is disjoint from E and T is exponential on E.

Proof. By virtue of Lemmas 1.4 and 5.3 we can suppose that for each G, $|D \cap G|=\lambda$ and $|E \cap G|=\kappa$. By Lemma 1.5, $D-E$ can be partitioned into λ disjoint ewd parts. Let $\left\{X_{\alpha}: \alpha<\lambda\right\}+\left\{Y_{\alpha}: \alpha<\lambda\right\}$ be the family of these parts. Let $\operatorname{PS}(E)=\left\{Z_{\alpha}: \alpha<\lambda\right\}$. Build $D_{\alpha}=X_{\alpha}+\Sigma_{\beta<\alpha} Y_{\beta}+Z_{\alpha}$. By Theorem 2.6 there exists a wonder set W for $\left\{D_{\alpha}: \alpha<\lambda\right\} . T=\left(D, \Sigma X_{\alpha}, \Sigma Y_{\alpha}, W\right)$ is the desired tower.

Recall that $X \subseteq Y$ iff $X-Y$ is nwd. Correspondingly, $X \subseteq Y$ in G iff $X-Y$ is nwd in G. Let $T=\left(D, D^{0}, D^{\prime}, W\right)$ be a tower with skeleton $\left\{D_{\alpha}: \alpha<h(T)\right\}$, and $X^{\varepsilon}=D^{\varepsilon} \cap X$.

Definition 5.2. $\quad T$ is stable iff for each tower $T^{\prime}=\left(E, E^{*}, E^{\prime}, W^{\prime}\right)$ with
$D^{0} \subset E$ there exists $X \subset D^{0}$ such that for each T-storey A and each $G, A^{0} \subseteq X$ in G iff there exists T^{\prime}-storey B with $A^{0} \approx B^{0}$ in G.

Lemma 5.5. If $\operatorname{do}(T)=U$ and $\left\{D_{\alpha}^{0}: \alpha<h(T)\right\}$ is disjoint, then T is stable.
Proof. Take $X=\cup\left\{D_{\alpha}^{0} \cap G\right.$: there exists a T^{\prime}-storey B with $D_{\alpha}^{0} \cap G=$ $\left.B^{0} \cap G\right\}$.

Lemma 5.6. Suppose that T is stable and $|D|<c$. Let $I \subset h(T)$ be of cardinality $\leqq c$. Then there exists $X \subset D^{0}$ such that for every G and $\alpha<h(T)$, (i) $\alpha \in I$ implies $D_{\alpha}^{0} \subseteq X$, and (ii) $D_{\alpha}^{0} \subseteq X$ in G implies $\alpha \in I$.

Proof. By Lemma 2.5, $U-D$ is hereditary of the third category. By Lemmas 2.2 and 2.3 there exists a 2 -modest $E^{*} \subset U-D$ such that for each G, $\left|G \cap E^{*}\right|=c$. By Lemma 1.5, $E^{*}=\Sigma_{\alpha<c} E_{\alpha}^{*}$ for some ewd $E_{\alpha}^{* \prime}$ s. Let $E=$ $D+E^{*}, E_{\alpha}=D_{\alpha}+E_{\alpha}^{*}$, and W^{\prime} be a wonder set for $\left\{E_{\alpha}: \alpha \in I\right\}$. Clearly, $T^{\prime}=\left(E, E^{*}, D^{1}, W^{\prime}\right)$ is a tower. Let X be as in Definition 5.2. If $\alpha \in I$, then E_{α} is a storey of T^{\prime}. Hence $D_{\alpha}^{0} \subseteq X$. If $D_{\alpha}^{0} \subseteq X$ in G, then $D_{\alpha}^{0} \approx B^{0}$ in G for some storey B of T^{\prime}. By Theorem 4.5 there exists $\beta \in I$ such that $G \cap$ $\operatorname{do}\left(B=E_{\beta}\right) \neq 0$. Clearly, $\alpha=\beta \in I$.

Corollary 5.7. If T is stable on D^{2}, then $\exp |D| \geqq|h(T)|^{c}$.
Lemma 5.8. Suppose that U is separable. Then for each n, the predicate " $h(T)=\omega_{n}$ " is expressible by a top. formula.

Proof is easy.
It is not difficult to express " $h(T)=\omega_{n} ", " h(T)=c$ " and many other properties.

§6. Countable sets and sets of cardinality c

Suppose that U is separable. Recall that $\exp \kappa=2^{\kappa}$.
Lemma 6.1. The following statements are equivalent:
(6.1) $\forall G \exists G^{\prime}\left(G^{\prime} \subset G\right.$ and $\left.\exp \left|G^{\prime} \cap X\right| \leqq c\right)$, and
(6.2) There exist a tower $T=\left(D, D^{0}, D^{1}, W\right)$ and $D^{2} \subset D-\left(D^{0}+D^{1}\right)$ such that $D^{2} \approx X$ and T is exponential on D^{2}.

Proof. Suppose that (6.1) holds. WLOG, there exists κ such that for each G, $|G \cap X|=\kappa$. Because, let $G_{\kappa}=\cup\left\{G\right.$: for each $\left.G^{\prime} \subset G,\left|G^{\prime} \cap X\right|=\kappa\right\}$. Then ΣG_{κ} is ewd. Now use Lemma 5.3.

By Lemma 2.3 there exists $E \subset U-X$ such that for each $G,|E \cap G|=c$, and
each separable Cantor subset of E is countable. Let $D=E+X$. By Lemma 2.2, D is 2 -modest. Now use Lemma 5.4.

Suppose that (6.2) holds. For reduction to absurdity suppose that there exists G such that for each $G^{\prime} \subset G, \exp \left|G^{\prime} \cap X\right|>c$. Then for each $G^{\prime} \subset G$, $\exp \left|G^{\prime} \cap D^{2}\right|>c$. By Lemma 5.2 it follows that $|h(T)|>c$ which contradicts Lemma 5.1.

TheOrem 6.2. The predicate " $\exp |X| \leqq c$ " is expressible by a top. formula.
Proof. Say X is small iff it satisfies (6.1). According to Lemma 6.1, the predicate " X is small" is expressible by a top. formula. Therefore, it is enough to prove that $\exp |X| \leqq c$ is equivalent to:
(6.3) For each perfect set $E, E \cap X$ is small in E.

Clearly $\exp |X| \leqq c$ implies (6.3). Suppose that $\exp |X|>c$. Let $G=\cup\left\{G^{\prime}\right.$: $\left.\exp \left|G^{\prime} \cap X\right| \leqq c\right\}$ and $E=U-G$. Clearly $E \neq 0$ and $E \cap X$ is not small in E.

Corollary $6.3(\mathrm{CH})$. The predicate " X is at most countable" is expressible by a top. formula.

Lemma 6.4. Assume that $\forall \kappa(\kappa<c \rightarrow \exp \kappa<\exp c)$. The following statements are equivalent:
(6.4) For each $G,|G \cap X|=c$, and
(6.5) If $G \cap X$ is 2-modest then there exists a tower $T=\left(D, D^{0}, D^{1}, W\right)$ in G such that $D \subset X$, and T is stable and exponential on some Y which is dense in G.

Proof. (6.5) implies (6.4) by Lemma 2.2, Lemma 5.2 and Corollary 5.7. (6.4) implies (6.5) by Lemmas 5.4 and 5.5.

Theorem 6.5. Assume that $\forall \kappa(\kappa<c \rightarrow \exp \kappa<\exp c)$. Then the predicate $|X|=c$ is expressible by a top. formula.

Proof. Let us say that X is everywhere big iff it satisfies (6.4). By Lemma 6.4, the predicate " X is everywhere big" is expressible by a top. formula. But $|X|=c$ iff there exists a perfect E such that $E \cap X$ is everywhere big in E.

Let M be the standard Cohen model for blowing c to ω_{3}. In $M, \exp \mathcal{N}_{0}=$ $\exp \boldsymbol{N}_{2}=\boldsymbol{N}_{3}$. At our request Menachem Magidor verified the following phenomena in M :
(i) The real line R is of the third category; and
(ii) If $\left\langle X_{\alpha}: \alpha<\alpha^{*}\right\rangle$ is a sequence of sets of rational numbers and $\alpha<\beta$ $\rightarrow X_{\alpha}<X_{\beta}$, then $\alpha^{*}<\boldsymbol{N}_{2}$.

The following note is due to Saharon Shelah. Let $\varphi(X)$ state that there exist a perfect E and a tower $T=\left(D, D^{0}, D^{1}, W\right)$ in E such that $D \subset X$ and $h(T)=\omega_{2}$. This formula discriminates between countable subsets and subsets of cardinality \boldsymbol{N}_{2} of R.

§7. Meager sets

Lemma 7.1. Assume that c is regular. Then the following statements are equivalent:
(7.1) For each $G, G \cap X$ is of the third category (in U), and
(7.2) There exists $D \subset X$ such that for each $G,|D \cap G|=c$, and each Cantor subset of D is of cardinality $<c$.

Proof. By Lemma 2.3, (7.1) implies (7.2). The other implication is obvious.

Let us say that X is everywhere of the third category iff it satisfies (7.1).
Lemma 7.2. Suppose that U is separable. Then X is of the third category iff there exists G such that $G \cap X$ is everywhere of the third category in G.

Proof. Suppose that for each G there exists $G^{\prime} \subset G$ such that $G^{\prime} \cap X$ is pseudo-meager. By Lemma 1.4, there exists a disjoint family $\left\{H_{1}: i \in I\right\}$ such that $\sum H_{\mathrm{t}}$ is ewd and for each i there exists $\kappa_{\mathrm{t}}<c$ such that $H_{\mathrm{t}} \cap X$ is a union of κ_{1} nwd sets, WLOG, $I=\omega$, since U is separable. Let $\kappa=\kappa_{0}+\kappa_{1}+\cdots, \kappa<c$ since $\mathrm{cf}(c)>\omega . X$ is a union of κ nwd sets, hence X is pseudo-meager.

The other implication is clear.

Theorem 7.3. Assume

(7.3) c is regular, and $\exp \kappa<\exp c$ for each $\kappa<c$.

If U is separable then the predicate " X is of the third category" is expressible by a top. formula in U.

Proof. See Lemmas 6.5, 7.1 and 7.2.
Lemma 7.4. Lemma 7.2 remains true if " U is separable" is replaced by
(7.4) There exists $\kappa<c$ such that each pseudo-meager subset of U is a union of $\leqq \kappa n w d$ sets.

Proof is clear.
(7.4) holds if c is a successor.

Suppose that U is quasi-separable; i.e. for each G there exists a separable $G^{\prime} \subset G$.

Theorem 7.5. Suppose (7.3) and (7.4). Then the predicate " X is of the third category" is expressible by a top. formula in U.

Proof. By Lemma 6.5, there exists a top, formula $F(G, X)$ stating $|G \cap X|$ $=c$ in case G is separable. By Lemma 7.1, there exists a top. formula $F^{\prime}(G, X)$ stating that $G \cap X$ is everywhere of the third category in G in case G is separable. By Lemma 7.4, X is of the third category iff $\exists G \forall G^{\prime}\left(G^{\prime} \subset\right.$ $G \rightarrow F^{\prime}\left(G^{\prime}, X\right)$).

Corollary $7.6(\mathrm{CH})$. The predicate " X is meager" is expressible by a top. formula in U.

Theorem 7.7. Assume Martin's Axiom. Then the predicate " X is meager" is expressible by a top. formula in U.

Proof. By virtue of Martin's Axiom, if $\kappa<c$ then $\exp \kappa \leqq c$ (see [10]). Hence the assumption in Theorem 6.5 holds.

Further, each pseudo-meager subset of U is meager. By virtue of Lemma 1.4 it is enough to check this statement in the case where U is separable. In this case U has a countable quasi-basis; i.e. there exists $\left\{G_{n}: n \in \omega\right\}$ such that each G includes some G_{n}. Martin and Solovay proved in [10] that each pseudo-meager subset of the real line is meager. Their proof is valid for each top. space with a countable quasi-basis.

Hence Lemma 7.1 remains true if the supposition " c is regular" is omitted. Now use the proof of Theorem 7.5. \square

§8. Inexpressible properties

Let CD be Cantor's Discontinuum (as a top. space). For each $\kappa>0$ let $C D \times \kappa$ be a top. space which splits into κ disjoint sets which are closed, open, and homeomorphic with $C D$. If κ is infinite let $C D \times \kappa+1$ be a one point compactification of $\mathrm{CD} \times \kappa$.

Theorem 8.1. For each $\kappa>0, \mathrm{CD} \times \kappa$ has the same monadic theory as CD . For each infinite $\kappa, \mathrm{CD} \times \kappa+1$ has the same monadic theory as CD .

Proof. Note that $\mathrm{CD} \times n$ and $\mathrm{CD} \times \boldsymbol{N}_{0}+1$ are homeomorphic with CD . Now use Ehrenfeucht's Game Criterion.

Corollary 8.2. Let K be the class of top. spaces which are dense, regular, locally compact, and second countable. The proposition "The space is compact" and the predicate " X is finite" are not expressible by top. formulae in K.

Corollary 8.3. Let K be the class of dense and regular top. spaces which are either
(i) locally compact and locally second countable (i.e. for every G and $p \in G$ there exists a second countable G^{\prime} such that $p \in G^{\prime} \subset G$), or
(ii) compact and quasi-second countable (i.e. for each G there exists a second countable $\left.G^{\prime} \subset G\right)$.

Then for any infinite κ neither " $|X|=\kappa "$ nor " $|X| \leqq \kappa "$ is expressible by a top. formula in K.

§9. Immodesty

Theorem $9.1(\mathrm{CH})$. For each n, the true arithmetic is interpretable in the monadic theory of the class of regular first countable top. spaces of cardinality c which are not n-modest.

Proof. Let U be a regular first countable top. space of cardinality c which is not n-modest. Then there exists $D \subset U$ and $X_{1}, \cdots, X_{n} \subset D$ such that D is dense, and each X_{1} is dense in D and there exists no $C \in \mathrm{Ca}(D)$ such that each X_{1} is dense in C. WLOG, D is countable (use first countability) and ewd (we will work in \bar{D} only).

For each perfect E, if X_{1}, \cdots, X_{n} are dense in E then $E-D$ is of the second category in E.

For, suppose that $E-D$ is meager in E. Then, by Theorem 1.1 , there exists $C \in \mathrm{Ca}(E)$ which is disjoint from $E-X$ (i.e. $C \subset D$) and each X_{4} is dense in C.

Let $S=\left\{C: C \in \mathrm{SCa}(D)\right.$ and X_{1}, \cdots, X_{n} are dense in $\left.C\right\}$. Following the proof of Lemma 2.4 it is easy to check that for each $P \subset \operatorname{PS}(D)$ there exists $W \subset U-D$ such that for each $C \in S$
(9.1) $|\bar{C} \cap W|<c$ if $\exists A(C \subset A \in P)$, and
(9.2) $\bar{C} \cap W \neq 0$ if there exist no G and $A \in P$ such that $0 \neq C \cap G \subset A$.

The rest of the proof of Theorem 9.1 parallels the proof of theorem 7.10 in [12]. A more detailed proof will be presented in [5].

References

[^0]5. Y. Gurevich, Monadic theory of order and topology, 2, in preparation.
6. Y. Gurevich and S. Shelah, Modest theory of short chains, II, in preparation.
7. Y. Gurevich and S. Shelah, Modesty, Notices Amer. Math. Soc. 24 (1977), A-20.
8. T. J. Jech, Lectures in set theory, Springer Lecture Notes 217, 1971.
9. K. Kuratowski, Topology, Academic Press, New York, 1966.
10. D. A. Martin and R. M. Solovay, Internal Cohen extensions, Ann. Math. Logic 2 (1970), 143-178.
11. M. O. Rabın, Decidability of second order theories and automata in infinite tress, Trans. Amer. Math. Soc. 141 (1969), 1-35.
12. S. Shelah, The monadic theory of order, Ann. of Math. 102 (1975), 379-419.

Department of Mathematics
Ben Gurion University of the Negev
Be'er Sheva, Israel

[^0]: 1. A. V. Arhangelski, On the cardinality of first countable compacta, Soviet Math. Doklady 10 (1969), 951-955.
 2. P. Erdös and R. Rado, A partition calculus in set theory, Bull. Amer. Math. Soc. 62 (1956), 427-489.
 3. A. Grzegorczyk, Undecidability of some topological theories, Fund. Math. 38 (1951), 137-152.
 4. Y. Gurevich, Monadic theory of order and topology, 1 (Abstract), J. Symbolic Logic, to appear.
