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MONADIC THEORY OF ORDER 
A N D  T O P O L O G Y  II 

BY 

Y U R I  G U R E V I C H  

ABSTRACT 

Assuming the Continuum Hypothesis we interpret the theory of the cardinal 2'0 
with quantification over the constructible monadic, dyadic, etc. predicates in the 
monadic (second-order) theory of tb.e real line, in the monadic theory of any 
other short non-modest chain, in monadic topology of Cantor's Discontinuum 
and some other monadic theories. We build monadic sentences defining the real 
line up to isomorphism under some set-theoretic assumptions. There are some 
other results. 

§0. Introduction 

This paper  is a continuation of [2] called "Part  I"  below. Speaking about 

monadic theories we always mean monadic second-order theories. 

The monadic theory M T ( R )  of the real line R is our most important  subject. 

The sign " < "  is its only non-logical constant. We are interested in the following 

questions about MT(R) :  what is the complexity of it, what can be expressed in it, 

is it finitely axiomatizable and/or categoric in the monadic fragment  of second- 

order logic? 

Assuming a consequence of the Cont inuum Hypothesis  C H  Shelah inter- 

preted the true first-order arithmetic (i.e. the first-order theory of the standard 

model of arithmetic) in MT(R) .  Let c be the cardinality of the continuum. 

According to Part I, a topological space is called pseudo-meager  iff it is a union 

of less than c nowhere dense point sets. The assumed consequence of C H  is that 

R is not pseudo-meager.  Shelah conjectured that M T ( R )  and the second-order 

theory of c (call it T2(c)) are recursive each in the other, see Conjecture 7D in 

[7]. 

Let CT2(c) be the theory of the ordinal c in the language of second-order  

logic when for each n = 1, 2 , - - . ,  the n-place predicate variables range over  the 
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constructible n-place relations on c. One may say that CT2(c) is the second- 

order theory of the ordinal c computed in the constructive universe. Of course, c 

may be not the cardinality of continuum in the constructive universe. In §6 we 

prove 

THEOREM 1. Assume that R is not pseudo-meager. Then CT2(c) is interpreta- 

ble in MT(R).  

COROLLARY 2 (V = L).  MT(R)  and T2(c) are interpretable each in the other. 

We use the notion "A  theory T1 is interpretable in a theory T2" in the usual 

sense. In particular, T1 is recursive in T2 if it is interpretable in T2. So Corollary 2 

approves Shelah's Conjecture 7D in the constructive universe. It reduces in the 

constructive universe the model-theoretic problem about the complexity of 

MT(R)  to the set-theoretic problem about the complexity of T2(c). 

The expressive power of MT(R)  was investigated in Part I. In particular we 

proved there (refuting Shelah's Conjecture 7G in [7]) that under CH there exists 

a formula ~ (X)  in the monadic language of order  such that a point set D satisfies 

~0 (D)  in R iff D is countable. Let exp K = 2 ~ for every cardinal K and to*~ be the 

cardinal 1~,~ of the constructive universe. In §10 we prove the following 

Theorems 3 and 4. 

THEOREM 3. Assume CH and exp 1~11 > ~2. Then there exists a sentence in the 

monadic language of order defining the real line R up to isomorphism. 

THEOREM 4. Assume c = to*. Then there exists a sentence in the monadic 

language of order defining the real line R up to isomorphism. 

COROLLARY 5 ( V  = L). MT(R)  is finitely axiom atizable and categoric in the 

monadic fragment of second-order logic. 

Theorems 3 and 4 approve Conjecture 0.4 in [7] (under corresponding 

set-theoretic assumptions) and disprove Conjecture 0.5 there. 

Theorem 4 remains true if the assumption c = to]~ is replaced by CH together 

with c = to* where a is simply definable in the constructive universe e.g. a = 5 

or c~ = 3to 2 + to + 7. But (correcting [3]) we do not know whether CH alone is 

sufficient for finite satisfiability and categoricity of MT(R).  Recall that a chain is 

a linearly ordered set. 
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CONJECTURE. II is consistent with ZFC + CH that there exists a chain monadi- 

cally equivalent but not isomorphic to the real line. 

If U is a chain monadically equivalent but not isomorphic to R and CH holds 

then U is not Suslin and there exists an interval I of U such that every countable 

subset of I is nowhere dense in I and there exists an everywhere dense subset D 

of U such that D does not embed any uncountable subchain of R, see §10. 

THEOREM 6 (CH). There are two chains with the same monadic theory whose 

completions are not monadically equivalent. 

Theorem 6 is proved in §10. It approves Conjecture 0.6 in [7]. 

The real line is not our only subject. Generalizing topological T1 spaces we 

define in §1 vicinity spaces in such a way that (i) the notion of vicinity spaces of 

degree =< 1 and the notion of top. TI spaces are essentially the same, and (ii) 

each chain forms in some standard way a vicinity space of degree -< 2. In §7 we 

interprete CT2(c) in the monadic theories of some vicinity spaces which implies 

Theorems 7 and 9 below. Note that the mentioned interpretation theorem 

(Theorem 7.2) and its consequences remain true if CT2(c) is replaced by 

n {CT2(a) : a < c ÷} where c ÷ is the least cardinal bigger than c and CT2(a)  is 

the second order  theory of ordinal a computed in the constructive universe. 

The (monadic) topological language is the language having variables for 

points, variables for point sets and non-logical constants for the membership 

relation and the closure operation. The monadic theory of a top. space U (or the 

monadic topology of U) is the theory of U in the top. language when the set 

variables range over all point sets in U. 

THEOREM 7. There exists an algorithm interpreting CT2(c) in the monadic 

theory of any top. T1 space U satisfying the following conditions : U is regular, first 

countable, dense, of cardinality c and such that no separable, perfect and nowhere 

dense subset of X is pseudo-meager in itself. 

Under  CH or the Martin Axiom, the Baire Category Theorem gives many top. 

spaces satisfying the conditions stated in Theorem 7. 

COROLLARY 8. Assume that the real line is not pseudo-meager. Then CT2(c) 

is interpretable in the monadic topology of the Cantor's Discontinuum. 
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Let us recall that a chain is short iff it embeds neither to~ nor to *. A definition 

of p-modest  chains (where p = 1, 2 , - .  • ) can be found in §7. A chain is modest iff 

it is p-modest  for every p. According to [4], a chain is monadically equivalent to 

the rational chain iff it is short, modest and has neither jumps nor endpoints. By 

[6], the monadic theory of the rational chain is decidable. Hence the monadic 

theory of short, modest chains is decidable. The authors sketch in [4] the proof 

that the true arithmetic is uniformly in p interpretable in the monadic theory of 

any short chain which is not p-modest  if each pseudo-meager subset of R is 

meager. They refer to this paper for details. 

THEOREM 9. Assume that every pseudo-meager subset of the real line R is 
meager. Then there exists a uniform in p algorithm interpreting CT2(c) in the 
monadic theory of any short chain which is not p-modest. 

In §9 we prove undecidability of some restricted monadic theories of vicinity 

spaces. 

The towers defined in Part I (with use of Shelah's "wonder  sets") remain our 

main tool. We use them here in more general situation. In order to ease 

understanding we define here the towers in an independent way and repeat some 

features of Part I. Corollary 6.3 (i.e. Corollary 3 in §6) below corrects a slip in 

Corollary 5.7 of Part I. 

§1. Vicinity spaces 

We prove in this paper parallel results about top. spaces and chains. In order 

to treat both cases simultaneously we introduce vicinity spaces. It seems to us 

that this notion is interesting by itself. 

Let U be a non-empty set and f be a function associating a family of 

non-empty subsets of U with each element a of U. f is a vicinity function iff it 

satisfies the following conditions: 

(V1) If X E f ( a )  then a ~ X ,  
(V2) If X1, X2, X3 E f (a)  and both X1 n X2 and X2 n x3 are not empty then 

there exists Y E f (a)  such that Y CX1 n X2 n x3, and 

(V3) If b E X E f ( a )  and Y E f ( b )  then there exists Z E f ( b )  such that 

Z C X A Y .  
A non-empty set U together with a vicinity function f on it is a vicinity space. 

X is a vicinity of a iff X E [ (a ) .  It is easy to see that the relation X O Y J  0 is an 

equivalence relation on each f(a).  The corresponding equivalence classes are 
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called directions around a. The number  of directions around a is the degree of a. 

The degree of a vicinity space U is the supremum of the degrees of points in U. 

We define topology in vicinity spaces as follows: X is open iff it includes a 

vicinity of each point a of it in each direction around a. Topological T, spaces 

are converted into vicinity spaces by the following definitions: X is a vicinity of a 

iff X U {a } is open and a E J~ - X. The notion of vicinity spaces of degree =< 1 

and that of T, spaces are essentially the same. Chains are converted into vicinity 

spaces by the following definitions: X is a vicinity of a iff it is a non-empty open 

interval of the form (a, b) or (b, a). Of course there exist other vicinity functions 

in T~ spaces and chains but the described functions will be considered to be 

standard. One may easily invent many other examples of vicinity spaces. 

In the rest of this paper we restrict our attention to the (topologically) regular 

vicinity spaces which are first-countable, of finite degree and of cardinality at 

most c. In particular, for each point a there exists a countable vicinity basis 

{B, : n < to} around a, each vicinity of a includes a vicinity B. for some n. 

The repletion rp(X) of a point set X in a vicinity space U is the collection of 

points a in U such that the degree of a is that of U and X meets every vicinity 

of a. X is coherent iff it is non-empty and is a part of its repletion, X is replete iff 

it is non-empty and coincides with its repletion. If X meets every vicinity of 

every one of its points it forms a subspace of U in the following natural way: Y 

is a vicinity of a point a in X iff there exists a vicinity Z of a in U such that 

Y = X A Z .  

The monadic language of vicinity spaces has variables for points, variables for 

point sets and non-logical constants for the membership relation and the vicinity 

function. It will be called the vicinity language, its formulas will be called vicinity 

formulas. The monadic theory of a vicinity space is the theory of it in the vicinity 

language when the set variables range over all point sets in it. 

THEOREM 1 (Run-away Theorem).  Let A, X, Xo, X I , " "  be point sets in a 

vicinity space and X = U {X, : n < to}. Suppose that A is meager, X is coherent 

and disjoint from A, and each X ,  is ewd. Then there exist B C X and a family S of 

subsets of B satisfying the following conditions : B is countable and coherent ; and 

is disjoint from A ; and IS I = c ; and each Y @ S is coherent, closed in B and 

nwd in B ; and each X ,  is dense in each Y ~ S ; and i~. n 2. is a scattered subset of 

B for every different Y, Z in S. 

Theorem 1.1 in Part I is essentially the top. version of Theorem 1 (it 

generalizes a statement on page 413 in [7]). Theorem 1.1 in [4] is essentially the 
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chain version of T h e o r e m  1. For  the reader ' s  convenience  we present  here  the 

following 

PROOF. Let  A be a union of nwd sets A(0) ,  A ( 1 ) , . . . .  W.l.o.g., every A(n)  is 

closed. Let  f : { 0 , 1 } × t o × t o × t o ~ t o  be one-one  and onto,  and 

(an,[3n, yn, 6n)=f-~(n). Let  s,t range over  the finite sequences  of natural  

numbers ,  lh s be the length of s. s is regarded as a function f rom lh s to to. 

t = s^n means  that t extends  s by t(lh s) = n. For  each point x let {V, (x)  : n < 

to} be a vicinity basis a round  x. 

LEMMA 2. There exist open sets G(s) and points x(s) such that: 
(i) G (s) is disjoint from A (lh s), G (s ̂  n ) C G (s) and G (s ̂  m ) is disjoint from 

G(s^n) if m g  n; 
(ii) x(s )E  G(s ) ,  lim,~=x(s^n) = x(s), x ( s^n)E Vz . (x (s ) )nx~ , ;  

and 
(iii) If  x = l im,_=x(s , )  then either x = x(t) for some t or there exists a strictly 

increasing sequence toCt~ C . . .  such that x ~ n G(t.). 

PROOF OF LEMMA 2. Let  G(0)  be the complement  of A(0)  and x(0) be an 

arbi t rary point  in G(0)  N X. Suppose that G(t) and x(t) are chosen for every t 

with lh(t)_-<l and that the relevant  cases of (i) and (ii) hold. Let  lh(s) - -  I. Pick 

consecutively 

x(s^n) E G(s) n V~,(x(s)) n x~, - (A (1 + 1) u {x (s ^m): m < n}). 

Using regulari ty of the space choose consecutively disjoint open sets G (s ^n) and 

H(s^n) such that x ( s^n )~  G(s^n) and H(s^n) includes the complement  of 

G(s) and A ( I +  1), x(s) ,  Ix(s^m): m~ n} and U { t ~ ( s ^ m ) :  m < n}. The  state- 

ments  (i) and (ii) are proved.  

We prove  the s ta tement  (iii). Let  x = l imx(s . )  and N, = Is. [(i + 1): i < lh(s,)} 

and e -- min({to} U {i : N~ is infinite}). If e is finite select a subsequence  no < nl < 

• -. such that S,o I e -- s,~ I e . . . .  and S,o(e) < s. ,(e) < .- ", then x = lira x (s,k) = 

x(s,o] e). Let  e = to. By Koenig 's  L e m m a  there  exists a sequence  toCq C . . .  
such that t~ ~ N,  Then  x = l i m x ( t . )  E n G( t , ) .  L e m m a  2 is proved.  

We cont inue  the proof  of T h e o r e m  1. Let  G(s) and x(s) be as in L e m m a  2 and 

B be the collection of points x(s). By (ii), B is coherent .  By (iii) and (i) , /~ is 

disjoint f rom A. 

Let  S = { Y s :  g is a ~unction f rom to to {0, 1}} where  Y8 = {x(s) :  a(s(k))= 
g(k) for  every  k < lh s}. By (ii), every Y~ is coheren t  and every 2(, is dense in 
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every Yr Ys is closed in B: if x(s) does not belong to Yg then G(s) is disjoint 

from Yr Y~ is nwd in B:  if x ( s ) E  G then there exists n such that G(s^n) is 

disjoint from Y, and meets G. 

Let x ~ Y ~ A ~ ' h  and g m ~ h m .  If x = x ( s )  then lh(s)=<m. If xff:B take 

strictly increasing sequence toCq C - - .  such that x E n (~(t.). But t~(t,,+~) is 

disjoint either from ~'g or from ~'h so ~'~ O ~'h is a part of {x(s):  lh(s)_-<m} 

which is scattered. Theorem 1 is proved. 

§2. Modesty and guard spaces 

The notion of modest point sets in top. spaces was introduced in Part I. Its 

chain version was studied in [4]. Here we define modest point sets in vicinity 

spaces. 

We work in a fixed vicinity space, p is a positive integer. A point set D is 

perfunctorily p-modest iff for every coherent and ewd sets X~, • •., X, there exists 

a replete set Y such that X,, • •., X, are dense in Y and D n Y c x l  u • •. u X,. 

D is p-modest iff for each coherent X, D n X is perfunctorily p-modest  in the 

subspace X. D is modest iff it is p-modest  for every p. 

This definition is not exactly concordant with the definition of p-modesty in §2 

of Part I, i.e. the definition in Part I is not the top. version of the above 

definitions. Let D be a point set in a T, space, D is p-modest  in the sense of Part 

I iff it is p-modest  in itself (i.e. in the subspace D)  in the sense of the above 

definition. Unfortunately, the union of two point sets p-modest  in themselves 

may be not p-modest  in itself, see §4 in [4]. 

LEMMA 1. If D and E are p-modest then D U E is so. 

Proof is easy. 

The above definition of modesty is compatible with the modesty definition in 

§4 of [4]. It fits our needs in this paper. We prove only those facts about modest 

sets in vicinity spaces which are used below. One may define w-modest sets (as in 

Part I and [4]), to prove that modest sets form an ~Orcomplete ideal (cf. theorem 

4.3 in [4]) and generalize the following lemma according to lemma 2.2 in Part I. 

LEMMA 2. D is modest if l D n X I < c for each separable replete X which is 
nwd in D. 
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PROOF. It is enough to check that D is perfunctorily p-modest  for arbitrary 

p. W.l.o.g., D is ewd. Let X~, . . . ,Xp  be coherent and ewd. By Run-away 

Theorem there exists a countable, coherent and nwd A such that D, X 1 , "  ", Xp 

are dense in A. By the condition of Lemma 2, I D n rp(A)l  < c. By Run-away 

Theorem there exist B CA n (X~ u • .. u Xp) and a family S of replete subsets 

of rp(B) such that ISI = c, and A A X , - . . , A  n x p  are dense in each Y ~  S, 

and S is disjoint out of B. Clearly there exists Y E S such that D n Y cX~ o 

• . .  u Xp. Q.E.D. 

A family {X~,. •., Xp} is a non-modesty witness iff X~, • •., Xp are coherent  and 

ewd and there exists no replete Y such that X~, . . - ,Xp are dense in Y and 

Y C X 1 U  " "  U X . .  

LEMMA 3. Let {X~," ",Xp} be a non-modesty witness, and X = 

XI U • • • U Xp, and Y be a replete point set such that X~, • •., Xp are dense in Y. 

Then .Y - X is not meager in Y. 

PROOF. W.l.o.g., Y is the whole space. If - X is meager then by Run-away 

Theorem there exists a replete Z such that X~,. • -, Xp are dense in Z and Z CX. 

Q.E.D. 

A guard space is a vicinity space together with a finite family (called the 

guard) of point sets (called the guardians) satisfying the following condition: 

every guardian is ewd and coherent,  and for each point set X, if X is replete and 

every guardian is dense in X then {x E X : x does not belong to any guardian} is 

not pseudo-meager in X. The guard of a guard space U is denoted by G d ( U )  (or 

simply by Gd), a point set X in U is called guarded iff it is coherent  and every 

guardian is dense in X. The (monadic) guard language is obtained from the 

vicinity language by adding the constant Gd. A guard formula is a formula in the 

guard language. The (monadic) theory of a guard space U is the theory of it in 

the guard language when the set variables range over all point sets in U. 

We could allow countable guards in the above definition of guard spaces; 

some of our results about guard spaces are easily generalized for the case of 

countable guards. Finiteness of the guard allows us to interprete a guard space in 

the underlying vicinity space and the vicinity spaces are our main concern. 

In the rest of this section we work in a fixed guard space with the guard Gd 

consisting of p guardians. 

LEMMA 4. Let X be replete and guarded. I f  G A X e 0  then G n x - U G d  is 

not pseudo-modest in G n x .  
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Proof is clear. 

LEMMA 5. Suppose that D is (p + 1)-modest and X is replete and guarded. 

Then ( X  - U G d )  - D is not pseudo-meager in X. 

PROOF. Let X - U G d -  D = U {X~ : a < K } where K < c and every X~ is 

nwd in X, and Y = (X - U Gd) - U {J(,~ : c~ < K }. Y is dense in X and for every 

a < K and Z, if Y is dense in Z then X~ is nwd in Z. 

Take  a coherent  countable A in Y with guarded r p ( A ) -  U Gd. Since D is 

(p + 1)-modest there exists Z C X such that Z is replete and guarded, A is dense 

i n Z a n d Z -  U G d i s d i s j o i n t f r o m D - A .  T h e n Z -  U G d C A U { X o : a <  

K} hence Z - U Gd is pseudo-meager  in Z which is impossible. Q.E.D.  

LEMMA 6. Let D be (p + 1)-modest. Then there exists a modest and 
everywhere big set disjoint from both U Gd and D. 

PROOF. Let S be an open basis for the whole space of cardinality _-< c. 

Arrange S in a sequence (Go : a < c) where every member  of S appears  c times. 

Let (X,~ : a < c) be a sequence of all separable,  replete and nwd subsets. By 

L e m m a  5, Y~ = (Ga - U G d ) -  D is not pseudo-meager.  Pick up consecutively 

y~E Y ~ - U { x ~ : f l < a } - { y ~ : f l < a } . { y ~ : a < c } i s t h e d e s i r e d s e t .  Q.E.D.  

§3. Family codes 

A point set D in a guard space is (p + Gd)-modest (respectively (p + Gd)- 

modest in itself) iff for every point set X1,. • ", Xp (respectively for every subset 

X z , - ' . , X p  of D )  there exists a replete and guarded set V such that if 

X = X~ U • • • U Xp is not empty,  X~, • •., Xp are dense in X and the repletion of 

X is guarded then X ~ , . . . , X p  are dense in V and D tq V C X .  

LEMMA 1. If  D is (t9 + IGd(U)l)-modest and disjoint from U G d  then D is 

(p + Gd)-modest. The union of two (p + Gd)-modest sets is (p + Gd)-modest. 

There exists a guard formula expressing (p + Gd)-modesty. 

Proof  is clear. 

THEOREM 2. There exists a guard formula ~ ( X , D , D  °, W) satisfying the 

following condition. Let U be a guard space, D and D o be point sets in U and P be 
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a family of subsets o lD.  Suppose that D is ewd, coherent and (2 + Gd)-modest in 

itself, D O is an ewd subset o lD,  I P I >= 2, every member of P is dense in D O and P is 

disjoint on D °. Then there exists a point set W such that an arbitrary point set X 

satisfies ~ (X, D, D °, W) in U iff X C D and for each G there exist A ~ P and 

H C G such that A n H = X n H. 

Here  " P  is disjoint on D o'' means that { A n  D O : A E P} is disjoint. The  

condition V G 3 A H ( A  E P and H C G  and A n H = X n H )  may be expressed 

by the phrase " X  is locally a member of P" .  

PROOF. Let U, D, D o and P be as in Theorem 2. We work in U and adapt the 

following terminology. Members of P are colors. A point set X is monochromatic 

iff D n x CA for some color A, and X is motley iff X -  A is dense in D O X 

for every color A. X is auxiliary iff it is guarded, replete, nwd and D O is dense in 

X. If X C D then X n D o is denoted by X °. 

LEMMA 3. There exists a point set W disjoint from D and all guardians and 

such that for each auxiliary set X:  

(i) I W O X I < c if X is monochromatic and separable, and 

(ii) W n X J 0 if X is motley. 

PROOF OF LEMMA 3. There are exactly c separable auxiliary sets since U is of 

cardinality c. Let (X~ : a < c) and (Y,~ : a < c) be sequences of all monochroma- 

tic and all motley separable auxiliary sets respectively. Any X,, is nwd in any 

Y~. By Lemma 2.5, Y~ = (Yo - U G d ) -  D is not pseudo-meager in Yt3 hence 

there exists Yt3 ~ Y ~ -  U{X~, : a </3}, It is easy to see that W = {y~ :/3 < c} is 

the desired set. Lemma 3 is proved (cf. lemmas 7.4 in [7] and 2.4 in Part I). 

LEMMA 4. Let W be as in Lemma 3 and X be a subset o l D  with ewd X °. X is 

motley iff for each G there exist coherent Y, Z C G n X such that yo, Z and all 

guardians are dense in the repletion of Y U Z and W meets each auxiliary set C 

such that yo, Z are dense in C. 

PROOF OF LEMMA 4. Firstly suppose that X is not motley. There exist a color 

A and a non-empty open set G such that A A ( ~ = t ~ A X .  Let Y , Z  be 

non-empty subsets of G n X such that yo, z and all guardians are dense in 

rp(Y U Z).  Since D is (2+ Gd)-modest in itself, there exists V Crp(Y U Z )  such 

that V is replete, guarded, and y o  Z are dense in V, and V is disjoint from 
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D -  (Y°U Z).  W.l.o.g., V is separable and nwd. Hence V is auxiliary and 

monochromatic.  By Lemma 3, I V N  W l < c .  By Run-away Theorem, there 

exists a family S of replete subsets of V such that I SI = c, and yo, z and all 

guardians are dense in each C E S, and different elements of S are disjoint on 

W. Hence there exists C E S which is disjoint from W. 

Now suppose that X is motley. Take arbitrary G. First case: there exist H C G 

a n d a c o l o r A  dense i n H n X  ° . S e t u p Y = A  A H A X  ° a n d Z = H n X - A .  

Second case: G A X ° is motley. Select points Uo, Ul , . . .  in G such that 

{u, : n < to} is coherent, X ° and all guardians are dense in {u, : n < w} and for 

any color A, I { n : u ,  E A } l - < l .  Take Y = Z = { u , : n < t o } n x  °. Lemma 4 is 

proved. 

Lemma 4 gives a guard formula VG~b(G, X, W )  expressing the predicate " X  is 

motley" in the case when X C D, X ° is ewd and W is as in Lemma 3. It is easy to 

see that the formula V H ( H  C G ---> tO(H, X,  W))  expresses the predicate " G  n X 

is motley" in the same case. 

We finish the proof of Theorem 2. The desired formula q~(X, W) says that 

X C D, and X ° is ewd, and G n x is not motley for any G, and for every G and 

Y, if Y C D - X and Y is dense in G then G n (X U Y) is motley. Q.E.D. 

In the proof of Theorem 2 we build a specific formula ~o (X, D, D °, W). It is 

denoted below st(X, D, D °, W) and is called the formula of §3. We say that a 

point set X is a storey of a sequence t = (D, D °, • •., D ~, W) of point sets iff 

st(X, t) (i.e. st(X, D, D °, W)) holds. 

COROLLARY 5. Let U, D, D O be as in Theorem 2, W C U, t = (D, D °, W )  and 

X c D. Then X is a storey of t iff for each G there exist H C G and a t-storey Y 

such that H n X = H n Y. 

NOTE 6. W.l.o.g., all bound set variables in the formula s t ( X , D , D  °, W) 

range over the subsets of D. 

Proof is easy. 

§4. Towers 

We work in a guard space U. Each non-empty open set G forms a subspace of 

U with the guard { X A G :  X is a guardian in U}. Let P ( V 1 , " - , V , )  be a 

predicate defined in every guard space and X1, • • ", X, be point sets in U. We say 
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that P(X1, • •., X , )  holds in G iff P ( G  O X , , . - . ,  G O X , )  holds in G. We define 

the domain of P ( X 1 , . . . , X . )  in U as follows: d o P ( X I , - - . , X . ) =  

U { G  : P ( X 1 , . . - , X , )  holds in G}. 

Let t be a sequence (D, DO, • •., D ~, W) of point sets where 0 _-< l < to. We say 

that t is a tower iff it satisfies the following conditions. D is (2 + Gd)-modest  and 

ewd; l _-> 1 and DO, • •., D ~ are ewd, disjoint subsets of D ; if A, B are storeys of t 

(see the end of §3) then do (A  n D O= B n D ° ) + d o ( A  n B A D  O= 0) is ewd 

and d o ( A  N D 1 C B  N D 1 ) U d o ( B  O D I C A  A D  j) is ewd and 

do (A  A D  ° = B A D ° ) ~ d o ( A A D  ~ = B A D ~ ) ~ d o ( A  = B ) ;  

and there exist no G and W'  C G such that the following holds in the subspace 

G : every storey of t '  = (D n G, D o O G, W') is a storey of 

r i g  = (D n G , D ° O  G , - - . , D '  n G, W O  G )  

and there exists a storey of t '  and for each storey X of t '  there exists a storey Y 

of t '  such that Y O D 1 C X  and X -  Y is dense in G. 

LEMMA 1. Let D be coherent and (2+ Gd(U))-modest, l >-_ 1 and DO, . .  ., D ~ 

be disjoint and ewd subsets of D. Let "r > 1 be an ordinal and (A~ : a < z) be a 

sequence of subsets of D such that (A~ n D ° : a  <~-) is disjoint and 

(A~ n D~ : a < z) is strictly increasing in every non-empty open set. Then there 

exists W such that t = (D, DO, .. ., D ~, W)  is a tower and for each X CD, X is a 

storey of t iff E,,<,do ( X  = A~) is ewd. 

PROOF. Use Theorem 3.2. 

In the rest of this section t is a tower and A, B are t-storeys. We say that 

A_-<B iff d o ( A O D l C B )  is ewd, and A < B  iff A _ - B  and B O D ~ - A  is 

ewd. By induction on ordinal a we define relations " A  ~-a modulo t "  and 

" A  _-> ot modulo t" .  A _-> a modulo t iff d o ( A  ~ / 3 )  is empty  for each /3 < or. 

A ~ a modulo t iff for each /3 < a there exists B ~ / 3  modulo t, and A _-> a 

modulo t, and A _-< B for each B _-> a modulo t. It is easy to check that, if A --- a 

and B ~ a modulo t then A ~ B. Say A < a iff E{do(A --~/3) :/3 < a} is ewd. 

The ordinal z = min{a : there is no A --~ a modulo t} is called the height of t. 

LEMMA 2. Let P ( A,  G) be a predicate satisfying the following two conditions: 

(i) if P(A, G) holds and H C G then P(A, H) holds, and (ii) if E{G, : i E I} is 

dense in G and A A G = E { A ,  O G , : i ~ I }  and each P ( A , G ~ )  holds then 

P(A,  G) holds. Suppose that for each G C G * there exist A and H C G such that 

P(A, H)  holds. Then there exists A such that P(A,  C*) holds. 
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PROOF. Let {G, : i E I} be an open basis for G*.  For each i there exist A~ 

and G'~ C G, such that P(A~, G'~) holds. By Lemma 1.4 in Part 1, there exist a set 

J C I  and a disjoint family {/4, : i  E J and Hi CG'~} such that E,~H~ is dense in 

G*.  Let j E J  and X=(~,~jA~ N H , ) + ( A j - G * ) .  By Corollary 3.5, X is a 

storey of t. It is easy to see that P(X, G *) holds. Q.E.D.  

THEOREM 3. There exists G such that for each t-storey A, do(A < 1") is dense 

in G. 

PROOF. Suppose the contrary: for each G there exist A and H such that H is 

disjoint from do (A  < r )  i.e. H C d o ( A  _-> ~-). By Lemma 2 there exists A = ~-. 

Let V = U { G  : there exists A => ~- such that for each B _--- r, A _-< B in G}. By 

Lemma 2 there exists A _-> ~- such that for each B _-> ~', A _-< B in V. If V is ewd 

then A --~ ~- modulo t which is impossible. 

Let G* be the complement  of V. In the rest of the proof of Theorem 1 we 

work in the subspace G *. Let B range over { A n  G * : A _-> ~-}. For every B and 

G C G* there exist B '  and H C G such that B' < B in H. By Lemma  2, for each 

B there exists B '  such that B ' < B  in G*.  Select a decreasing sequence 

B , , > B , > . . . .  Let C0=B, ,  and C,+I=B,+,-U{B,,AD°:m<-_n}.  By 

Theorem 3.2, there exists W'  C G * such that for each X C D n G *, X is a storey 

of (D n G*,D"N G*, W') iff Z { d o ( X  = C , ) :  n < to} is dense in G* which 

contradicts the definition of tower t. Q.E.D.  

We define the arena of t to be the union of those G that for each t-storey A, 

do (A  < r )  is dense in G. A skeleton of t is a sequence <A~ : a < ~-) of t-stories 

such that An -~ a modulo ~-. 

§5. Constructive towers 

We work in a fixed guard space. Let l_-> 2 and t = (D ,D° ,  .. - ,D  r, W) be a 

tower of height ~->0.  Let X k = D  k n x  for every X C D  and 0_-<k =<l. The 

tower t is constructive iff it satisfies conditions (CT1)-(CT7) below. We alternate 

stating these conditions with definitions and explanations. In the course of 

exposition it is supposed that t satisfies conditions (CTi)  stated beforehand.  

DEFINITION. Let X, Y, Z range over  t-storeys. Y ~ X + 1 iff X < Y and there 

are no G a n d Z  such that X < Z < Y i n  G. Y ~ X + ( n + 2 )  iff there exist Z 

such that Z = X + (n + 1) and Y ~ Z + 1. X is limit iff for every G and Y there 
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exists Z such that if Y < X in G then Y < G < X in G. Y ~ X + to iff X < Y, Y 

is limit and there is no G and limit Z with X < Z < Y in G. 

Note that a t-storey X is limit if X = 0 modulo t. In other respects the above 

definition is co-ordinated with terminology of §4. In the rest of the definition of 

constructivity A, B, C range over  limit storeys of t. 

(CT1) 3B(B  ~ A + w). 

Expressions A + n and A + to are used below as variables over  { X : X  
A + n} and {B : B -~ A + to} respectively. 

Let a,/3,7,~ be ordinals, O<=i,j<=8 and (a , /3 , i )<(y ,&j)  iff m a x ( a , / 3 ) =  < 

max(7,  t~), and (ct,/3, i) precedes (7 ,&J)  lexicographically if m a x ( a , / 3 ) =  

max (7, t~). Let 7 = nut(a, fl) iff (a,/3, i) is the 7th triple in the defined order. We 

write nu (a,/3) instead of nuo(a,/3). 

DEFINITION. C ~ nut(A,B) iff A z U ( B  + 1) 2-~ ( C + 2 +  i) 2. 

(CT2) BC(C ~- nut(A, B)). 

(CT3) 3A, B, i(C -~ nu,(A, B)). 

(CT4) Let C~-nu,(A~,Bz) and C2-~nuj(A2, B2). Then C~_-<C2 iff 
1 1 n 1 A]UBICA~2UB~,A~<=A2indo (A~UB~=A~U 2),B~<-_B2indo(A~=A2) 

and either i _-<j or dO(Al = A2 and B~ = B2) is empty.  

LEMMA 1. If C ~ - n u t ( A , B )  and C2-~nut(A,B) then Ct~C2. If C-~ 
nut(A~,B~) and C--nui(A2, B2 ) then A,-~ A2, B~-~B2 and i = j. 

Lemma 1 follows from (CT4). It allows us to use an expression nui(A, B) as a 

variable over {C : C ~ nu,(A, B)}. 

LEMMA 2. Let A -~ toa modulo t, B ~ to/3 modulo t and 3' = nu,(a, ~). Then 
y <T and nut (A ,B)~to7  modulo t. 

Proof by induction on 7. 
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We use G6del 's  operations O'~1, " °  °,  v~8, see [5]. The constructible sets are 

defined as follows. Let 3' = nu~(a, [3). If i = 0 then F~ = {F~ : ~ < y}. If 1 _-< i =< 3 

then F~ = ~(F~,F~). If 4_- < i < 8  then F, -- ~ (F o ) .  

DEFINITION. 

A ~ B  iff 3 2 U ( B  + 1)2~(nu(A,B)+ 11)2; 

A ~{A~,A2} iff for each B, do(B EA)--~do(B = At  or B = 32); 

A ~ (A~, A2) iff 3BC[A  -~ {B, C} and B ~ {3~, A~} and C ~ {A~, 32}]; 

3 ~.(3~,A2,33)i f f  3B[B ~ (A~,32) and A ~ (B, A3)]; 

3 -~ ~:~(A~, 32) iff A ~ {3~, A2}; 

A ~ ~2(A~, A2) iff for each B, do(B E A)  ~ do(B E A t ) -  do(B E A2); 

A ~ ~3(A~, A2) iff VB, G[B E A in G iff there exist B~, B2 such that Bt E At 

in G, BEEA2 in G and B ~(B~,B2) in G];  

B ~ ~:4(A) iff VC~, G[C~ ~ B in G itt there exist C, C2 such that C ~- (Ct, C2) 

in G and C E A  in G];  

B ~ ~5(A) iff VC, G[C E B in G iff there exist C1, C2 such that C ~ (Ct, (72) 

in G, C ~ A  in G, C 2 E A  in G and C~EC2in G];  

B ~ ~6(A) iff 

Co-- (c,, c2, 
B ~ ~7(A) iff 

Co-  (c,, c2, 
B ~ ~8(A) iff 

Co ---- (C,, C2, C~) 

VC, G[C E B in G iff there exist Co, C1, C2, C3 such that 

in G, CoE A in G and C ~ (C2, C3, C1) in G];  

VC, G[C E B in G iff there exist Co, C,, C2, C3 such that 

in G, C o E A  in G and C~(C3,  C2, C0 in G];  

VC, G[C E B in G iff there exist Co, Ct, C2, (?3 such that 

in G, C o E A  in G and C=(Ct ,  C3, C2) in G]. 

(CT5) A E nu (A1, A2) iff A < nu (A1, A2) or A > nu (A 1, A2) and there exists 

B <nu(Ai ,  A2)such that for each C < A ,  d o ( C ~ A ) ~ - d o ( C @  B). 

(CT6) nu, (A, B)  ~ ~:~ (A, B ) if 1 _-< i _-< 3. 

(CT7) nu, (A, B) ~ ~ (A)  if 4 _-< i =< 8. 

The definition of constructivity is finished. Note that, if t is constructive then 

for each G the tower t I G = (D 1"3 G , - - . ,  W fq G )  in G is constructive. 

THEOREM 3. Let t be a constructive tower and A .-~ toa, B -~ toil modulo t. 

Then F, E F~ iff A E B modulo t. Moreover, if F~ t~. F~ then do(A E B modulo t) 

is empty. 
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PROOF simultaneously for t and every projection tower t IG. Hence the 

second statement of the theorem follows from the first one which is proved by 

induction on nu(~, /3) .  Let /3 = nu,(az, a2). 

Case i = 0. If c~ =</3 the statement is clear. Let a >/3. Firstly suppose that 

F,  E Fo. Then there exists 3' < /3  such that F~ = F~. Let C ~ toy modulo t and 

C'  < A .  There  exist 6 and G such that C '  ~ to6 in G. W.l.o.g., G is the whole 

space for we may switch over to the tower t I G  in G. By the induction 

hypothesis C '  E A if[ C '  U C. By (CT5), A ~ B modulo t. Now suppose that 

A E B modulo t. By (CT5), there exists C < B such that for each C ' <  A, 

d o ( C ' E A ) ~ - d o ( C ' E C ) .  W.l.o.g., C~to3"  for some y. By the induction 

hypothesis F~ E Fo iff F~ E F~ for every 6 < c~. Hence  F~ is equal to F~ which 

belongs to F~. 

Other  cases are not more difficult. Q.E.D.  

Below, c ÷ is the minimal ordinal of cardinality more than c. 

LEMMA 4. Let  0 < e < c ÷ and e is closed under the pairing [unction nu (a,/3). 

Then there exists a constructive tower o[ height toe whose arena is the whole space. 

PROOF. By Lemma  2.6, there exist everywhere big, modest  and disjoint point 

sets D °, D ' ,  D 2 such that their union D is disjoint from every guardian. By 

L e m m a  1.5 in Part I, each D ~ can be parti t ioned into disjoint and ewd parts D~ 

where a < toe. Let A ,  = D ° +  E ~ < , D ~ +  B~ where B,  is defined as follows. 

Let a = nu,(/3, 3') + n. B~ = 2 D~,~÷~2 n n D ~ +  if either = i + 2 ,  or = 1 1  and 

F~ ~ Fv. Otherwise B ,  = D~. 

By Lemma  4.1, there exists a tower t such that (A~ : a < toe) is a skeleton of t. 

t is the desired tower: Q.E.D.  

§6. Raising towers 

Let t = (D, D °, . . . ,  D ~, W) be a tower in a fixed guard space, z be the height of 

t and Ak = A O D  ~ for every t-storey A and 0_<-- k <=/. 

t is stable iff for each tower t '  there exists X C D  ° such that for every t-storey 

A, d o ( A ° C X )  ~ U { d o ( A  ° =  B O D°) :  B is a storey of t'}. 

LEMMA 1. I [  arena(t)  = 1 and there exists a skeleton (Aa : a < r )  o f  t disjoint 

on D o then t is stable. 
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PROOF. Take  X = U {A o n G : there exists a t ' - s torey B with A o = B n D °  

in G}. 

Note  that the not ion of stability is expressible by a guard  formula  for  it is 

enough  to speak in the above  definition about  towers t ' =  ( E , E ° , E  ~, W').  

Similar notes are applied to some o ther  definitions below. 

LEMMA 2. Suppose that t is stable. Then  for each subset I C ~" o f  cardinality 

<- c there exists X C D  ° coding I in the following sense. I f  a < z and A ~- a 

modulo  t then either a E I and  d o ( A ° C X )  is ewd or af~ I and d o ( A ° C X )  is 

empty. 

PROOF. By L e m m a  2.6 there exist everywhere  big and modest  sets E ° and E ~ 

disjoint among  themselves and disjoint f rom D and every guardian.  By L e m m a  

1.5 in Part I, each E ~ can be part i t ioned into disjoint and ewd subsets E~ where  

a E I. Let (B~ : a < r )  be a skeleton of t, E = E °-~ E 1 + D o and P be a sequence  

(A~ " a E I )  where  Ao = E ° +  Z{E~: /3  _-< a } +  B °. By L e m m a  4.1 there exists 

W '  such that t ' =  ( E , E ° , E  l, W ' )  is a tower  with a skeleton P. Now use the 

stability of t to find the desired X. Q .E .D.  

COROLLARY 3. I f  t is stable then e xp l D° l  is equal or greater than the 

cardinality o f  {I C "r :1II <-_ c }. 

A tower  t '  = (E, E °, • •., E ' ,  W')  is an extension of t i f f  D 1 C E  1, and for  each 

t-s torey A there exists a t ' - s torey B (called a t '-version of A )  such that 

A 1 = B n E 1, and for every t-s torey A and t ' - s torey B, if B n E 1 C A  1 then B is 

a t ' -version of some t-storey.  

LEMMA 4. I f  t' is an extension of  t, c~ < ,r, A -~ a modulo  t and B is a 

t '-version of  A then B ~ ce modulo  t'. 

PROOF by induction of a. 

t is exponential  on a point set E iff E is ewd and for each X C E there exists a 

t -s torey A with A n E = X. Recall that a top. space is almost separable iff every 

non-empty  open  point  set in it has a non-empty  open  separable subset.  For  each 

cardinal K, exp K is the cardinali ty of the power  set of r .  

LEMMA 5. Suppose that t is exponential on some point set E. Then "r >-c. 

Moreover z >= expM1 if the space is not almost separable. 
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PROOF. See lemma 5.2 in Part I. 

Let ~ ( t )  say that there exists an extension t '  of t such that t '  is exponential on 

some E and each t ' -storey is a t '-version of a t-storey. Let ~02(t) say that t 

satisfies ~l(t) and for each tower t '  satisfying ¢1(t'), if t is an extension of t '  then 

each t-storey is a t-version of a t '-storey. 

THEOREM 6. (i) Suppose that the whole space is separable. Then ~l(t) holds iff 

.c >-_ c, and ~2(t) holds iff z = c and the arena of t is the whole space. (ii) If the 

whole space is not almost separable then each of ¢l(t) and ~:(t) implies 

z _-> expl, l~. 

PROOF. See Lemma 5 above and lemma 5.1 in Part I. 

LEMMA 7. Suppose that z < c ÷ and the arena of t is the whole space. For each 

ordinal e < c* there exists a constructive extension of t of height >= toe. 

PROOF. W.i.o.g., toe _-> z and toe is closed under the pairing function 

nu(a, fl). By Lemma 2.6, there exist everywhere big and modest point sets E °, 

E I, E 2 which are disjoint among themselves and disjoint from D and all 

guardians. By Lemma  1.5 in Part I, each E k can be partit ioned into disjoint and 

ewd parts E~ where a < t o e .  Let ( D , , : a < r )  be a skeleton of t and E =  

E ° + ( D I + E 1 ) + E  2. We build a sequence (A,  : a < t o e )  of subsets of E as 

follows. A~ fq E ° = E ° for every a. A ,  N (D~+ E 1) is equal to D ~ if a < z and it 

is equal to D ' +  Eo<~E~ otherwise. The construction of (A,, M E2:o~ < toe) is 

similar to that of (B, : a < toe) in the proof of Lemma  5.4. By Lemma 4.1, there 

exists a tower t '= ( E , E ° , D I + E 1 ,  E 2, W') such that (Ao : a  < toe) is a skeleton 

of t'. t '  is the desired extension of t. Q.E.D.  

A subset X of D ° is constructible modulo t i f f  there exist a constructive 

extension t '  of t realizing X in the following sense. There exists a limit t ' -storey 

C such that for every limit t-storey A and its t ' -version B, d o ( A ° C X )  ~ 

do(B E C modulo t'). 

LEMMA 8. Suppose that r < c* and the arena of t is the whole space. Then a 

subset X of D O is constructible modulo t iff for each G there exist H C G and a 

constructible subset I of {a :toa < z} satisfying the following conditions. Let 

A -~ toa modulo t. I r a  E I then d o ( A ° C X )  is dense in H. Otherwise d o ( A ° C  

X )  is disjoint from H. 
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PROOF. Firstly suppose that X is constructive modulo t. Take  a constructive 

extension t ' =  ( D ' , .  •., W') of t and a t ' -storey B such that for each t-storey A 

and its t ' -version A ' ,  d o ( A ° C X ) ~ - d o ( A ' E  B modulo t'). For an arbitrary G 

there exist /3 and H C G  such that B-~to/3 modulo t ' .  Let I = F ~ ,  A ~ o a  

modulo t and A '  be a t ' -version of A. By Lemma 4, A ' ~  ~oa modulo t'. By 

Theorem 5.3, d o ( A '  ~ B modulo t) includes H if a E I, and it is disjoint from H 

otherwise. 

Now suppose that for each G there exist appropriate  H and I. We look for a 

constructive extension of t realizing X. Using Lemma  1.4 in Part I and a version 

of Lemma  5.3 in Part ], we may suppose that there exists a constructible subset I 

of { a : t o a  < r }  such that for every A ~ t o a  modulo t, either a E I and 

d o ( A ° C X )  is ewd or a E  I and d o ( A ° C X )  is empty.  There exists/3 < c ÷ such 

that I = F~. By Lemma 7, there exists a constructive extension of t of height 

more than to/3. By Theorem 5.3, t '  realizes X. Q.E.D.  

From Lemmas  2 and 8 follows 

COROLLARY 9. Suppose that t is stable, -r < c ÷ and the arena o f  t is the whole 

space. Then for each constructible subset I o f  {a : toa < "c} there exists X C D o such 

that X is constructive modulo t and  for each A ~ toct modulo t, either a ~ I and  

d o ( A ° C X )  is ewd or a ~  I and  d o ( A ° C X )  is empty. 

§7. Monadic theory of guarded spaces 

Let M be the model (c, < ,  P) where < is the natural ordering of c and P is 

the 3-place predicate corresponding to the pairing function nu(a , /3 )  (i.e. 

P(a,/3, 7) holds iff 7 --- nu(a, /3)) .  Let L be the monadic second-order language 

of M and T be the theory of M in L when the set variables range over 

constructible subsets of c. Each atomic formula of L is in one of the following 

forms: v~ < vi, P(v~, v, v~)or  v~ E Vj. W.l.o.g., the logical operators  of L are - ,  v 

and :!. Below, ot ranges over  c and I ranges over constructible subsets of c. 

Let U be a separable guard space and t = (D, D °, D 1, D 2, W )  be a construc- 

tive and stable tower in U of height c whose arena is the whole space. For every 

X C D  and 0=< k =<2, D k n x is denoted by X k. Let (D~ : a < c) be a skeleton 

of t, A range over  the limit t-storeys and X range over the subsets of D O 

constructible modulo t. For each I select Er such that for each A ~- wa modulo t, 

either a E I and d o ( A ° C E x )  is ewd or a ~  I and d o ( A ° C E r )  is empty.  

We translate formulas in L into guard formulas as follows: 
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(v, < V,)* = ( a ,  < At), (P(v,, v~, v~))* = (Ak ~- nu (A,, At)), 

(v, E V j ) * = ( A ° C X j ) ,  ( - q ) * = ( d o q * = 0 ) ,  ( q v ~ b ) * = ( q * v ~ b * ) ,  

(:Iv,q)* = (3A,)q* ,  (::IV, q)* = (::lX,)q*. 

LEMMA 1. q ( a l , ' ' ' , a ~ , I ~ , ' ' ' , I , )  holds (respectively fails) in M iff the 

domain of q *(D~,,  . . ., D ~ , ,  E,,, . . ., E,. ) is ewd (respectively empty) in U. 

PROOF by induction on q. We prove Lemma I not only for U but also for every 

subspace of U open in U. The atomic case and the cases of negation and 

disjunction are straightforward. The two quantifier cases are similar; we adduce 

here only one of them. 

Let q = (3v)~. Fix the free variables of q. If q holds in M then some ~ (~ )  

holds in M hence the domain of ~*(D,~) is ewd hence the domain of q * is ewd. 

Suppose that the domain of q * is not empty. Take G such that q*  holds in G. 

There exists A such that ~* (A)  holds in G. There exist ~ and H such that 

H C G f3 do(A = De). Hence ~b*(D~) holds in H. By the induction hypothesis 

~b(a) holds in M hence q holds in M. Q.E.D. 

The constructive second-order theory of c is the full second-order theory of 

the ordinal c computed in the constructive universe. 

THEOREM 2. There exists an algorithm interpreting the constructive second- 

order theory of c in the monadic theory of any guard space. 

PROOF. It is clear that the constructive second-order theory of c is interpreta- 

ble in T. Let q be a sentence in L. Use Lemma 1 and Theorem 6.6 to build a 

guard sentence q '  such that q holds (fails) in M if[ q '  holds (fails) in every 

separable guard space. Let q"  say that there exists a guarded and replete set X 

such that for each guarded and replete subset Y of X, q '  holds in the subspace 

Y. If q holds (fails) in M then q"  holds (fails) in every guard space. Q.E.D. 

COROLLARY 3. There exists an algorithm interpreting the constructive second- 

order theory of c in the monadic theory of any vicinity space U satisfying the 

following condition. I f  X is a separable, replete and nwd point set in U then X is 

not pseudo-meager in itself. 

PROOF. X is a guard space with empty guard. 
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COROLLARY 4. There exists a uniform in p algorithm interpreting the construc- 

tive second-order theory of c in the monadic theory of any vicinity space U which is 

not p-modest  and satisfies the following conditions : if X is a replete and separable 

subset of U, Y C X  and Y is pseudo-meager in X then Y is meager in X. 

PROOF. If U is not p-modest and satisfies the above condition then there 

exist a separable subspace V of U and subsets X I , - " , X p  of V such that 

S = {X~,. •., Xp} is a non-modesty witness in V. By Lemma 2.3, S is a guard in V. 

Now use Theorem 2 and its proof. Q.E.D. 

A chain C is p-modest iff for each subchain C'  of C, the vicinity space formed 

by C' is p-modest. This definition is consistent with the definition of p-modest 

chains in [4]. 

COROLLARY 5. Assume that every pseudo-meager subset of the real line R is 

meager. Then there exists a uniform in p algorithm interpreting the constructive 

second-order theory of c in the monadic theory of any short chain which is not 

p-modest. 

§8. Quasi-separable guard-spaces 

A top. space is quasi-separable iff each non-empty open point set in it includes 

a non-empty open separable subset. By theorem 8.1 in Part I, separability is not 

expressible in the guard language. We prove here that under some set-theoretic 

assumptions quasi-separability is expressible in the guard language. The Con- 

tinuum Hypothesis is assumed in this section. 

THEOREM I. There exist guard formulas ~ ( X ) ,  ~:(X), ~3(X) such that for 
every guard space U and every point set X in U 

(i) if U is separable then ~ ~(X) holds in U iff X is at most countable, 

(ii) if U is quasi-separable then ¢z(X)  holds in U iff X is meager, and 

(iii) if U is quasi-separable then ¢3(X) holds in U iff X is everywhere big. 

PROOF. About formulas ~1 and ~2 see sections 6 and 7 in Part I. The desired 

formula ~¢3(X) says that for each G there exists G ' C G  such that for each 

H C G',  ¢~(H N X) fails in H. Q.E.D. 

THEOREM 2. Assume exp 1,l~ > N2. Then there exists a guard sentence expres- 

sing quasi-separability. 
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PROOF. Let ~b(t) say that t is a tower such that t satisfies formula ~pl in §6 and 

for each limit storey A of t there exists a tower t '  of height oJ such that (i) if B is 

a t '-storey then B is a t-storey and B < A modulo t, and (ii) if B is a t-storey and 

B < A modulo t then there exists a t '-storey C such that B < C modulo t. We 

prove that 3t~b(t) is the desired sentence. Let U be a guard space. 

Firstly suppose that U is quasi-separable. Build a tower t = (D ,D° ,D  ~, W) 
such that the height of t is equal to c, the arena of t is the whole space and t has a 

skeleton (A,, : a < c) disjoint on D O (use Lemma 2.6, lemma 1.5 in Part I and 

Lemma 4.1). By lemma 1.5.3 and theorem 6.6, t satisfies ~ .  Let A be a limit 

storey of t. We look for a tower t '  satisfying the clauses (i) and (ii) above. By 

lemma 5.3 in Part I we may suppose that A = Ao for some a. Let (a ,  : n < to) be 

an increasing sequence converging to a. By Lemma 4.1 there exists a tower t' 
such that (As, : n < to) is a skeleton of t'. t '  is appropriate. 

Now suppose that U is not quasi-separable and ~b(t) holds in U. By Theorem 

6.6, there exists a storey A of t such that A ~ to2 modulo t. Take t '  satisfying the 

clauses (i) and (ii) above. Let (C, : n < to) be a skeleton of t '  and / ,  be the 

collection of ordinals a such that do(C,  ~ a modulo t) is not empty. Clearly, 

II~ I _-< N~. Let I = U { L  : n < to},/3 = U I and B ~ /3  modulo t. Clearly, t '  fails 

to satisfy the clause (ii). Q.E.D. 

LEMMA 3. The predicate " G  is quasi-separable" and the predicate " D  is 
everywhere big" are expressible each by means of the other in the guard language. 

PROOF. A guard space is quasi-separable iff there exists a point set D such 

that D is ewd and D n G is not everywhere big for any G. A point set D is 

everywhere big iff D is ewd and for any G either G is not quasi-separable or G 

is quasi-separable and the formula ~3 of Theorem 1 is satisfied by D O G in G. 

Q.E.D. 

Let t be a sequence of four point sets. 

LEMMA 4. The predicate " D  is everywhere big" is expressible by means of the 

predicate " t  is a tower of height >-_ c"  in the guard languages. 

PRooF. Let ~ ( D )  say that for each G, if D n G is (2+Gd)-modes t  then 

there exist D °, D 1 and W such that t --- (D n G, D °, D 1, W) is a tower of height 

_>- c in G and t is stable. 

If D is everywhere big and D n G is (2 + Gd)-modest use lemma 1.5 in Part I, 

Lemma 4.1 and Lemma 6.1. Suppose that D is not everywhere big. Take G with 
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I D O G I < c. By Lemma 2.2, D O G is modest. Now use Corollary 6.3. Q.E.D. 

Let to* be the cardinal to~ in the constructive universe. 

LEMMA 5. The predicate " t  is a tower of height > to i is expressible in the 

guard language. 

PROOF. Let ~ (t) say that t is a tower and there exist towers t', t" such that t is 

an extension of t', t '  is an extension of t", t" is of height to, t '  is constructive and t '  

realizes every set which is constructive modulo t". Q.E.D. 

THEOREM 6. Assume c = to*. Then quasi-separability is expressible in the 

guard language. 

PROOF. See Lemmas 3-5. 

It is easy to see that tot may be replaced in Lemma 5 and Theorem 6 by 

to*, to* , - . ,  and many others. 

§9. Restricted monadic theories 

In this section L is the guard language augmented by a point set constant W. 

Let U be a guard space and S be a family of point sets in U. For each point set W 

the pair (U, W) is an augmented guard space. The S-theory of an augmented 

guard space (U, W) is the theory of it in L when the set variables range over S. 

The augmented S-theory of U is the intersection of the S-theories of (U, W) 

when W range over the point sets in U. The augmented modest theory of U is 

the augmented S-theory of U when S is the family of modest subsets of U. 

Let R be the real line and Q be the set of rational numbers. Assuming that R 

is not pseudo-meager Shelah interpreted the first-order logic in the augmented 

PS(Q)-theory of R, see theorem 7.11 in [7]. In [4] it is announced that the 

augmented modest theory of any complete short chain without jumps is 

undecidable if all pseudo-meager subsets of R are meager, see theorem 5.5 

there. We generalize here these results. 

THEOREM 1. There exists an algorithm associating an L-sentence ~' with each 

first-order sentence ~ in such a way that the following condition holds. Let U be a 

guard space and D be a (2 + Gd)-modest in itself and ewd point set in U disjoint 

from all guardians. Then ~ is true iff ~' belongs to the augmented PS(D )-theory of 

U. 
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PROOF. Here  a graph is a model (M, P)  where M is a non-empty set and P is 

a dyadic, reflexive and symmetric relation on M. A first-order formula ~ is a 

graph formula iff P is the only non-logical constant in 9. The following lemma is 

well-known. 

LEMMA 2. There exists an algorithm associating a graph formula 9 ' with each 

first-order formula 9 in such a way that 9 is true iff ~' is true in the graph theory. 

Let U and D be as in Theorem 1, D O and D 1 be disjoint ewd subsets of D, and 

t = ( D , D ° , D  ~, W)  where W is a point set in U. Recall that a storey of t is an 

arbitrary subset X of D such that the statement st(X, t) holds in U where st is 

the formula of §3. By Note  3.6, all bound set variables in the statement st(X, t) 

range over  the subsets of D. Let X k = D k n X for every t-storey X and k = 0, 1. 

We say that t defines a graph iff it satisfies the following conditions: there exists a 

storey of t, and do(X = Y) + do(X ° n yo = 0) is ewd for every t-storey X, Y, and 

X 1 is ewd for every t-storey X. 

With every graph formula ~ (vl, • •., vn) and t-storeys A 1, • • ", A ,  associate the 

t-domain of ~(A~,- • -, A , )  as follows: 

do ,P(A,  B)  = int cl(A ~ n B1), 

do,(9,  v ~ 2 ) ( ' " )  = d o , 9 , ( " ' )  U d o , 9 2 ( " ' ) ,  

d o , -  ¢ ( " ' )  = U -  c ldo ,9 ("  • "), 

do, : l v g ( v , ' "  ") = U { d o , ¢ ( A , ' "  "): A is as torey  of t}. 

[.EMMA 3. If  ~0 (V~, • • ", V,) is true in the graph theory, t defines a graph and 

A ~ , . . . , A .  are t-storeys then d o , ~ ( A ~ , . . . , A . )  is ewd. 

PROOF OF LEMMA 3. Easy induction on the length of a deduction of 9 from 

the axioms Pvv and Puv --~ Pvu. Q.E.D.  

Let (to, P)  be a graph. Partition D O and D 1 into ewd disjoint parts X, and Y,,. 

respectively: D ° = E { X . : n < t o } ,  D l = x { Y , . . : m , n < t o } .  Let E , = X , +  

E{Y,,. : (m, n) @ P}. By Theorem 3.2, there exists Wp such that for each subset Z 

of D, Z is a storey of tp = ( D , D ° , D  1, Wp) iff Y d o ( Z  = E , )  is ewd. 

LEMMA 4. For each graph formula ~ ( v , , . . . ,  vm) and every natural number 

n~, . . . ,  nm, the te-domain of ~ ( E . ~ , . . . , E , . )  is ewd if 9 ( n l , ' " ,  nm) holds in 

(to, P) and it is empty otherwise. 
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PROOF OF LEMMA 4. Easy induction on ~0. 

Theorem 1 follows from Lemmas  2-4. 

THEOREM 5. There exists an algorithm associating an L-sentence q~ * with 

each first-order sentence ~v in such a way that the following condition holds. Let U 

be a guard space and S be a family of point sets in U such that (i) if X E S then 

P S ( X )  C S and (ii) S contains a guarded set. Then q~ is true iff ~o* belongs to the 

augmented S-theory of U. 

PROOF. ~p* says that there exists D E S such that D is guarded and 

(2 + Gd)-modest  in itself and q~' belongs to the PS(D)-theory of U. Q.E.D.  

If X ranges over separable sets only in the definition of guard spaces 

Theorems 4 and 5 remain true. 

§10. The real line 

Recall that a chain is a linearly ordered set, and a chain is short iff it embeds 

neither w~ nor o3 ~*. It is easy to check (and known) that the interval topology of 

any chain is normal.  Any short chain forms, in the way described in §1, a vicinity 

space of degree _-< 2 which is first-countable and of cardinality at most c. The last 

follows from the partition theorem of Erd6s and Rado, see [1]. The short, 

coherent (i.e. without jumps and end-points) and complete chains are called lines 

in this section. A line is isomorphic to the real line R iff it is separable. 

Let L be the monadic second-order language of order. The property to be a 

line is expressible in L. We assume the Cont inuum Hypothesis.  Hence each line 

forms a guard space with the empty guard. 

LEMMA 1. Let U be quasi-separable line. U is not separable iff there exist point 

sets D and V in U such that D C V, D is discrete, V forms a line and D is 

everywhere big in V. 

PROOF. Suppose that U is not separable. For every point a and b in U 

define aEb iff the interval between a and b is either empty or separable. E is an 

equivalence relation with convex equivalence classes. Form D selecting an inner 

point from each equivalence class of E having at least two points. Let 

V = D tO {a : {a} is an equivalence class of E}. D and V are the desired point 

sets. 

The other implication is clear. O.E.D.  
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THEOREM 2. Assume that there exists an L-sentence such that for each line U, 

U satisfies q~ iff U is quasi-separable. Then there exists an L-sentence ~ such that 

for each line U, U satisfies ~b iff U is isomorphic to the real line R. 

PROOF. See Lemma 1 and Lemma 8.3. 

Let 1~1" be the a th cardinal of the constructive universe. 

COROLLARY 3. Assume exp t ( l> l (2  o r  ~1=~ .  Then there exists an L-  

sentence defining R up to isomorphism. 

PROOF. Use Lemma 2 and §8. 

THEOREM 4. Let U be a non-separable line L-equivalent to R. Then there 

exists an ewd D C U such that D does not embed any uncountable subset of R. 

PROOF. By corollary 6.3 in Part I, there exists an L-formula ~ (X )  such that 

for each X C R, ~ (X) holds in R if[ X is countable. There exist ewd D C U such 

that ~ ( D ) h o l d s  in U. Moreover,  if X CD, X C V C U and V is coherent  and 

complete then ~ (X)  holds in V. If X C D is separable take V C U such that 

X C V and V is separable, coherent and complete. Then V is isomorphic to R, 

(X) holds in V hence X is countable. Q.E.D. 

THEOREM 5. There exists an L-sentence holding in the real line and failing in 

every (non-separable) Suslin line. 

PROOF. Let O(t) be the formula built in the proof of Theorem 8.2. According 

to that proof the sentence 3tO(t) holds in the real line. Let S be a non-separable 

Suslin line and t be a tower in S satisfying $(t) .  By Theorem 6.6, there exists a 

storey A of t such that A ~- to1 modulo t. Take a tower t '  satisfying the clauses (i) 

and (ii) in the definition of ~. Let (Cn : n < to) be a skeleton of t '  and L be the 

collection of ordinals a such that do(C, = ct modulo t) is not empty. Every 

Ih l~ -  n0 for S is Suslin. Let I = t,.J{In : n < to},/3 = 131 and B ~ /3  modulo t. 

Clearly, t' fails to satisfy the clause (ii). Q.E.D. 

THEOREM 6. There are chains with the same monadic theories whose comple- 

tions do not have the same monadic theories. 
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PROOF. By theorem 6.3 in [7], there exists an uncountable subchain C of the 

real line R monadically equivalent to the rational chain Q. Let C' (respectively 

Q') be C x Q (respectively Q x Q) ordered lexicographically. Use the Ehren- 

feucht Game Criterion to check monadic equivalence of C' and Q'. Let C* be 

the completion of C'. The completion of Q' is isomorphic to R. Let ~b be an 

L-sentence saying that the universe is linearly ordered and there exist D and V 

such that D C V, D is discrete, V forms a line and the formula Ca of Theorem 8.1 

is satisfied by D in V. Clearly, qJ holds in C* and fails in R. Q.E.D. 
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