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ABSTRACT 

Suppose that V is a model of ZFC and U E V is a topological space or a richer 
structure for which it makes sense to speak about the monadic theory. Let B be 
the Boolean algebra of regular open subsets of U. If the monadic theory of U 
allows one to speak in some sense about a family of K everywhere dense and 
almost disjoint sets, then the second-order  W~-theory of K is interpretable in 
the monadic V-theory of U;  this is our Interpretation Theorem.  Applying the 
Interpretation Theorem we s t rengthen some previous results on complexity of 
the monadic theories of the real line and some other  topological spaces and 
linear orders. Here are our results about the real line. Let r be a Cohen real 
over V. The second-order V[r]-theory of 1% is interpretable in the monadic 
V-theory of the real line. If CH holds in V then the second-order  V[r]-theory 
of the real line is interpretable in the monadic V-theory of the real line. 
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§0. Introduction 

Our most important subject is the monadic (second-order) theory of the real 

line R. Relevant definitions of monadic and full second-order theories can be 

found in §1 below. 
Recall that a topological space U is called meager if it is a union of N0 nowhere 

dense subsets. Let c = 2 ~°. U will be called pseudo-meager if it is a union of < c 

nowhere dense subsets. Assuming that R is not pseudo-meager Shelah inter- 

preted in [6] the true first-order arithmetic (i.e. the first-order theory of the 

standard model of arithmetic) in the monadic theory of R. He conjectured in [6] 

that the monadic theory of R and the second-order theory of c are recursive in 

each other. (To prove the conjecture, he remarked, use the assumption " R  is inot 

pseudo-meager" or the Continuum Hypothesis.) 

Under assumption "R  is not pseudo-meager" Gurevich [2] interpreted the 

theory of c with quantification over constructible predicates (i.e. the theory of c 

in the language of second-order logic when n-place predicate variables range 

over constructible n-place predicates on c for n = 1 , 2 , - . . )  in the monadic 

theory of R. It implies in particular that the monadic theory of R and the 

second-order theory of c are interpretable in each other in the constructible 

universe. 

Gurevich and Shelah [4] interpreted the true arithmetic in the monadic theory 

of R just in ZFC. 
Let V be a model of ZFC and B be an atomless, complete, separable Boolean 

algebra in V. (There is a unique up to isomorphism atomless, complete, 

separable Boolean algebra in V, see §2 below.) Let V B be the corresponding 

Boolean-valued model of ZFC. We speak about V-theories and VB-theories 

meaning theories in V and theories in V B respectively. Note that B is the 

Boolean algebra corresponding to the forcing notion for adding a Cohen real, 

and adding a Cohen real does not change the cardinality of continuum. 

THEOREM 1. (i) Assume that the real line is not pseudo-meager in V. Then the 

second-order Vn-theory of c is interpretable in the monadic V-theory of the real 

line. 
(ii) The second-order VB-theory of No is interpretable in the monadic V-theory 

of the real line. 

Theorem 1 follows from Theorem 2 in this introduction. 

The main result of this article is the Interpretation Theorem proved in §4 

below. It interprets the second-order V~'-theory of a cardinal r in the monadic 
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V-theory of U where U is a topological space or a richer structure for which it 
makes sense to speak about the monadic theory, and/3 '  is the Boolean algebra 

of regular open subsets of U, and U, K satisfy some conditions. 

We use the Interpretation Theorem to strengthen interpretability results of [2] 

and [4], to interprete more in the monadic theories of the same topological 

spaces and the same linear orders. Linear orders are called chains here. In order 

to deal simultaneously with topological spaces and chains Gurevich [2] defines 

so-called vicinity spaces. In §5 below we repeat the definitions of vicinity 

spaces, of the vicinity space associated with a given T~ topological space, of the 

vicinity space associated with a given chain, of p-modest vicinity spaces where 

1 =< p < w. A topological space is called p-modest if the associated vicinity space 

is p-modest. It is easy to see that no perfect subset of the real line is 1-modest. 

THEOREM 2. (i) There is an algorithm interpreting the second-order VB-theory 
of c in the monadic V-theory of any first-countable, non-scattered, regular 
topological space having no subspace which is nowhere dense, perfect, separable 
and pseudo-meager. 

(ii) There is an algorithm interpreting the second-order V B-theory of No in the 
monadic theory of any metrizable non-p-modest topological space. 

Theorem 2(i) is proved in §6. It uses [2] and strengthens the result of [2] about 

interpreting the theory of c with quantification over constructible predicates in 

monadic theories of essentially the same topological spaces. Theorem 2(ii) is 

proved in §7. It uses [4] and strengthens the result of [4] about interpreting the 

true first-order arithmetic in the monadic theories of the same topological 

spaces. 

Recall that a chain is short if it does not embed either oJl or the order dual to 

o~1. A chain is p-modest if the vicinity spaces associated with its subchains are 

p-modest. A chain is modest if it is p-modest for every 1 -< p < ~o. The monadic 

theory of modest short chains is decidable, see [1] or [3]. If every pseudo-meager 

subspace of R is meager then there is a uniform in p algorithm, interpreting the 

true arithmetic in the monadic theory of any non-p-modest short chain, see [3]. 

If every pseudo-meager subspace of R is meager, then there is a uniform in p 

algorithm interpreting the theory of c with quantification over constructible 

predicates in the monadic theory of any non-p-modest short chain, see [2]. There 

is a uniform in p algorithm interpreting the true arithmetic in the monadic 

theory of any non-p-modest short chain, see [4]. Using [2] and [4] we prove in 

sections 6 and 7 the following theorem. 
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THEOREM 3. (i) Assume that in V every pseudo-meager subspace of the real 
line is meager. There is a uniform in p algorithm interpreting the second-order 
V B-theory of c in the monadic V-theory of any non-p-modest short chain. 

(ii) There is a uniform in p algorithm interpreting the second-order V B-theory of 
I% in the monadic V-theory of any non-p-modest short chain. 

A few words about notation and terminology. Given point sets X, Y in a 

topological space we say that X is dense in Y if X (-I Y is everywhere dense in 

the subspace Y. Speaking about regular topological spaces we mean regular T1 

spaces. We use [5] as a source of notation, terminology and results in set theory, 

but the cardinatity of continuum is denoted by c. Claim i. k means the kth claim 

in the ith section when we speak about [2], [4] or this paper. 

§1. Second-order theories 

The second-order theory of a set S is the theory of S in the language without 

non-logical constants having variables ranging over elements of S, variables 

ranging over arbitrary monadic predicates on S, variables ranging over arbitrary 

dyadic predicates on S, etc. Atomic formulas have a form P(vl,  • •., v,)  where P 

is an n-adic predicate variable and v l , . - ' ,  v, are individual variables. Usual 

propositional connectives and usual quantifiers V, 3 are used to build other 

formulas. Predicate variables can be quantified as well as individual ones. 

The second-order theory of an order (S, < )  is a natural extension of the 

second-order theory of S; just consider < as a non-logical constant. The 

second-order theories of other first-order structures are defined in a similar way. 

The second-order theory of a topological space (S, Top) is another natural 

extension of the second-order theory of S; it is obtained by introducing new 

atomic formulas " X  is open".  The second-order theory of a set is, however, so 

powerful that in many cases the second-order theory of an S-based structure is 

easily interpretable in the second-order theory of S. For example, if K is a 

non-zero cardinal then the second-order theory of the natural order (K, < )  is 

interpretable in the second-order theory of the set K. The second-order theory of 

the real line (R, < ) and the second-order theory of the usual topological space 

(R, Top) are easily interpretable in the second-order of the set R. 

The monadic theory of a structure is the fragment of its second-order theory 

whose formulas do not use n-place predicate variables for n => 2. Instead of P(v) 
we write v E P. Thus the monadic theory of an order (S, < ) is the first-order 

theory of the two-sorted structure (S, PS(S); E ,  < ) where PS(S) is the collection 

of subsets (the power set) of S and E is the containment relation between 
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elements of S and elements of PS(S). The monadic theory of a topological space 

(S, Top) is the first-order theory of the two-sorted structure (S, PS(S); E ,Top) 

where Top is a monadic predicate on PS(S). Generally, the first-order theory of 

a two-sorted first-order structure (S, PS(S); ~ , .  • .), where ~ is the containment 

relation between elements of S from one side and elements of PS(S) from the 

other side, will be called the monadic theory of the structure (S , . . . ) .  

It is an easy exercise to check that the second-order theory of an infinite set S 

is interpretable in its dyadic fragment (whose formulas do not use n-adic 

predicate variables for n ~ 2). A 3-adic predicate P on a non-empty set S will be 

called a pairing predicate if for evey ordered pair (x, y) of elements of S there is 

exactly one z @ S with (x, y, z)  E P. 

CLAIM 1. I f  P is a pairing predicate on a non-empty  set S then the second- 

order theory of  S is interpretable in the monadic  theory of  structure (S, P). 

The proof is clear. 

§2. Boolean-valued model 

As usual, ZFC is the Zermelo-Fraenkel  set theory with axiom of choice. 

Given a model V of ZFC and a complete Boolean algebra B in V one builds a 

Boolean-valued model V ~ of ZFC, see [5]. 

CLAIM 1. I f  {a, : i E I} is an antichain in 13 and cri E V B for i E I then there is 

r E V B such that a, <= II ~ ,  : T II for i E I. 

PROOF. See lemma 18.5 in [5]. [] 

CLAIM 2. Let  to(v) be a formula  in the language of  ZFC with only one free 

variable and perhaps some parameters from V B. There is o" E V B such that 

II to(~)H = [I 3vq,(v)ll  

PROOF. See lemma 18.6 in [5]. [] 

CLAIM 3. Le t  tO(v) be as in Claim 2 and ~r E V B. Suppose ][3v(v E cr)l t = 1. 

Then there is T E U B such that [1T e O" II = 1 and  

II tO(T)[[ = [[(3v ~ '~)tO(V)[I. 

PROOF. By Claim 2 there are To, T1 and a E B such that IITo @ o'[I = 1 and 

lIT, ~ ~ ^ tO(~,)ll  = I I ( a v  ~ ~ ) t o ( v ) l l  = a .  
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By Claim 1 there is r E V s such that a =< l i t  = r i l l  and ( - a ) =  < Ilr = roll. Thus 

a _-< 1[ r @ o-II and ( - a )  -< II r ~ o" II hence I[ r C o-II -- 1. Also 

a --< II 0(r)ll---lit ^ 4,(r)ll_-< [ l (3v   )4 (v)ll _<- a. [ ]  

Recall that an open subset G of a topological space is called regular if the 

interior of the closure of G coincides with G. It is easy to check that the interior 

of the closure of any open set is regular. The following claim is well known and 

easy to check. 

CLAIM 4. The regular open subsets of any topological space U form a complete 

Boolean algebra with 0 being the empty set, 1 = U, G <= H iff G C H, G • H = 

G 71 H, G + H being the interior of the closure of G tO H, and - G being the 

interior of U - G. 

The Boolean algebra of regular open subsets of a topological space U is 

denoted R O ( U ) .  

An infinite Boolean algebra B is called separable if there is a countable dense 

subset of B ÷ =  B -{0}. The following claim is well known. 

CLAIM 5. Every two atomless, complete, separable Boolean algebras are 

isomorphic. 

PROOF. Let T be the set of words in the alphabet {0, 1} ordered as follows: 

x < y iff x is a proper  initial segment of y. By lernma 17.2 in [5] there is a unique 

up to isomorphism complete Boolean algebra embedding T in such a way that T 

is dense in it. 

Given an atomless, complete,  separable Boolean algebra B we construct an 

order-preserving map]" : T---~ B + such that f T  is dense in B. Let {a, : n < o9} be a 

dense subset of B ÷. If x is the empty  word set f ( x )  = 1. Suppose that x ~ T is of 

length n and f ( x )  is already defined. Choose f(xO) and f ( x l )  such that 

f ( x O ) . f ( x l ) = O , f ( x O ) + f ( x l ) = f ( x ) a n d i f a ,  .]"(x)~Othenf(xO)<-a, .  [] 

CI~AIM 6. Suppose that U is a first-countable, regular, separable topological 

space without isolated points. Then R O ( U )  is atomless and separable, and the 

cardinatity of U is at most c. 

PaOOF. For any x E u choose regular open sets G (n, x)  such that the closure 

of G ( n + l , x )  is included into G(n ,x )  and { G ( n , x ) : n < o J }  is a basis for 

neighborhoods of x. Let  E be a countable everywhere dense subset of U. Then 

S ={G(n ,x ) :  n < co, x E E }  
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is dense in the Boolean algebra of regular open subsets of U. 

For x E U let 

f~(n)= {H E S :H C_ G(n,x)}. 

If x / y then G (n, x) N G (n, y) = 0 for some n, hence f~ / fy. But there are only c 

functions from co to PS(S). [] 

§3. Setting 

Let V be a model of ZFC and U E  V be a topological space or a richer 

structure for which it makes sense to speak about the monadic theory. We are 

interested in the monadic theory of U in V. Thus speaking about a point set X in 

U we mean that X E V. 

Let B = R O ( U )  and B + = { a  E B  : a ~ 0 } .  

We suppose that there are formulas Premise(a) ,  Share(a, v0), 

Pairing(& Vo, vl, v2, v3) in the monadic language of U and there is an infinite 

cardinal K satisfying the following conditions, a and (v0, vl, v2, v3) are sequences 

of set variables, the formulas Premise, Share, Paring do not have free variables 

except those shown. Premise (a )  is satisfiable in U. If t is a sequence of point sets 

and Premise (t) holds then there is a sequence (A~ : a < ~) of point sets and 

there is a pairing predicate P on K such that the conditions (C0)-(C3) below 

hold. 

(C0) Every A~ is everywhere dense and A~ n A0 is nowhere dense for a ¢/3.  

(C1) Share(t, X)  holds if[ for every a E B ÷ there are c~ < K and a -> b E B + 

such that X n b = A ~ n b .  

If Share(t, X)  holds we say that X is a t-share. 
(C2) Suppose X, Y, Z are t-shares and a ~ B. Pairing (t, X, Y, Z, a )  holds lit 

for every a _-> a '  E B ÷ there are (~,/3, 30 E P and a '  _-> b E B ÷ such that X O b = 

A ~ n b  and Y n b = A o n b  a n d Z N b = A ,  Nb. 
(C3) For every function f : K ~ B there is a point set X such that 

f ( a ) = ~ { b E B : A ~ N b C X }  for a <K.  

An element  o- of V B will be called a quasi-element (respectively a quasi-set) 
if II or II = 1 (respectively II c_ II = a), (Here and on we ignore the difference 

between an element  of V and the canonical name for it in VB.) We'll say that a 

t-share X represents a quasi-element or if 

I I ~ r = o ~ l l = ~ { b E B : X n b = A ~ n b }  for a <K.  
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We' l l  say that a point  set X represents a quasi-set tr if 

I l a ~ l l = Z { b ~ B : A ~ n b c _ X }  fo r  a < K .  

CLAIM 1. Every t-share represents 

element is represented by some t-share. 

PROOF. Given a t -share X let 

some quasi-element and every quasi- 

ao = ~ { b E B : X n b = A ,  Nb} for a < K. 

By Claim 2.1 there is tr E V B such that  a~ -<_ H or = a [1 for a < K. Evident ly  tr is a 

quasi -e lement  represented by X. 

Given a quasi-element  tr form 

X =  U{A. n = < K}. 

Evident ly  X is a t -share represent ing g. [ ]  

CLAIM 2. Suppose that t-shares Xo, X1, X2 represent quasi-elements tro, gl ,  tr2, 

and a E B. Then Pairing(t, Xo, X1, X2, a) is equivalent to 

a --< I1( o, PII.  

PROOF is clear. 

CLAIM 3. Every point set represents some quasi-set, and every quasi-set is 

represented by some point set. 

PROOF. The  first s ta tement  is obvious,  the second follows f rom (C3). [ ]  

CLAIM 4. Suppose a t-share X represents a quasi-element o-, and a point set Y 

represents a quasi-set "r. Then 

 11: {a :X n a  c_ Y}. 

PROOF. Let  a * =  E{a E B : X  n a c_ Y} and a E B+. First suppose that 

a = < a * .  For  every a - _ > a ' E B  + there are a < K  and a ' =  > b E B  + such that  

X N b = A s A b C _ Y ,  so that b - I I o - = a l t ,  b = < I l a ~ r l l ,  b = < I I t r E z l l .  Hence  

a _-<[[o- ~ zl[. 

Now suppose that  a _-< [[ o- E ~-I[. For  every a _-> a '  E B ÷ there are a < K and 

a ' > - b E B  + such that X n b = A s n b ,  so that b_ -<[ I t r=a l t ,  b _ - < I I a ~ ' [ [ ,  

b =< a *. Hence  a =< a *. [ ]  
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§4. Interpretation Theorem 

We work in the setting of §3 and suppose Premise(t). In particular B = 

RO(U) .  We speak about V-theories and V~-theories meaning theories in V 

and theories in V B respectively. 

THEOREM 1. There is an algorithm, depending only on formulas Premise, 

Share and Pairing, which interprets the second-order vB-theory of K in the 
monadic V-theory of U. 

PROOF. According to §3 there is a pairing predicate P on K satisfying the 

condition (C2). By Claim 1.1 it suffices to construct an algorithm interpreting the 

monadic V~-theory of (K,P) in the monadic V-theory of U. 

In order to speak about the monadic theory of (K,P) in V B we write 

(Uo, ul, u2) E P, " there  is u E K" and " there  is v _C r "  instead of P(uo, Ul, u2), 
"there  is an element u "  and " there  is a set v "  respectively. 

Let  ¢k be a sentence in the monadic language of (K, P )  with parameters: 

quasi-elements for individual variables and quasi-sets for set variables. By 

induction on ~b we express the statement b =< II ~b II by an equivalent statement 

(b =< 114~ft), in the monadic theory of U with as many parameters as in 4~- 

Case 1. ~b is (0-0, 0-2, 0-2)E P. By Claim 3.1 there are t-shares Xo, X1, X~ 

representing the quasi-elements Oro, 0-~, 0-2 respectively. Let (b =< II~b II), be 

Pairing(t, X0, X~, X2, b). It is equivalent to b =< 114~ II by Claim 3.2. 

Case 2. ~b is 0- E r. By Claims 3.1 and 3.3 there are a t-share X and point set 

Y C U representing the quasi-element o- and the quasi-set r respectively. Let  

(b _-< II ~ II), say that X f3 b - Y is nowhere dense. It is equivalent to b _-< II 4, II by 
Claim 3.4. 

Case 3. ~b is ~b~^ck2. Let (b --< l14, [I ), be (b<=llg~lll),^(b<-_l14,={I),. It is 

obviously equivalent to b -< II 4, II. 

Case 4. 6 is - ¢p. Let  (b _-< 114,11), say that there is no b => a E B + satisfying 

(a _-< II q' II),- It holds iff there is no b _-> a E B + with a _-< II g, II i~ b .  II ~ II -- 0 iff 

b ==-11~11. 

Case 5. 4~ is (3UEK)qJ(U). Let (b _-< l[ 4, ll ), say that there is a t-share u 

satisfying (b <= ll~(u)ll),. First suppose that b _-< [l'/' I t-By Claim 2.3 there is a 

quasi-element or with 11~0(0-)ll=ll,t, ll_->b. By Claim 3.1 there is a t-share X 

representing 0-. By the induction hypothesis (b =< II q,(u)ll), holds for u -- x .  Now 

suppose that there is a t-share X such that (b < I[~O(u)[[), holds for u = X. By 
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Claim 3.1 X represents some quasi-element o-. By the induction hypothesis 

b -<-II~(~)ll. Hence b --<11611. 

Case 6. 4~ is ( 3 v c K ) t ~ ( v ) .  Let say that there is a point set v 

satisfying (b _-< IIg,(v)[I),. The equivalence is established as in Case 5. 

In particular 1 =< 1t 4) tl iff (1 <= I] ~b II), holds in U. [] 

§5. Vicinity spaces 

For the reader's convenience we present here the notion of vicinity spaces. It 

was introduced in [2] in order to deal simultaneously with topological spaces and 

linear orders. 

A vicinity space is a non-empty set (of points) together with a relation " a  point 

set X is a vicinity of a point x "  satisfying the following conditions: 

(V1) x does not belong to any vicinity of x, 

(V2) if the intersection of two vicinities of x is not empty then it includes 

another  vicinity of x, 

(V3) the relation " X  meets Y"  on the vicinities of x is transitive, and 

(V4) if x belongs to a vicinity Y of another point and X is a vicinity of x then 

Y includes a vicinity of x meeting X. 

For each vicinity X of a point x the union of all vicinities of x meeting X will 

be called a direction around x. By (V3) different directions around x are disjoint. 

(V4) can be reformulated as follows: if x belongs to a vicinity Y of another point 

that Y includes a vicinity of x in every direction around x. 

EXAMPLE 1. U is a T1 topological space. Isolated points of U have no 

vicinities. If x is not isolated then {(5 - { x } :  G is an open neighborhood of x} is 

the collection of vicinities of x. Thus there is at most one direction around any 

point. 

EXAMPLE 2. U is a chain (i.e. a linear order). A point set X is a vicinity of a 

point x iff X is not empty, and X is open in the interval topology of U, and x 

does not belong to X, and either x = sup(X) or x = inf(X). Thus there are at 

most two directions around any point. 

The vicinity space of Example 1 (respectively 2) will be called associated with 

the original top space (respectively chain). 

The monadic theory of a vicinity space is defined in an obvious way. In 

Examples 1 and 2 the monadic theory of the vicinity space is easily interpretable 

in the monadic theory of the original topological space and chain respectively. 
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The natural topology of a vicinity space is defined as follows: a point set X is 

open iff it includes a vicinity of each point x E X in every direction around x. 

This definition restores the original topology in Example 1 and the interval 

topology in Example 2. 

The number of directions around a point is called the degree of this point. The 

degree of a vicinity space is the supremum of the degrees of its points. We 

restrict our attention to vicinity spaces satisfying the following conditions: the 

natural topology is regular and first-countable, and the degree of the space is 

finite but positive. 

We'll need a few more definitions. Let U be a vicinity space of degree r. The 

repletion of a subset X of U is the set rp(X) of points x such that the degree of x 

is equal to r and every vicinity of x meets X. If X = rp(X) ~ 0 we say that X is 

replete. If 0 / X C_ rp(X) we say that X is coherent. If X meets every vicinity of 

every one of its points it forms a subspace of X in the following natural way: a 

point set Y C_ X is a vicinity of a point x @ X in X iff there is Z C_ U such that Z 

is a vicinity of x in U and Y = X NZ.  

Let p < o9. A vicinity space U is perfunctorily p-modest if for every coherent 

everywhere dense sets X l , . . . , X p  there is Y_C X1 U . . .  U Xp such that Y is 

replete in U and X1,. . . ,Xp are dense in Y. U is p-modest if every coherent 

subspace of U is perfunctorily p-modest.  

§6. First application 

The first application of the Interpretation Theorem uses the article [2]. 

In this section B is an atomless, complete, separable Boolean algebra in the 

model V of ZFC. For each p < ~o let K e be the collection of structures 

(U, X~, . . . ,  Xp) where U is a coherent separable vicinity space, and X~, . - . ,  Xp 

are countable everywhere dense subsets of U, and there is no pseudo-meager 

replete subspace Y of U such that X~, . - . ,  X e are dense in Y. 

THEOREM 1. There is a uniform in p algorithm interpreting the second-order 
V B-theory of c in the monadic V-theory of any space in Kp. 

PROOF. Let U E Kp. By Claim 2.6 R O ( U )  is separable. By Claim 2.5 R O ( U )  

is isomorphic to B hence V R°<v~ is isomorphic to V B. By Theorem 4.1 it suffices 

to construct formulas Premise, Share and Pairing in the monadic language of U 

in such a way that the construction is uniform in p and the conditions of §3 are 

satisfied for B = R O ( U )  and K = c. 

We use notation, terminology and results of [2]. Evidently U is a guard space. 

By Claim 2.6 the cardinality of U is at most c. 
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Let Premise(a) say that ~1 is a constructible stable tower of height c whose 

arena is the whole space. It is the conjunction of some formulas explicitly written 

in sections 4-6 of [2]. The proof of lemma 5.4 in [2] provides an appropriate 

tower, thus Premise(a) is satisfiable in U. Let 

t = (D,D° ,D ' ,D ' - ,D  3, W) 

be a tower such that Premise(t) holds. By theorem 4.3 in [2] t has a skeleton 

(X, : a  < c ) .  Set A ,  = D " n X ,  for a <c .  Condition (CO) of §3 is evidently 

satisfied. 

Let Share(t, X) say that X = D O (3 Y for some limit t-storey Y. Limit t-storeys 

are defined in 5 of [2]. Use theorem 4.3 in [2] to check condition (C1) of §3. 

Let Pairing(t, Xo, X~, 322, b) say that there are limit t-storeys Y0, Y~, Y2 such 

that X ~ = D  °fqYi for i_-<2and 

b C do(Y2 ~ nuo(Yo, Vl)). 

Use lemmas 5.1 and 5.2 in [2] to check condition (C2) of §3. Just repeat the 

proof of lemma 6.2 in [2] to check condition (C3) of §3. [] 

THEOREM 2. There is an algorithm interpreting the second-order V B-theory of 
c in the monadic V-theory of any first-countable non-scattered regular topological 
space U having no separable, perfect, nowhere dense subspace which is pseudo- 

meager in itself. 

PROOF. Let K be the class of topological spaces described in Theorem 2. 

Theorem 1 with p = 0 provides an algorithm f interpreting the second-order 

VB-theory of c in the monadic theory of any topological space U @ K whose 

associated vicinity space belongs to K0. 

If 4' is a sentence in the monadic language of topology let g4' be a sentence in 
the monadic language of topology saying that there is a perfect subspace X such 

that every perfect subspace Y C X satisfies 4'. The superposition of f and g is 

the required algorithm. [] 

TrmOREM 3. Assume that in V every pseudo-meager subspace of the real line 
is meager. There is a uniform in p algorithm interpreting the second-order theory of 

c in the monadic V-theory of any non-p-modest short chain. 

Theorem 3 corresponds to corollary 5 in [2]; it is more convenient however to 

use [4]. In order to prove Theorem 3 just repeat the proofs of theorems 6.2 and 

7.2 in [4]. (We may not worry here about zero-dimensionality and simplify 

somewhat the proof.) [] 
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§7. Second application 

The second application of the Interpretation Theorem uses article [4]. Here B 

is once again an atomless, complete, separable Boolean algebra, p is a positive 

natural number, and Kp is a class of structures (U, X~ , . . . ,Xp)  where U is a 

coherent,  second-countable, zero-dimensional vicinity space, and X1," • ", X~ are 

countable, disjoint, everywhere dense subsets. If a structure (U, X1," • ", Xp) @ Kp 

then X1,'" ",Xp will be called guardians of the structure. 

THEOREM 1. There is a uniform in p algorithm interpreting the second-order 

VB-theory of Mo in the monadic V-theory of any U ~ Kp. 

PROOF. Let U @ Kp. By Claim 2.5 R O ( U )  is isomorphic to B hence V R°~U) is 

isomorphic to V B. By Theorem 4.1 it suffices to construct formulas Premise, 

Share and Pairing in the monadic language of U such that the construction is 

uniform in p and the conditions of §3 are satisfied with B = R O ( U )  and K = to. 

We use notation, terminology and results of [4]. 

Let Premise(~) say that t~ is an arithmetical tower. It is the conjunction of 

some formulas written explicitly in sections 4 and 5 of [4]. Claim 4.2 in [4] 

provides an arithmetical tower thus Premise(fi) is satisfiable in U. Let t be an 

arithmetical tower in U, and D ° be the union of guardians of U. By Theorem 5.1 

t has a skeleton (X, : n < to). Set A, = D" n X. for n < to. Condition (CO) of §3 

is evidently satisfied. 

Let Share(t, X)  say that X = D o fq Y for some t-storey Y; condition (C1) of §3 

is evidently satisfied. 

There is a formula tk (Vo, v~, v2) in the first-order language of (to, Add, Mlt) 

defining a pairing predicate on to. Let Pairing(t, Xo, Xa, X2, b) say that there are 

t-storeys Y0, Y1, Y2 such that Xi = D O f) Y~ for i -< 2 and 

b C do,(~b(Yo, Y,, Y2)). 

Condition (C2) is evidently satisfied. 

The skeleton of t can be chosen in such a way that the {A, : n < to} is pairwise 

disjoint. In this case condition (C3) of §3 becomes trivial. [] 

CLAIM 2. There is a uniform in p algorithm interpreting the second-order 

VB-theory of No in the monadic V-theory of any second-countable, zero- 
dimensional, non-p-modest vicinity space. 

PROOF. See the proof of theorem 6.2 in [4]. []  
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THEOREM 3. There is a uni[orm in p algorithm interpreting the second-order 
V~-theory of No in the monadic V-theory of any second-countable, zero- 
dimensional, non-p-modest short chain. 

PROOF. Just repeat the proof of theorem 7.2 in [4]. [] 

Recall that a T1 topological space is called p-modest if the associated vicinity 

space is p-modest. 

THEOREM 4. There is a uni[orm in p algorithm interpreting the second-order 
VB-theory of I% in the monadic V-theory of any non-p-modest, regular, 
second-countable top. space. 

PROOF. Just repeat the proof of theorem 8.3 in [4]. 

THEOREM 5. There is an algorithm interpreting the second-order V B-theory of 

No in the monadic theory of any metizable non-p-modest top. space. 

PROOF. See the proof of theorem 8.5 in [4]. 
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