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THE MONADIC THEORY OF021 

YURI GUREVICH, MENACHEM MAGIDOR AND SAHARON SHELAH 

Abstract. Assume ZFC + "There is a weakly compact cardinal" is consistent. Then: 

(i) For every S c C), ZFC + "S and the monadic theory of o2 are recursive each in 

the other" is consistent; and 
(ii) ZFC + "The full second-order theory of w2 is interpretable in the monadic theory 

of W2" is consistent. 

Introduction. First we recall the definition of monadic theories. The monadic 
language corresponding to a first-order language L is obtained from L by adding 
variables for sets of elements and adding atomic formulas x E Y. The monadic 
theory of a model M for L is the theory of M in the described monadic language 
when the set variables are interpreted as arbitrary subsets of M. Speaking about the 
monadic theory of an ordinal co we mean the monadic theory of <a, < >. 

Formal theories of order were studied very extensively. We do not review that 
study here. Our attention is restricted to the monadic theory of ordinals. The 
pioneer here was BUchi. He proved decidability of the monadic theory of w, the 
monadic theory of w1, and the monadic theory of ordinals < 2. See the strongest 
result in [Bu]. Note that the last of these theories is not the monadic theory of w)2, 

but the set of monadic statements true in every ordinal < W2. As we will see below 
BUchi had a good reason to stop at w2. 

Shelah studied the monadic theory of w2 in [Shl]. We shall use some of his re- 
sults. Let U, = {a < w2: cf a = Wi} for i < 1, and I be the ideal of nonstationary 
sets. For X c U0 let D(X) = {a E Ul: a n X is stationary in a}. We call D(X) 
the derivative of X. It is easy to see that D(X) = D(Y) modulo I if X = Y modulo 
I, thus D can be considered as a relation on the Boolean algebra PS((w2)/I of subsets 
of w2 modulo I. (PS(X) denotes here the power set of X and the corresponding 
Boolean algebra.) Shelah proved: 

(i) the monadic theory of 02 and the first-order theory of <PS(w)2)/I, D> are re- 
cursive each in the other; 

(ii) the monadic theory of )2 is decidable if for every stationary X c U0 and every 
Y1, Y2 with D(X) = Y1 U Y2 there are disjoint stationary X1, X2 such that X1 U 
X2= Xand D(Xj) = Y modulo I for i = 1, 2. 

He noted also that (Baumgartner and Jensen's results imply that) "2 t= 
(DX # 0 for every X c U0)" is independent in ZFC. 
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Assuming ZFC + "There is a weakly compact cardinal" Magidor proved in 
[Ma] that ZFC + "D(X) = U1 modulo I for every stationary X c UO" is consis- 
tent. By (i) the monadic theory of w2 is decidable in Magidor's universe. In [Sh2] 
Shelah proved that a certain combinatorial principle (the uniformization property 
for 02) implies the premise of (ii), and that the uniformization is consistent with 
ZFC + CH. Later he proved that the uniformization property is consistent even 
with ZFC + GCH, see [St & Ki]. By (ii) the monadic theory of w2 is decidable in 
the corresponding universes of Shelah. It is different however from the monadic 
theory of w2 in Magidor's universe. 

The first undecidability result on monadic theories of ordinals was presented by 
Magidor in Logic Colloquium 77 (Wroclaw, Poland, 1977). For n > 2 let En say 
that for every stationary X ' an, consisting of ordinals of cofinality w there is 
a < (on, of cofinality > w such that a n xis stationary in a. Assuming consistency 
of w supercompact cardinals Magidor proved that for every S c w - {O, 1 } there 
is a world with {n: En is true} = S. Shelah proved in this direction the following. 
Assume consistency of w Mahlo cardinals; then for every S c {2n: 1 < n < w} 

there is-a world with {2n: E2n is true} = S. And for every S c {2n: 1 < n < A} 
it is consistent with ZFC + GCH that {2n: 1 < n < w and there is a stationary 
X C (02n such that for every Y c X there is Z ' (2n with {a < (02n: cf(a) > a) 

and a n Z is stationary in al}= Y modulo nonstationary sets} is equal to S. None 
of these three results (one of Magidor and two of Shelah) is published. 

In Part I of this article we prove in detail: 
THEOREM 1. Assume there is a weakly compact cardinal. Then there is an algorithm 

n - on such that on is a sentence in the monadic language of order and for every 
S c w there is a generic extension of the ground world with {n: 0)2 k= Obn} = S. 

Thus there are continuum many possible monadic theories of 0)2 (in different 
universes) and for every S c w there is a monadic theory of (X2 (in some world) 
which is at least as complex as S. 

The full second-order theory of a set X is the theory of X in the language with 
variables for elements, variables for arbitrary monadic predicates, variables for 
arbitrary dyadic predicates, etc. It depends on the cardinality of X only. It belongs 
more to set theory than to model theory and can be used as a standard of com- 
plexity. The monadic theory of 0)2 is easily interpretable in the full second-order 
theory of )2. Thus the full second-order theory of 0)2 gives an upper bound of com- 
plexity of the monadic theory of )2- 

THEOREM 2. Assume there is a weakly compact cardinal. Then there is a generic 
extension of the ground world where the full second-order theory of (02 is interpretable 
(therefore recursive) in the monadic theory of (2. 

Theorem 2 is proved in Part II. It has actually the same proof as Theorem 1 with 
only a few alterations. Combining the technique of Part I and that of [Ma] we prove 
in Part III 

THEOREM 3. Assume GCH and existence of a weakly compact cardinal. For every 
S ' 02 there is a generic extension of the ground universe where S and the monadic 
theory of 0)2 are recursive each in the other. 

If X is weakly compact in a world V then it is weakly compact in the construc- 
tible part of V (see [Je]) where GCH holds. Hence Theorem 3 gives 
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COROLLARY 4. Assume ZFC + "There is a weakly compact cardinal" is con- 
sistent. Then for every S c w, ZFC + "S and the monadic theory of 02 are recursive 
each in the others" is consistent. 

We use the book [Je] and the article [Sho] as sources of notation, terminology and 
information. 

PART I. CONTINUUM POSSIBLE MONADIC THEORIES OF (02 

?1. Coding. Here a graph is a model <X, R> where R is a reflexive symmetric 
binary relation on X such that for every different x, y in X there is z E X with Rxz 
not equivalent to Ryz. 

Claim 1. There is an algorithm n --+ qn such that (pn is a first-order graph sentence 
and for every S c w there is a graph <w, R> with {n: <w, R> satisfies (Pn} = S. 

PROOF. For every n E w - S add to w an auxiliary element n', for every n E S 
add two auxiliary elements n' and n". Let R be the least reflexive symmetric rela- 
tion on the resulting set containing pairs (n, n'), (n, n + 1) for n < w and pairs 
(n, n") for n E S. It is easy to see that x is auxiliary if it is R-connected with at most 
two elements including itself. Hence 0, 1, ... are definable. (qn says that n is R- 
connected with two auxiliary elements. It remains only to replace all elements by 
natural numbers. E] 

Given a graph <w, R> and assuming existence of a weakly compact cardinal we 
define in ?2 a forcing notion P and prove in ?6: 

THEOREM 2. Suppose G is a P-generic filter over the ground world V. Then in 
V[G] there is a partition of {a < 02: Cf a = w} into stationary sets S,, n < w, such 
that 

(i) for every a < 0)2 of cofinality Wi there is a pair (m, n) E R such that Sm U Sn 
includes a club subset of a, and 

(ii) if (m, n) E R, Am C Sm, An C Sn and Am, An are stationary in 02 then there 
are stationarily many ordinals a < 2 of cofinality al with both Am n a and A. f a 
stationary in a. 

Note that clause (i) of Theorem 2 implies D(Sm) n D(S,) = 0 for (m, n) E 

(w x ao) - R. 
Claim 3. The first-order theory of graph <a), R> is interpretable in the monadic 

theory of (02 if there is a partition described in Theorem 2. 
PROOF. U0, U1, the ideal I and the derivative D are defined in the Introduction. 

Here are some more definitions in the monadic theory Of 02. Two subsets X, Y 
of U0 are connected if D(X) n D(Y) is stationary. (Note that X c U0 is connected 
with itself iff X is stationary.) A stationary X c U0 is an atom if there are no X1, 
X2 c X and Y c U0 such that X1, X2 are stationary and Y is connected with one of 
sets X1, X2 but not with the other. An atom X is maximal if X = Y modulo I for 
every atom Y including X. 

For every m every stationary X c Sm is an atom. For, suppose X1, X2 are sta- 
tionary subsets of Xand Y c U0. Let Y1 = U{Y n S: (m, n) E R}, Y2 = Y - 
Y1. If Y1 is stationary then some Y n Sn with (m, n) E R is stationary and Y is 
connected with both X1 and X2. Otherwise the derivative of Y coincides modulo 
I with the derivative Y2 which avoids even the derivative of X, thus Y is connected 
with neither X1 nor X2. 



390 YURI GUREVICH, MENACHEM MAGIDOR AND SAHARON SHELAH 

If X is an atom then X c S_ modulo I for some m. For, let K = {m: X n Sm is 
stationary}. K # 0 because X is stationary. If different m, n belong to K there is 
/ such that Rlm is not equivalent to Rln. Set X1 = X n Smu, X2 = X n Sno Y = so 
to contradict the assumption that Xis an atom. 

It is easy to see that an atom Xis maximal iffX = Sm modulo Ifor some m. Now 
interpret variables of the first-order graph language as maximal atoms (equality is 
equality modulo I) and R as connectedness. El 

Claim 1, Theorem 2 and Claim 3 imply 
THEOREM 4. Assume there is a weakly compact cardinal. There is a recursive list 

0b0, sb1, . . . of monadic sentences such that for every S c W there is a generic exten- 
sion of the ground world with {n: (02 # Obn} = S. 

?2. Forcing notion. Suppose X is a weakly compact cardinal and R is a reflexive 
symmetric binary relation on w. We define a forcing notion P for collapsing X onto 
(02 and creating stationary subsets Sm of (02 described in ?1. A condition p is a 
triple (pO, p1, p2) of countable functions. pO gives a partial information about 
sets Sm. it is composed of pairs (a, m) where cf a = o, m < w; the intended mean- 
ing is a E Sm. p1 assigns a pair (m, n) E R to ordinals a < X of cofinality > o; the 
intended meaning is: So n a is stationary in a iff 1 e {m, n}. To assure our inten- 
tions p2 assigns a closed countable subset of a to each a E dom p1 in such a way 
that p2(a) c {P: pO(a) is equal to m or to n} where (m, n) = p1 (a); the intended 
meaning is: p2(a) is an initial segment of a club subset of a included in Sm U So. 
A condition p refines a condition q (p < q) if qO c pO, ql c p1 and for every 
a E dom p1, p2(a) is an end extension of q2(a) and 

min(p2(a) - q2(a)) > sup(ac n (dom pO U dom p1)). 

The last requirement is used to prove the following Claim 1. (It is convenient 
for us to treat elements of R as unordered pairs.) 

Claim 1. P is w1-closed. 
PROOF. Given po > p, > * set x =U{p.O: n < (}, y= U {pl n < 0} 

and z(a) be the closure of U{p,2(a): a E dom pl} for a E dom y. Let d = {a E 
dom y: sup z(a) does not belong to any p"2(a)}. If d # 0 then (x, y, z) 0 P because 
sup z(a) 0 dom x for a E d. Select a functions = {(sup z(a), ma): a E d, ma e y(a)}; 
this is possible because a, P E d, a < P imply sup z(a) < a < sup z(p). (x U f, 
y, z) belongs to P and refines any p, El 

If p E P then dom pO U dom p1 will be called the domain of p and denoted 
dom(p). sup dom(p) will be called the height ofp and denoted h(p). 

Claim 2. P satisfies the x-chain condition. 
PROOF. By contradiction suppose that {pa: a < 4r is a set of pairwise incompati- 

ble conditions. Define f (a) = sup(a n dom pa). f is regressive on {a: cf a > c)}. 
By Fodor's Lemma there is a stationary A s X with f(a) = 3 for some 3 and any 
a E A. Let A = 13Iw. There are at most A possibilities for pOl, p1Ij, p2ld. Hence 
there is a such that B = {P e A: pai and ppi coincide on 3 for i < 2) is of cardinality 
x. There is P1 e B exceeding h(pa). Then Pa, Pp are compatible, thus we have a con- 
tradiction. [] 
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COROLLARY 3. For every P-name a there is a function f: K K such that for every 
a < X and every p forcing a E a there is q such that h(q) < fa, q is compatible with 
p and qforces a re a. 

PROOF. Consider a maximal antichain C c P such that every element of C either 
forces a E a or forces a 0 a. Setfa = sup{h(p): p E C}. [D 

In the rest of this section G is a P-generic ultrafilter over the ground world V, 
Gi = U{pi: p E G} for i < 1. It is easy to see that dom GO = {a < x: cf a = w} 
and dom GI = {a < x: cf a > w}. As P is ol-closed, oVG] = co. Thus cf a > o 
in Viffcf a > wo in V[G]. For a < K with cf a > co let G2(a) = U{p2(a): p E G}. 

Claim 4. Suppose a < X and cf a > co. Then G2(a) is a club subset of a of 
cofinality (01. 

PROOF. If E e G2(a) then : E p2(a) for some p E G, hence cfp = co. Let c = 

{(O, p): a E dom p and E e p2(a)}, so that G2(a) is the denotation of c in V[G]. For 

0 < a the set {p: p forces r E c for some r > 3} is dense, hence G2(a) is unbounded. 
Suppose p < K is a limit point for G2(a). There are r > p and p E G forcing r E c. 
Then G2(a) n r = p2(a) n r. As p2(a) is closed, p E p2(a) c G2(a). Thus G2(a) 
is a club subset of a consisting of ordinals of cofinality co, hence cf G2(a) = oi. EL 

COROLLARY 5. K is ()2 in V[G]. 
PROOF. In V[G]: K > (o1 because ()V[G] = 0)V0, K ? (2 by Claim 4, K is a cardinal 

because P satisfies the K-chain condition. LI 
Claim 6. Every new club subset of K in V[G] includes an old club subset of K. 
Proof is well known and uses only the K-chain condition. Suppose the empty 

condition (0, 0, 0) forces "c is a club subset of K". Let C' = {a: the empty 
condition forces a E c}. It is obvious that C' is closed. We prove that C' is un- 
bounded. For a < K let A(a) be the set of ordinals p < a such that some p forces 
"p is the least element of c above a". IA(a)l < K because P satisfies the K-chain 
condition. Letfa = sup A(a). Now given ao let aOn+ = fan, a = SUp{an: n < (0}. 
The empty condition forces that c meets every interval (ang a?ni], hence it forces 
a e c, i.e., ace C'. LI 

?3. Decomposition of forcing. First we recall the notion of quotient forcing. 
Suppose B is a partial ordering and A is a submodel of B satisfying the following 
conditions: if p E A and p < q then q E A; if two elements of A are compatible in 
B then they are compatible in A; and for each q E B there is a unique p E A (the 
projection of q) such that q < p and p, q are compatible with exactly the same 
elements of A. Let c = {(q, p): q E B and p is the projection of q}. For every 
A-generic filter G over the ground world V, cvC (i.e., the denotation of c in V[G]) 
is equal to {q E B: q is compatible with any p E G}. This denotation is the quotient 
forcing in the following sense: B is isomorphic to a dense subset of A * c and 
forcing with B is a composition of forcing with A and subsequent forcing with 
the denotation of c. 

For 0 < a < K let P( < a) be the submodel of P comprising conditions of height 
< a. For p E P let p( < a) = (pOla, p1 Ia, p2la), it is the projection of p into P( < a). 
For every a < p < K with cf a > co we get the quotient forcing completing forcing 
with P( < a) to a forcing with P( < p). Two cases are of special interest for us. Let 
A < K be of cofinality > oand P(<?) = P(< A + 1). 
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Case 1. a = A, : = A + 1. Suppose G is a P(<A)-generic over V filter and 
GO = U{pO: pE- G}. The quotient forcing notion is the submodel of P(< ?) 
comprising conditions p E P(<?A) such that p(< A) E G and p2(A) c GO-l{m, n} 
provided pl(A) = {m, n}. Let P(A, m, n, G) be the following forcing notion in 
V[G] (for shooting a club subset of A in GO-l{m, n}): conditions are closed count- 
able subsets of A included in GO-l{m, n}, a stronger condition means an end 
extension. 

Claim 1. Suppose J is a P(< ?)-generic filter over V, H = J n P(< A), 
{m, n} = p I (A) for some p e J. Then H is a P( < A)-generic filter over V and there 
is a P(A, m, n, H)-generic filter I over V[H] such that V[H][I] = V[J]. 

Case 2. a = A + 1, p = x. Suppose G is a P(<?)-generic filter over V, and 
GO = U{pO: p E G}. The quotient forcing comprises conditions p E P such that 
p( < A) E G and for each r > A, if - E dompI and p1(7) = {m, n} then A n P2(r-) a 

GO-1{m, n}. Let P(> A) be the submodel of P comprising conditions p E P such 
that p( < A) = 0 and A n p2(A) = 0 for r E dom p 1. 

Claim 2. Suppose J is a P-generic filter over V and H =J n P(< ). Then H is 
a P(< ?)-generic filter over V and there is a P(> ,.)-generic filter I over V[H] such 
that V[H][I] = V[J]. 

Proof is easy. 
Let us remark that one can~go from H and I to J in Claims 1 and 2. 

?4. Preserving stationarity. I. Suppose A is a regular cardinal and A is a stationary 
subset of A comprising ordinals of cofinality w. Let Q be the following forcing 
notion (for shooting a club subset of A in A): conditions are closed countable 
subsets of A included in A, a stronger condition means an end extension. Suppose 
B c A is stationary in A. 

THEOREM 1. Forcing with Q does not destroy stationarity of B. 
We prove Theorem 1 in the rest of this section. Suppose IFQ (c is a club subset 

of 4). It suffices to prove that for every Po E Q there are p < po and ,u E B with 
p HF ,u E c. Let M be a model (i.e., a relational system) with universe H(A) (that 
is the collection of sets hereditary of cardinality < A), unary relation x E Q, and 
binary relations x E y, x < y (as conditions in Q), x H[ y E c. Let M' be a model 
obtained from M by adding Skolem functions. For ,u < A let M(Q1) be the least 
submodel of M' including ,u (i.e., containing any a < /,). 

LEMMA 2. {P: A n M(1) = a} is club in A. 
PROOF OF LEMMA 2. It is obvious that the set is closed. To prove unboundedness 

suppose m-o < A and consider the sequence m10 < iu < /u2 < ... where /-,n+= 

sup(A n M(1n)). Ifu = sup{1an: n < w} then A ( M(uu) = ,a. 13 
Given po take ,u E B such that po E MQ(z) and,1 n M(1u) = u *Let ao < a1 < ... 

converge to ,u. Build po > Pi > ... such that pn, e M(1u) and p,+i HF on e c for 
some a. < pn < u; it is possible because M(Q) is an elementary submodel of M. 
Then= U{p":n < w4 U {1a}eQandplF- pEc 

?5. Preserving stationarity. II. 
Claim 1. Let e be an ordinal of cofinality (o0 and A be a stationary subset of C. 

Let Q be an wl-closed forcing notion. Then forcing with Q does not destroy sta- 
tionarity of A i.e. the empty condition Q-forces "A is a stationary subset of e". 
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This claim is a corollary of a stronger result of Baumgartner: 1),-closed forcing 
does not destroy stationarity of sets comprising ordinals of cofinality co, see [Ba]. 
For the reader's convenience we prove our claim. 

PROOF. W.l.o.g. e = oq: there is club X c e of type wol and it suffices to prove 
that A n X remains stationary in X. 

By contradiction suppose p IF (c is a club subset of wol avoiding A). Build (in the 
ground world) a sequence <pa: a < Wo> of conditions and a sequence <d: a < (01> 
of countable ordinals such that Po < A Po IFH o E C, Ja+1 > at Pa+1 < Pa' Pa+1 H 
ea+1 E c, and if a is limit then da = sup{Jp: i3 < a} and Pa is stronger than pa 

for : < a. Oa a < ol} is a club subset of ()0 avoiding A, which is impossible. C] 

?6. Standard stationary sets. Suppose G is a P-generic filter over the ground world 
V. Let Gi= U{pi: p e G} for i < 2, G2(a) = U{p2(a): p e G} for a < x with 
cf a > w), and Sm = {a: GO(a) = m}. The set Sm = {(a, p); pO(a) = m} is a name 
of Sm. 

Claim 1. Every Sm is a stationary subset of x. 
PROOF. Given PO IF (c is a club subset of x) build sequences Po > Pi > ... and 

ao < a, < ... such that aj > h(pi) and Pi+, F aj E c. Let a = sup {a,: i < co}. 
By the proof of Claim 1 in ?2 there is a condition p of height a refining any pi. Let 
q =(PO U {(a.,m)},plp2).Thenpo > qIF (aes c nSm). [ 

Claim 2. Sets Sm partition x. 
PROOF. For every p and ordinal a of cofinality a) there is q < p with a E 

dom q0. [3 
By the same token every a < x with cf a > co belongs to dom(Gl). 
Claim 3. Suppose a < w02 and cf a = Woi in V[G]. Then G2(a) is a club subset of 

a. If G1 (a) = (m, n) then G2(a) c Sm U Sn 
Proof is clear. 
THEOREM 4. Suppose (m, n) e R, Am C Sm_ An C Sow and Am A. are stationary 

subsets of 0)2 in V[G]. Then there are stationarily many ordinals a < c)2 of cofinality 
co, such that both Am n a and A. n a are stationary in a. 

We prove Theorem 4 in the rest of this section. Without loss of generality m = 0, 
n = 1. Suppose C E V is the part of a club subset of - comprising ordinals of co- 
finality > co. Since every new club subset of X includes an old one it suffices to find 
a e C such that both Ao n a, A, n a are stationary in a. 

Let a; be a P-name for Ai and a2 = {(a, p): p P-forces a e a;} for i < 1. There is 

PO E G forcing "ai is a stationary subset of x" for i < 1. It suffices to find A E C and 
p < PO such that p P-forces "ai n A is stationary in A" for i < 1. 

By Corollary 3 of ?2 there is in V a function f: x - such that for every a < X 
and p E P forcing a E aj for some i < I there is q E P of height < fir compatible 
with p and forcing the same statement. Let M be the model with universe V, (the 
collection of sets of rank < i), distinguished element PO, unary predicates x E C, 
x E P, and binary predicates x E y, x < y (with respect to P), x HF y E ao, x HF y E al, 
(x, y) Ef. Let a be a sentence in the language of M saying: x is inaccessible and 
closed under f and C is unbounded in x, and for every club subset C' of x and 
Pi < po there are ao, a, e C' and P2 < P, with P2 HF a E aj for i < 1. It is easy to 
see that a is ll. 
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Any weakly compact cardinal is HI-indescribable. Hence there is A < x such that 
VA forms a submodel of M satisfying a. Thus A is inaccessible, h(po) < A, C n A is 
unbounded in A (therefore A e C), A is closed underf and for every pi < po of height 
< A and every club subset C' of A there are a0, a, E C' and P2 < P, of height < A 
such that P2 P-forces ax E aj for i < 1. 

Let bi = {(a, p): a < A, h(p) < A, p P-forces a E ai}. 
Claim 5. Suppose I is a P-generic filter over V, po E I, H = I n P( < A). Then 

avI' nA - bV[=H] - b=WE for i < 1. 

PROOF. If a E bE[H] then a < A and there is p E H P-forcing a E aj, hence a E aYEI. 
Suppose cr E aYE'1 I A. There is p E I P-forcing a E aj. It suffices to prove that 

p(< ,A) P-forces a E aj. Suppose the contrary. Then there is q < p( < A) P-forcing 
a 0 aj. As A is closed under f there is q' E P( < A) compatible with q and forcing 
a ? ai. But q' is compatible withp(< i) hence with, which is impossible. C] 

Let r be the statement "bo, b, are stationary subsets of A". 
Claim 6. po P( < A)-forces r. 
PROOF. P(< A) satisfies the A-chain condition and the empty condition P(< A)- 

forces that every new club subset of ,A includes an old club subset of A. (Just repeat 
the proof of the corresponding statements about P and A.) For every C' E V and 
Pi E P(< A), if C' is a club subset of ,A and Pi < po then there are cao, cra E C' and 
P2 E P(< A) such that P2 < Pi and P2 P-forces a0 E ao, al E al. By the previous claim 
P2 P( < A)-forces aj E bi for i < 1. Thus po P( < A)-forces r. L] 

Letp = (poO,pol U {(R. {O, l})},Po2 U {(R. 0)}). 
Claim 7. p forces r with respect to P( < A). 
PROOF. Suppose J is a P( < A)-generic filter over Vcontainingp, H = J n P( < A). 

By ?3 there is a P(Q, 0, 1, H)-generic filter I over V(H) such that V[J] = V[H] [1]. 
By ?4 (with Q = P(Q, 0, 1, H), A = {a < ,: qO(a) E 2 for some q E H}) forcing with 
P(A, 0, 1, H) does not destroy stationarity of bWM]. L] 

Claim 8. p forces r with respect to P. 
PROOF. Use (Claim 2 of) ?3 and ?5. LI 
By Claims 5 and 8 p P-forces "ai n A is a stationary subset of A" for i < 1. 

PART II. INTERPRETING THE FULL SECOND-ORDER THEORY OF 
(02 IN THE MONADIC THEORY OF @2 

?7. Coding. Recall that the full second-order theory of a set X is the theory of 
X in the language with variables for elements, monadic predicates, dyadic predi- 
cates, etc. This theory depends on the cardinality of X only. Speaking about the full 
second-order theory of @2 we mean the full second-order theory of the underlying 
set. Fix a pairing function r = nu(ac, p) on o2 (so that nu gives a one-to-one cor- 
respondence from o2 X (02 onto (02). Define left(a, r) if r = nu(a, /) for some A, 
and right(p, r) if r = nu(a, /0) for some a. 

Claim 1. The full second-order theory is interpretable in the monadic theory of 
<KC2, left, right>. 

Proof is obvious. 
As in ? 1, a graph is a model <X, R> where R is a reflexive symmetric binary re- 

lation on X such that x : y -- 3z (Rxz is not equivalent to Ryz). 
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Claim 2. There is a graph <(2, R> such that the monadic theory of <(2, left, 
right> is interpretable in the monadic theory of <(2, R>. 

PROOF. 5a: is the acth ordinal divisible by 5. Let R be the least reflexive symmetric 
binary relation on w2 containing the following pairs: 

(i) (5a: + i, 5ac + i + 1) for a: < w02, i < 4, 
(ii) (5a:, 53 + 2) for (a:, 3) E left, 
(iii) (5a:, 53 + 3) for (a:, 3) E right. 
Equality is defined in <Kw2, R> as indistinguishability. Let w(x) be the cardinality 

of {y: Rxy and x 0 y}. The statements w(x) = n, n < o, are expressible in the 
monadic theory of <Kw2, R>. It is easy to see that a = 0 modulo 5 iff w(a) > 3, 
a = I modulo 5 if w(a:) = 2, a = 4 modulo 5 iff w(a) = i, a: = 3 modulo 5 iff 
w(a:) = 3 and a: is R-connected with some = 4 modulo 5, a: = 2 modulo 5 if 
w(a:) = 3 and a is not R-connected with any f3 4 modulo 5. Furthermore, 5a: + 1 
is the only element which equals 1 modulo 5 and is R-connected with 5a:, 5a: + 2 
is the only element which equals 2 modulo 5 and is R-connected with 5a: + 1, 
5a: + 3 is the only element which equals 3 modulo 5 R-connected with 5a: + 2. 

<0)2, left, right> is now interpretable in <K)2, R>, and the interpretation of the model 
gives rise to an interpretation of its monadic theory. LI 

Let R be as in Claim 2. Assuming existence of a weakly compact cardinal we 
define in the next section a forcing notion P and prove 

THEOREM 3. Suppose G is a P-genericfilter over the ground universe V. Then in 
V[G] there is a partition of {o < Co2: Cf a: = CO} into stationary sets Sa, a: < (02, such 
that: 

(0) ti E Sa implies a < ; 
(1) for every ordinal a: of cofinality co, there is a pair (P,7 r) E R such that So U Sr 

includes a club subset of a:; and 
(2) if Rao holds, A_ C Sag A c Sp and Aa AP are stationary in (02 then there are 

stationarily many ordinals r of cofinality co, such that Aa nf r and AP n r are sta- 
tionary in r. 

Claim 4. The monadic theory of the graph <W2, R> is interpretable in the monadic 
theory of Co2 if there is a partition described in Theorem 2. 

PROOF. We use definitions of I, U0, U1, connected, atom, maximal atom given in ? 1. 
If X is an atom then X c Sa modulo I for some a:. For, suppose X is an atom. 

Then X is stationary and, by (0) and Fodor's Lemma X n Sa is stationary for some 

a. If X - Sa is stationary then there are i + a: with stationary X n s5 and r such 
that Ra:r holds and RPr fails (or conversely), set X1 = X n Sa, x2 = x n so 
Y = Sr to get a contradiction. 

Every stationary X c Sa is an atom. For suppose X1, X2 are stationary subsets 
of X, Y c U0, Ko = {0: Rao holds}, Ki = w02-Ko and Yj = { E Y: i E Sr for 
some r E Kj} for i < 1. If YO is stationary then, by (0) and Fodor's Lemma, Yo n sp is 

stationary for some e c K0, in this case Y is connected with both X1 and X2. Suppose 

YO EI. Then D(YO) EI. If a: E D(X) - D(YO) then, by (1), there is a club subset of ca 
avoiding Y1. Hence D(X) n D( Y) c D( YO) E I and Y is not connected even with X. 

It is easy to see that X c U0 is a maximal atom iff X = Sa modulo I for some a. 

A subset X of U0 will be called regular if for every maximal atom Y either Y c X 

modulo I or Y c U0 - X modulo I. Now, given a monadic graph sentence qp 
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interpret individual variables as maximal atoms, set variables as regular subsets of 
U0, equality as equality over I, R as connectedness, and the containment relation 
as inclusion modulo I. The resulting monadic sentence 0b holds in w)2 iff (S holds in 
<K2, R>. L] 

Claims 1, 2, 4 and Theorem 3 imply 
THEOREM 5. Assume there is a weakly compact cardinal. Then there is a generic 

extension of the ground universe where the full second-order theory of w02 is interpret- 
able in the monadic theory of W02. 

?8. Forcing. Suppose x is a weakly compact cardinal and R is as in ?7. We define 
a forcing notion p for collapsing K onto w)2 and creating a partition of {a < w02: 
cf a = c} into stationary sets SaS, a < 0J2, described in ?7. A condition p = (p0, 
pl, p2) where: 

pO is a countable function from a part of {a < x: cf a = w} into 02 such that 
p = pO(a) implies p < a (the intended meaning of p = p0(a) is: a E Sp)g 

p1 is a countable function from a part of {a < x: cf a > cv} into R (the intended 
meaning of (p, r) Eipl(a) is a n Sa is stationary in a iff a = p or a = r)g 

p2 is a countable function with dom p2 = dom pI, if a E dom p1 and p1(a) = 

(P' r) then p2(a) is a closed countable subset of a included in {3: pO(6) = / or 
pO(a) = r} (the intended meaning p2(a) is an initial segment of a club subset of a 
included in Sp U Sr). 

By definition, p refines q (p < q) if qO c p0, ql c p1 and for every a E dom qI, 
p2(a) is an end extension of q2(a) in such a way that 

min(p2(a) - q2(a)) > sup(a n (dompO U dompi)). 

Suppose G is a P-generic filter over the ground universe V, and Sa = {p: p0(p) 
- a for some p E G} for a < x. The clause (0) of Theorem 2 in ?7 is obvious, the 
rest of the theorem is proved exactly as in Part I. 

PART III. MONADIC THEORY OF A GIVEN COMPLEXITY 

?9. Coding. Given a sequence so < s, < * * * of positive integers and assuming 
GCH and existence of a weakly compact cardinal, we define in the next section a 
forcing notion P and prove the following theorem. (U0, U1, D are defined in the 
introduction.) 

THEOREM 1. Suppose G is a P-generic filter over the ground universe V. Then in 
V[G] there are 

(i) a partition of U0 into stationary sets Ani where n < c, i < SX and 
(ii) a partition of U1 into stationary sets B,, C,, where n < (0, i < sn, such that 

D(X) = Bn U Ci modulo Ifor every n < c, i < SX and stationary X c Ani. 
It is clear that the sequence so, sl, ... is computable from the monadic theory of 

(02 in V[G]. The converse is true too. 
Claim 2. Suppose 02 can be partitioned in the way described in Theorem 1. Then 

the monadic theory of (2 is computable from the sequence so, s.. 
PROOF. As was mentioned in the introduction the monadic theory of (02 is recur- 

sive in the first-order theory of M = <PS((02)/I, D>. For every n let 

En = (U{Aj: i < sj}) U Bn U (U{Cnj: i < sJ}) 
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and I, Dn be the restrictions of I, D, respectively, on PS(E"). It is easy to see that 
M is the direct product of structures Mn = <PS(EJ)/I", D">. The first-order theory 
of Mn is computable from s, Hence the first-order theory of {Mn: n < c} is com- 
putable from the sequence s0, s1, .... By the Feferman-Vaught Theorem (see 
[FV]) the first-order theory of M is computable from the first-order theory of 

{Ma: n < C}. D 
Theorem 1 and Claim 2 imply 
THEOREM 3. Assume GCH holds and there is a weakly compact cardinal. Then for 

every sequence so < s1 < *.. of positive integers there is a generic extension of the 
ground world where the sequence so, s1, ... and the monadic theory of wJ2 are recursive 
each in the other. 

?10. Forcing. Suppose GCH holds and X is a weakly compact cardinal and so < 

s1 < ... is a sequence of positive integers. First we define a partial ordering Q for 
collapsing X onto w)2 and creating stationary sets A ,, By, C, behaving in the way 
described in Theorem 1 of ?9 with only one exception: instead of D(X) = Bn U 
Ci we shall have only Bn c D(X) a Bn, U Ci for every n < w, i < Sn and 
stationary X c Ai. Q is just a version of the forcing notion in ?2. 

A condition p = (pO, p1, p2) where 
pO is a countable function from a part of UO into K = {(n, i): n < w, i < sn} 

(the intended meaning of pO(a) = (n, i) is a E AJ) 
p1 is a countable function from a part of U1 into w U K (the intended meaning 

of pl(a) = n is a e Bn; the intended meaning of pl(a) = (n, i) is a E CeJ) 
p2 is a countable function with dom p2 = dom pi, if a E dom pI and pl (a) = n, 

p2(a) is a closed countable subset of a included into {I: pO(3) = (n, i) for some 
i < sn} (the intended meaning is: p2(a) is an initial segment of a club subset of a 
included in U {Ani: i < s,}); if a E dom p1 (a) and pl((a) = (n, i) then p2(a) is a 
closed countable subset of a included in {i3: pO(i3) = (n, i)} (the intended meaning 
is p2(a) is an initial segment of a club subset of a included in AJ. 

p refines q if qO c pO, ql c p1 and for every a E dom pI, p2(a) is an end exten- 
sion of q2(a) in such a way that 

min(p2(a) - q2(a)) > sup(ac n (dom pO U dom pl)). 

THEOREM 1. Suppose G is a Q-generic filter over the ground world V, Ani = 

{a: pO(a) = (n, i) for some p E G}, Bn = {a: p1I (a) = n for some p E G}, Ci = 
{a: p1(a) = (n, i) for some p E G} for n < w, i < s,. In V[G]: K = wJ2, and 
every Ai, B", Ci is stationary in W2, the sets A,, partition UO, the sets B,, Cmi 
partition U1 and D(X) a Bn U Ci for every n < w, i < s, and every stationary 
X c Ani_ 

Theorem 1 is proved in the same way Theorem 2 of ?1 was proved. 
We would like to have D(X) = Bn U C7j for n < w, i < s. and stationary X c 

A". In [Ma] Magidor, assuming GCH and existence of a weakly compact cardinal, 
forced a universe where the derivative of every stationary subset of UO is equal to 
U1 modulo the ideal I of nonstationary subsets of W2. First he collapsed K onto wJ2, 

then he started to shoot club subsets of 02 through UO J D(X) where X c UO is 

stationary. We do here almost the same. 



398 YURI GUREVICH, MENACHEM MAGIDOR AND SAHARON SHELAH 

Let G, A n, By, Cm be as in Theorem 1. Over V[G] start shooting club subsets of 
(02 through C2 - (D(A",) - D(X)) where X s A_ is stationary. Iterate the proce- 
dure ()3 times with support of cardinality o. The proof that the resulting model is 
the required one is just like that in [Ma, ?2] with only one modification: use ??4,5 
of our Part I instead of Magidor's Lemma 5 in the proof of claim which appears in 
the proof of Lemma 4 in ?2 of [Ma]. 
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