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to any (however nonuniform) sequence of constant-depth, polynomial-size, positive Boolean circuits. 

Categories and Subject Descriptors: Fl. 1 [Computation by Abstract Devices]: Models of Computation; 
F.4.1 [Mathematical Logic and Formal Languages]: Mathematical Logic; G.2.1 [Discrete Mathe- 
matics]: Combinatorics; G.3 [Mathematics of Computing]: Probability and Statistics 

General Terms: Algorithms, Languages, Theory, Verification 

Additional Key Words and Phrases: Boolean circuits, constant-depth, first-order formulas, monotone, 
polynomial size, positive, probabilistic 

1. Introduction 

Let P(P) be a first-order formula where P is an l-ary predicate symbol. Let c be the 
rest of the signature of ‘P, and XI, . . . , x,,, be the free individual variables of ‘P(P). 
View the symbols in u as constants and P as a predicate variable. Then ‘P(P) 
represents an operator assigning the m-ary predicate P’ = X(x,, . . . , x,&So(P) to 
each I-ary predicate P. 

‘P(P) is called monotone (in P) if P C Q logically implies P’ C Q’. Here Q is a 
new l-ary predicate variable and P !E P’ abbreviates Vxl + . . XI [P(xI , . . . , XI) + 
Q<xt,..., x,)]. Recognizing monotonicity is an undecidable problem: A u-sentence 
CY is valid if and only if the sentence 3x1 . . . x,P(x,, . . . , xl) + (Y is monotone. 
A sufficient condition for the monotonicity of V(P) is that V(P) is logically 
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equivalent to a first-order formula that is positive in P (has only positive occurrences 
of P); and the positivity is, of course, easily recognizable. Lyndon proved that this 
sufficient condition is necessary [ 111. (This desired $(P) is a Lyndon interpolant 
[4] for the implication (P’ C P) & Q(P’) + Q(P).) 

In the rest of this paper we consider only finite structures. Thus, Q(P) will be 
called monotone if P G P’ implies Q(P) G Q(P’) on finite structures. Again, 
recognizing monotonicity is an undecidable problem. And again, positivity is a 
sufficient condition for monotonicity: Q(P) is monotone in P if it is equivalent on 
finite structures to a first-order formula positive in P. It was conjectured that this 
sufficient condition is not necessary [6]. The conjecture is proved here. 

Actually, we prove a stronger result. To formulate it nicely, we use a generali- 
zation of the classical Bore1 hierarchy to finite topological spaces [7]. The original 
goal of the generalization was to understand the paper [I]. This paper is, in a sense, 
an offspring of [ 11, which shares some results with [5]. Connections between circuit 
complexity and the classical Bore1 hierarchy were explored in [ 121. 

Subsets of a set S will be called points over S, and sets of points over S will be 
called point-sets over S. 

Definition. Let M be a point-set over a set S. M is positive Bore1 of level 0 if M 
is empty or M contains all points over S or M = (X C S : a E X) for some a E S. 
M is positive Bore1 of level i + 1 if it is the union or the intersection of at most 1 S 1 
positive Bore1 point-sets over S of level i. 

CLAIM. Let g be a signature comprising only predicate symbols and individual 
constants, P be an additional unary predicate symbol, and $(P) be a sentence of 
the signature [r u {P). Suppose that Q(P) is positive in P, d is the logical depth of 
Q(P), and S is a u-structure. Then the point-set (P G S : S i= $(P)) over S is positive 
Bore1 of level d. 

PROOF. First extend u by means of individual constants corresponding to 
elements of S. Then prove the claim (for sentences in the extended signature) by 
induction on the logical depth. Cl 

MAIN THEOREM. There exists a sequence S,, Sz, . . . of structures of some 
signature U, a first-order u-sentence Q O, and a first-order sentence Q,(P) in the 
signature u plus an additional unary predicate symbol P such that u contains only 
predicate symbols and 

(i) an arbitrary u-structure satisfies ‘PO tfand only if it is isomorphic to some S,,, 
(ii) the sentence QO & Q,(P) is monotone in P, and 

(iii) for every i there is ni such that for every n L ni, the point-set (P G S,, : S,, I= 
Q,(P)) over S,, is not positive Bore1 of level i. 

COROLLARY 1. The sentence QO & Q,(P) is monotone in P but not equivalent 
on finite structures to any first-order sentence positive in P. 

PROOF. By contradiction, suppose that QO & Q,(P) is equivalent on finite 
structures to a first-order sentence +(P) that is positive in P. 

Without loss of generality, the signature of q(P) contains only predicate symbols 
and even is included into u U (P). The extra predicates can be made identically 
true; the equivalence (500 & Q,(P)) c-) #(P) will survive. 

Let d be the logical depth of q(P) and n be the number nd of (iii). By the Claim, 
the point-set (P G S,,: S,, l= q(P)) is positive Bore1 of level d, which contradicts the 
clause (iii). Cl 
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We consider Boolean circuits with AND, OR, and NOT gates. A circuit will be 
called monotone if it computes a Boolean functionf(x, , . . . , XI) that is monotone: 
IfxiIyiforalli,thcnf(xl,..., x,)sf(yr ,..., y,). A circuit will be called positive 
if it has no NOT gates. 

COROLLARY 2. There is a constant-depth polynomial-size sequence C,, CZ . . . 
of monotone Boolean circuits such that for all natural numbers d, s and any 
suficiently large natural number n, no positive Boolean circuit of depth Id and 
size Ins computes the Boolean function of C,. 

PROOF. Let structures S,, and formulas 500, Sol(P) be as in the Main Theorem. 
Let U, be the extension of the signature u by ] S,, ] individual constants 
Cl, c2, *a* naming the elements of S,. Turn every first-order sentence $J in the 
signature a,, U (PI into a Boolean formula #*, as follows: If $ is an atomic a,- 
sentence that holds (respectively, fails) in S,,, then $* is an identically true 
(respectively, false) Boolean formula. If $ = P(ci), then #* = $. If + is the 
conjunction (respectively, disjunction) of (Y and B, then $* is the conjunction 
(respectively, disjunction) of a* and fi*. If $ = 7&, then #* = 7a*. If $ is (Vx)a(x) 
(respectively, (Zlx)a(x)), then J/* is the conjunction (respectively, disjunction) 
of formulas (a(ci))*. The Boolean formula ((PO & ‘PI(P))* gives the desired 
circuit C,. Cl 

Remark. In our construction, ] S,, ] = n x Llogz nJ (for n > 1) and C,, has ] S,, ] 
inputs. It is not diffkult to achieve ] S,, ] = n as one may desire. 

Corollary 2 is a kind of lower bound on the complexity of positive Boolean 
circuits. Boppana [2] gives lower bounds of a different type on the complexity of 
positive Boolean circuits (called monotone in [2]). 

Remark. The sequence of structures S, is uniform in our construction. The 
corresponding sequence. of circuits C, is uniform, of constant depth and polynom- 
ially bounded size. This sequence of circuits is not equivalent to any (whatever 
nonuniform) sequence of constant-depth, polynomial-size, positive circuits. 

Note that every monotone Boolean circuit C is equivalent to some positive 
Boolean circuit. Consider for example a minimal Boolean formula $ in the 
disjunctive normal form which is equivalent to the Boolean formula of C. If # has 
a disjunct (Y & ly, then, by the monotonicity, every assignment satisfying (Y satisfies 
9. Hence (Y & ly can be replaced by (Y, which contradicts the minimality of Ic/. 

Corollary 2 indicates that the conversion of a monotone circuit into an equivalent 
positive one may not be easy. Since recognizing the monotonicity of a circuit is 
co-NP-complete [7], there is no polynomial-time algorithm-unless P = NP- 
which transforms an arbitrary circuit C into an equivalent circuit C’ in such a way 
that C’ is positive whenever C is monotone. 

The Main Theorem is proved in Sections 2-4. Structures S, and sentences Cpo, 
(PI(P) are defined in Section 2, and statements (i) and (ii) are proved there too. The 
universe of S,, (for n > 1) consists of pairs (x, y), of natural numbers such that 
x < I= Llogz nJ and y < n. With every subset P of S,,, we associate a function 

P*(x) = maWI U {Y: Sn I= W, v)D, O~XCl. 

The desired ‘P,(P) says that C P*(x) L l(n - 1)/2. Obviously, ‘P,(P) is monotone 
in P. In Section 3, we prove that (P* :‘P,(P)) has many minimal elements with 
respect to the componentwise ordering. In Section 4, we prove that sets of functions 



Monotone versus Positive 1007 

P*, definable by positive Bore1 conditions, do not have many minimal elements 
with respect to the componentwise ordering. This will establish statement (iii). The 
main difficulty is to formulate an appropriate notion of “many”; our notion of 
“many” has a probabilistic character. 

The question about the status of Lyndon’s theorem in the case of finite structures 
was raised by Chandra and Hare1 [3] in relation to the extension FO + LFP of 
first-order logic by means of the following least fixed point formation rule. A 
formula V(P, 2), where the arity of a predicate variable P equals the length of the 
tuple 2 of individual variables, represents an operator P H XZ.:(p(P, z?) which can 
be iterated; if Cp is positive in P, then the operator is monotone in P and therefore 
has a least fixed point LFpp,,((P). If Lyndon’s theorem were true in the case of 
finite structures, it would be an indication that FO + LFP loses no expressive 
power by sticking to positive rather than arbitrary monotone formulas. Fortunately, 
no expressive power is lost anyway: the two extensions coincide by their expressive 
power [8]. 

2. The Monotone Formula 

In this section we prove the Main Theorem, except for statement (iii). 

Definition. al is the signature ( I, Sum, Prod, Exp), where d is a binary 
predicate symbol, and Sum, Prod, Exp are ternary predicate symbols. A al- 
structure S of cardinality n is standard if 

(i) the universe of S is the interval [0, n) of natural numbers, 
(ii) 5 is the standard ordering of the universe of S, 

S I= Sum(x, y, z) if and only if x + y = z modulo n, 
S l= Prod(x, y, z) if and only if x . y = z modulo n, 
S I= EXP(X, Y) if and only if 2” = y modulo n. 

THEOREM 2.1. There is a first-order al-sentence #l such that an arbitrary 
al-structure is a model of $1 tf and only if it is isomorphic to a standard structure. 

PROOF. $1 says that I is a linear order, and Sum, Prod, Exp satisfy the usual 
recursive definitions [lo]. Cl 

LEMMA 2.1. For any positive integer m, let U(m) be the least common multiple 
of all positive integers up to m. For any integer n L 2, U(2Tlogz nl) 2 n. 

PROOF. See [9]. Cl 

LEMMA 2.2. For every integer n L 6, the number offunctions from the interval 
[0, L(logz n)‘j4A) of natural numbers to the interval [0, 2rlogz nl) of natural numbers 
is at most n. 

PROOF. Omitted. Cl 

Definition. a2 = u 1 U (Q, R ) where Q is a ternary predicate symbol and R is 
a quaternary predicate symbol. Let 1 = log2 n and fo, f;, . . . , fm-l be the list of 
functions from [0, L1'14J) to [0, 2Ill) in the lexicographical order. A uZstructure S 
of cardinality n is standard if n r 6 and 

(i) the u 1 -reduct of S is standard, 
(ii) Sl= Q(i, j, k) iff i < m, j < LP4J, andJ(j) = k, and 

(iii) S l= R(i, x, y, p) iff i c m, x I LP41, 2 5 p I 2fl1, and C (J(j): j c x) = y 
modulo p. (The empty sum by definition is 0.) 
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THEOREM 2.2. There is a first-order aZsentence $2 such that an arbitrary 
a2-structure is a model of $2 if and only if it is isomorphic to a standard 
aZstructure. 

PROOF. +2 is a conjunction of four sentences. The first conjunct is $1. The 
second conjunct says that the universe contains at least six elements. The third 
conjunct describes Q by induction on the first argument. The forth conjunct 
describes R by induction on the second argument. Cl 

THEOREM 2.3. Let a3 = a2 U (f) where f is a unary function symbol. There is 
a a3-formula 1+53(y) satisfying the following condition. Let S be a a3-structure with 
a standard a2-reduct, and let n = 1 S I, I= log2 n. Suppose that x ( f(j) : j c LP4J 1 
< n. Then SE $3(y) if and only ifc (f(j): j < L1”4JJ = y. 

PROOF. IXtfo,fi, . . . , fm-, be as in the definition of standard a2&ructures, 
and let r = L1’14J. The desired formula #3(y) uses the predicates Q and R to say 
that for every p 5 2111 there is i < m such that 

(a) forallj~r,f(j)=~(j)modulop,and 
(b) 2 (J(j):j c rJ = y modulo p. 

In virtue of Lemma 2.2, the equality z (f(j): j < rJ = y implies S l= #3(y). 
Suppose that S l= +3(y). Then z ( f(j) : j < r] = y modulo every positive p 5 2111. 
Hence 2 ( f(j) : j < t-1 = y modulo the least common multiple of all positive 
numbersp 5 2111. By Lemma 1, z (f(j):j c r] = y. 0 

THEOREM 2.4. There is a a3-formula $4(y) satisfying the following condition. 
Let S be a a3-structure with a standard o2-reduct, and let n = 1 S 1, 1 = Llogz nJ. 
Suppose that z (f(i) : i < 1) c n. Then St= $4(y) ifand only if2 (f(i): i < 11 = y. 

PROOF. Let a(f; y) = J/3(y). Let r = 111’41, so that r4 I 1. 
The formula a(Aj.f(ru + j), y) says that C (f(j): ru s j < ru + r] = y. 

tit g(u) = C (f(j): ru I j < TU + r J. The formula a( g, y) says that y = 
2 (f(j):j< r7. 

Using the same trick again, we arrive at a formula ,f3(f; y) saying that 
x (f(j):j<r4) =y.Leth(j)=f(j)ifj<l,andh(j)=O,otherwise.~(h, y)isthe 
desired $4(y). 

The above proof assumes implicitly that r4 zz n. We ignore the modification 
needed to cover the case r4 > n. 0 

Now we’are ready to describe the desired structures S,,. 

DeJinition. u = a2 U (D, T} where D is a unary predicate symbol and T is a 
ternary predicate symbol. 

Definition. Let n L 4 and I= Llogznl. S, is the a-structure such that 

(i) the universe of S consists of pairs (x, y) of natural numbers where 0 5 x < 1 
andO<y<n, 

(ii) the map (x, y) + nx + y is an isomorphism of the a2-reduct of S onto the 
aZstandard structure of cardinality In, 

(iii) the interpretation of Tin S is ((x, 0), (0, y), (x, y) : 0 I x < 1, 0 5 y < n), 
(iv) the interpretation of D in S is ((x, x) : 0 5 x C 1). 

Clause (ii) requires In ZE 6 because a standard SZstructure contains at least six 
elements. This explains the restriction n L 4. Structures Sr , SZ, S, should be defined 
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separately; we ignore them and suppose n I 4 in the rest of the proof of the 
Main Theorem. Let 1= Hog2 nJ. 

It is easy to write down the desired first-order a-sentence % such that every 
model of ‘PO is isomorphic to some S,, . In the following description of ‘PO we suppose 
that S is a model of Cpo. Our PO is a conjunction. One conjunct is the sentence $2 
of Theorem 2.2; this guarantees that the aZreduct of S is standard. Let A, B be the 
first and the second projections of T in S, respectively; the projections inherit 
orderings from S. The second conjunct of 5oo says that T is an isomorphism of 
the lexicographically ordered set A x B onto the (<)-reduct of S. The third 
conjunct says (using the arithmetic built into S) that there are a, b E S such that 
Vy(y<boyEB),a=Llog2bJ,u. b= IS] andD= (x. b+x:xCu). 

Definition. With each subset P of S,, we associate the function P*(x) = 
max( (0) U ( y : S I= P(x, y))) where 0 5 x c 1 (the associate function of P). 

Let P be a unary predicate symbol. Using the formula $4 of Theorem 2.4, write 
down a u U (PJ-sentence saying in each S,, that C (P*(x): 0 I x C 1) 2 l(n - 1)/2; 
this is the desired sentence ‘PI(P). 

The sentence ‘PO & ‘PI(P) obviously is monotone in P. 

3. Abundance of Minimal Elements 
Consider any structure S,, constructed in Section 2. A function P* was associated 
with each subset P of S,,. In this section we prove that the set (P: S,, I= ‘PI(P)) has 
many minimal elements with respect to the componentwise ordering. 

Definition. If X is a set and Y is a linearly ordered set, then (X + Y) is the 
lattice of functions from X to Y ordered componentwise: f 5 g if and only 
iff(x) 5 g(x) for all x E X. 

Definition. A lattice L is called regular if there are finite nonempty intervals X, 
Y of natural numbers, functionsfand g from X to Y, and a positive integer n such 
that g(x) = f(x) + n - 1 for all x E X (so that each interval [f(x), g(x)] contains n 
natural numbers), and L is the interval [f; g] = (h E L : f 5 h I g) of [X + Y]. 
The interval X is called the source of L. The functionfis called the bottom of L 
and denoted bottomL, the function g is called the top of L and denoted topL. The 
number n is called the height of L. 

Every sublattice of a regular lattice L is an interval [h,, h2] for some functions 
h, I hl. An interval of a regular lattice is called regular if it forms a regular 
sublattice. 

Let I= Llogz nJ, and L = [X -+ Y], where X, Y are the intervals [0, 1) and [0, n) 
of natural numbers, respectively. 

Proviso. The probability distribution of any random variable is supposed to be 
uniform (when all possible values are equally probable) unless the contrary is clear 
from the context. 

THEOREM 3.1. Suppose that m is an integer such that 3 5 m < n and n - m 
is even. Let J be a random regular interval of L of height m. Let E be the 
event that there is f E J such that f > bottom-, and z f(x) = rl(n - 1)/21. Then 
Pr[E] > (In)-‘. 

Remark. The restriction “n - m is even” is not essential, but it simplifies 
somewhat the proof and suffices for our purposes. 
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We prove Theorem 3.1 using the following lemma. 

LEMMA 3.1. Let YK = yl + . . . + yk where yl , . . . , yk are independent random 
variables on a fixed interval [-r, r] of integers. Then Pr[ Yk = a] L Pr[ Yk = b] for 
all integers a, b with 1 a 1 5 1 b I. 

PROOF. The case k = 1 is obvious. Suppose Lemma 3 is proved for k, Y = Yk, 
z=yk+l, z= Yk+l . We prove Pr[Z = a] r Pr[Z = b] assuming 1 b 1 = I a I + 1. In 
virtue of symmetry, Pr[Z = c] = Pr[Z = -cl for any c; hence we may suppose that 
arOandb=a+ 1. 

P[Z=a]=C(P[z=i]XP[Y=a-i]:-rIi(r) 
= (1/(2r + 1)) X C (P[Y = a - i]: -r 5 i 5 r). 

Similarly,P[Z=a+ 1]=(1/(2r+ l))xz{P[Y=a+ 1 -i]:-r<isr).Then 
(2r + 1) - (P[Z = a] X P[Z = a + 11) equals P[Y = a - r] - P[Y = a + 1 + r], 
which is nonnegative since ] a - r I I max(a, r) < a + 1 + r. Cl 

PROOF OF THEOREM 3.1. Let f(x) = [bottomJ(x) + top.,(x)]/2. Note that 
Lf(x)J > bottom/(x) for all x. Since n - m is even, every f’(x) = f(x) - 
(n - 1)/2 is integer. Every J(x) has less than n possible values; hence C f’(x) has 
fewer than In possible values. By Lemma 3.1, 

Pr[C f(x) = Z(n - 1)/2] = Pr[C.f’(x) = 0] > (bz)-‘. 

If m is odd, then fbelongs to J, and we have finished. Suppose that m is even. 
Set g(x) = Lf(x)J for x < L1/2J, and g(x) = rf(x)l for L1/2J 5 x c 1. Then g belongs 
to J. If 1 is even, then C g(x) = C f(x); hence, 

Pr[I:f(x) = I(n - 1)/2] > (bz)-‘. 

If I is odd, then 

c g(x) = ; + CfW, 

1 Z(n 2 - 1) 1 = 2+- 1 I(n 2 - 1) ’ 

Pr[,g(x)=rl(nT ‘)]]=Pr[l:f(x)=~]>(bz)-‘. q 

4. A Probabilistic Property of Positive Bore1 Sets 

In this section we complete the proof of the Main Theorem. We start -with some 
notation and terminology. 

Recall that a subset S of an arbitrary lattice L is called a semifilter if S 3 x < y 
+ y E S. The union as well as the intersection of a family of semifilters is again a 
,semifilter. If S is a semifilter in L and I is an interval of L, then I rl S is a semililter 
in the sublattice I. 

Every semililter S of a regular lattice L is the union of intervals [h, top=], where 
h is a minimal member of S. Intuitively, S is rich if it has many minimal elements. 
The richness is related to the number of elements of the source of L in which some 
minimal member of S exceeds bottom=. This motivates the following definition. 

Definition. Let S G L be a semililter in a regular lattice L with a source IV. The 
set {U E IV: there is a minimal h E S with h(u) > bottomL((u)) is the base of S in 
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L, written baseL(S). The cardinality of baseL(S) is the dimension of S in L, written 
dimL(S). 

Note that dimL(S) equals 0 if and only if S = 0 or S = L. 

LEMMA 4.1. Let F be U or I7 (so that in each lattice, F assigns a semifilter to 
each family of semifilters). Let L be a regular lattice with a source W, and N be a 
family of semifilters in L. Then 

(i) for every interval J of L, J n F(N) = F(( J n S: S E NJ); 
(ii) if dimL(S) I d 5 ] N ] for all S E N, then F(N) = F((N,: U C W and 

] U ] = dJ, where N” = F(S E N: baseL(S) C U); and 
(iii) ifbase= C U !Z Wfor all S E N, then base=(F(N)) G U. 

Comment. This simple lemma will allow us later (in the proof of Theorem 4.3) 
to treat the two operations U and Il simultaneously. 

PROOF. We only prove statement (iii) for the case of n; the rest is obvious. Let 
g be a minimal function in fLN. Consider the collection X of functions f I g 
such that f is minimal in some S E N, and let h be the joint of X. Obviously, 
h E f7N and h I g. By the minimality of g, h = g. Every f E X coincides with the 
bottom of Z on W - U. Hence g coincides with the bottom of L on W - U. Cl 

Definition. Let L, be a regular lattice of height n, and 0 < a! C 1. An a-interval 
of L is a regular interval of L of height Ln”l. 

LEMMA 4.2. Let L be a regular lattice with a source W and the height 
n > (2 ] W ] )4. Let t be a positive integer, and CY, /3, y be positive reals such that 
(Y 5 1/(4t), and & y < 1, and LLn”J@J = LnYJ. There is a set S of -y-intervals of L 
satisfying the following condition. Suppose that A is a random a-interval of L, B is 
a random P-interval of A, and C is a random -y-interval of L. Then 

(i) Pr[C B S] < n-‘, and 
(ii) for every D E S, Pr[C = D] < I& x Pr[B = D]. 

Comment. B is a random y-interval of L with respect to a complicated 
probability distribution. Think about t as a big enough number. The lemma says 
that almost everywhere the complicated distribution is bounded by the uniform 
distribution times A. 

PROOF. Without loss of generality, the bottom and the top of L are Au.0 and 
Xu.(n - I), respectively. Let a = Ln*J, b = LaaJ, f = bottomA, g = bottomB, and 
h = bottom=. Both B and C have the height b. 

For each u in W, h(u) is a random element of [0, n - b]; Pr[h(u) = k] = l/(n - 
b + 1) for each 0 5 k 5 n - b. The probability distribution of g(u) is different. Let 
0 5 k I n - b. Pr[g(u) = k] = p(k) x [ l/(a - b + l)] where p(k) = Pr[ f(u) 5 k I 
f(u) + a - b]. If a - b 5 k I n - a, then p(k) = (a - b + l)/(n - a + 1) and 
Pr[g(u) = k] = l/(n - a + 1) 2 Pr[h(u) = k]. In any case&) 2 l/(n - a + 1) and 

Pr[g(u) = k] 2 
1 

(n - a + l)(a - b + 1) 
z a-’ x Pr[h(u) = k]. 

Let S be the set of y-intervals D of L such that 

] (u : either bottomD(u) < a - b or bottom&u) > n - a) ] < 2t. 

To prove (i), set V = (u : either h(u) c a - b or h(u) > n - a). For every u E W, 
Pr[u E V] < 2a/n. If U is a subset of W of cardinality 2t, then Pr[U C V] < 
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(2a/n)“. Thus Pr[C 4 S] = Pr[There is U G V, ] U ] = 2t] < ] W 12’ x (2a/n)” 5 
[ 1 w I2 x 22 x n2u x n-21, < [n”2+“2--2]l < n-‘. 

To prove (ii), let D E S, I = bottomD and V = (u : r(u) < a - b or T(U) > n - a). 
Then Pr[C = D] = Pr[h = r] = n (Pr[h(u) = r(u)]: u B V) x n (Pr[h(u) = r(u)]: 
u E V) < n (Pr[g(u) = r(u)]: u 4 V) X (a2’ n (Pr[g(u) = r(u)]: u E V)) < 
Pr[g = r] X n’j2. 0 

THEOREM 4.1. Suppose that L is a regular lattice with a source W and the 
height n, S is a semifilter in L of dimension d > 0, b E B = base=(S), V is a subset 
of W such that B - V = (b), t is a positive real with nt < n/2, F is a member of L 
such that F(v) + n’ 5 top=(v) for all v E V, and J is a random c-interval of L with 
bottomJ(v) = F(v) for all v E V. Then Pr[b E baseJ( J n S)] < 2rP-I. 

Comment. The intuitive meaning of Theorem 4.1 is as follows: If the dimension 
d of the base of S is fixed and the height t of J diminishes, then the probability of 
b E base.,(J n S) is rapidly diminishing. Why is this true? Consider the most 
interesting case V = W - (bJ. Then the only random part of J is the interval 
[bottomJ(b), top.,(b)] of integers; the rest of J is fixed. If b E basej(J rl S), then 
there is a minimal function g of J n S with g(b) > bottom/(b). There are not too 
many choices for the restriction of g to A = B - (b) G V, so consider the case in 
which g ] A is fixed. How many choices do we have for g(b) now? The answer is: 
just one. 

PROOF. We may assume that V = W - (bJ. For, let U = ( W - (b)) - V and r 
range over functions from U to the set o of natural numbers such that r(u) + n’ 5 
top=(u) for u E U. If every conditional probability 

Pr[b E base,(J rl S) ] bottomJ coincides with r on U] 

is less than 2&‘, then Pr[b E baseJ( J rl S)] < 2&-l. 
We prove that the probability of a consequence of the event b E baseX J fl S) is 

less than 2rf6’. Let A = B - (b), 

H = (h E [A ---* w]: F(a) 5 h(u) 5 F(a) + n’ for all a E A), 
H’ = (h E H:there is f E S with f(a) 5 h(u) for all a E A), 
h* = min( f(b):f is a minimal member of S with f(u) I h(a) for a E A), 

for each h E H ‘, and let E be the event “There is h E H’ with bottomJ(b) < h* 5 
top.,(b).” 

E is a consequence of the event b E base.,( J n S). For, suppose b E baseJ( J tl 
S). Then there is a minimal member g of J n S with g(b) > bottom/(b). Let h be 
the restriction of the function g to A; obviously, h E H ‘. It suffices to prove that 
h* = g(b). There is a minimal member f of S such that f (a) 5 h(a) for a E A and 
f(b) = h*. By the definition of h*, f(b) I g(b). Since B is the base of S in L, we 
have f(u) = bottom=(u) for u E W - B. Thus f 5 g. Let fJ be the join off and 
bottomJ; obviously fJ zz g and f’ E J n S. By the minimality of g, g 5 f “; hence 
g = f” and g(b) =fJ(b) = h*. 

It remains to estimate Pr[E]. The number of values for J is n - Ln’l + 1 > 
n - n’ > n/2. ] H’ ] 5 ] H ] = L&Y’-’ 5 n@-‘). For each h E H’, the number of 
values for J with bottom/(b) < h* 5 topJ(b) is less than n’. Thus Pr[E] x nf(d-‘) x 
n’+ (n/2) = 2nfd-‘. 0 

THEOREM 4.2. Suppose that A is a regular lattice with a source W, l= ] W ] L 
3, a = height(A), for each U C W of cardinality d, S(U) is a semifilter in A with 
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basea(S( U)) C U; B I 1/(2d); B is a random P-interval of A; M = U (baseB(B FU 
S(U)) : U C W, ] U ] = dJ; and m is a positive integer. Then Pr( ] M ] L dm) C 
12dma-m12. 

Comment. The interesting case is when d, I, m are fixed and a increases. The 
intuitive meaning of the theorem is that the dimension of B FU S(U) in B is, in 
general, small. 

PROOF. We evaluate the probability of a consequence of ] M ] L dm. 
L&Q= ((U, )...) u,,u I,..., u,):uiEUiC Wand]Ui]=dforalli).Then 

1 Q 1 5 (ld)m x d”. Since (2d)‘ld c max((2x)““: 1 % x < 001 < 3 5 1, we have 
d < ld/2 and ] Q ] < (!2d/2)m. 

Let R = ((U,, . . . , U,,,, ~1, . . . , u,) E Q: each ui E baseB(B n S(Ui)) - 
U ( Uj: j c i) 1. The event R # 0 is a consequence of the event ] M ] > dm. 
For, assume ] M ] 2 dm and pick any uI E M, there is UI C W of cardinality d 
such that uI E basee(B rl S(UI)). Suppose that i I m, and U,, . . . , Ui-1, 

Ui-1 have been chosen. Pick any Ui E M - U ( Uj :j C i); there is Vi G W 
,“Fpowkr d such that Ui E baseB(B n S(Ui)). 

Foreachsequences=(U1 ,..., Um,uI ,.,., u,) in Q, let p(s) be the probability 
that s E R. If there are j < i with Ui E Uj, then p(s) = 0. We suppose that there is 
no pair j C i with Ui E Uj and give an upper bound for p(s). 

Let f = bottomA, g = bottomB and b = LaSJ. For each u E W, g(u) belongs 
to the interval [f(u), f(u) + a - b]. Let Wo = W - U (Ui: 1 5 i I m); and for 
each i = 1, . . . , m, let Wi = (Vi - Uj<i Uj) - (Ui). Without 10~s of generality, the 
function g is produced by the following 1 + 2m independent choices: first 
choose the restriction of g to W-,, then choose the restriction of g to WI, 
then choose g(u,), then choose the restriction of g to WZ, then choose g(uz), etc. 
By Theorem 4.1 (with b = ui), p(s) 5 (2aBd-‘)” 5 (2a-1/2)m. 

Clearly, Pr[R # 01 5 ] Q ] x max( p(s) : s E Qj. But ] Q ] - max p(s) c (rZd/2)* 
_ (2a-V2)m = 12dma-m/2+ q 

THEOREM 4.3. Suppose that L is a regular lattice with a source W, I= ] W ] 2 
3; n = height(L); N is a family of In semifilters in L; Y is either UN or nN, t is 
a positive integer; (Y 5 1/(4t); A is a random a-interval of L, for every X E N 
and some positive integer d, Pr[dimA(A fl X) > d) < n-‘; y I (r/(3d); C is a 
random r-interval of L; m 2 (2t + 2)/a is an integer; n > 1614; n 2 12dm. Then 
Pr[dime(C n Y) L dm) < n+2. 

Comment. The intuitive meaning of the theorem is as follows. A relatively 
large family of semifllters is given. With a great probability, the dimension of each 
of these semifilters is bounded (by a given number) in a random a-interval. Then, 
with a great probability, the dimension of the union, as well as the intersection of 
all these semifilters, is bounded in a random y-interval, provided y is small enough. 

PROOF. Let a = Ln”J, c = LnYJ, p = lo&nY, and B be a random P-interval of A. 
Then B I 1/(2d) since x312 > x + 1 for x L 3, and, therefore, a312 > a + 1 2r no, 
a 2 n2cl/3 > nZrd = azgd. The proof uses two claims. - 

CLAIM 1. The conditional probability 

Pr[dim&B rl Y) L dm I every dimA(A n AT) I d] 

is less than n-‘. 
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PROOF OF CLAIM 1. LetFbeUorn,sothat Y=F(N).LetN’=(Anx: 
XENjandY’= F(N’). By Lemma 4.1, Y’ = A n Y; hence, B n Y = B FU Y’. 

We are going to use Theorem 4.2. For every U G W, let S(U) = F(X: X E N’ 
andbaseAX~UJ.LetM=U(baseB(BnS(U)):U~W,)UI=d).IfdimAX=d 
for X E N’, then, by Lemma 4.1, Y’ = F{S( U) : U C W, ] U ] = d) and M includes 
base,(B n Y’). But, by Theorem 4.2, Pr[ ] M ] 2: dm] < 12dma+“/2 5 r~l-~~/* 5 n-‘. 
Claim 1 is proved. Cl 

CLAIM 2. Pr[dime(B n Y) L dm] c lr.F+’ + n-‘. 

PROOF OF CLAIM 2. Let E be the event “There is X E N with dim,@ n X) > 
d,” and E’ be the complement of E. Pr[E] I In x max(Pr[dim,& fl X) > d] :X E 
N} < In X n-’ = In-‘+‘. Hence 

Pr[dimB(B fl Y) 2 dm] 5 Pr[E] + Pr[E’ and dimB(B rl Y) 2 dm] 
I Pr[E] + Pr[E’] x Pr[dimB(B n Y) 2 dm ] E’] 
= In-“* + (1 - In-‘+‘) x n-’ c In-‘+’ + n-’ (by Claim 1). 

Claim 2 is proved. 0 

Now we are ready to prove Theorem 4.3. Note that the height of B equals that 
of C. By Lemma 4.2, there is a set S of y-intervals of L such that Pr[C Q S] < n-’ 
and Pr[C = D] < &z x Pr[B = D] for all D E S. Thus, 

Pr[dim&C n Y) B dm] 
= C (Pr[C = D] : D is a y-interval of L and dim&J n Y) L dm) 
~~(Pr[C=D]:DESanddimD(DrlY)~dm]+~(Pr[C=D]:DQS) 
cC(&zxPr[B=D]:DESanddimD(Dr7Y)zdm]+Pr[C4S] 
< n”* x Pr[dimB(B rl Y) z dm] + n-’ 
< l,.,-~312 + n-t+l/2 + n-t < n-t+2 

. cl 

We turn now to some specific regular lattices. Recall the structures S,, constructed 
in Section 2. The universe of S,, consists of pairs (x, JJ) of natural numbers such 
that 0 5 x < I= Llogznl and 0 5 y c n. The subsets of S,, (i.e., the points over S,) 
form a lattice with respect to the inclusion relation. With each subset P of S,, we 
associate a function P*(x) = max((0) U ( y: (x, y) E P)) where 0 I x < 1. With each 
point-set A4 over S we associate M* = {P* : P E M]. The associated functions form 
a regular lattice L, with the source W = [0, 1); the height of L, equals n. The 
mapping P w P* preserves the order: If P G Q, then P* 5 Q*. If M is a semifilter 
in the lattice of points over S, then M* is a semifilter in L,. 

LEMMA 4.3. Let M and N be semifilters over S,,. Then 

(MuN)*=M*uN* and (MnN)*=M*nN*. 

PROOF. We prove only the inclusion M* rl N* C (it4 rl N)*; the rest is obvious. 
Suppose that fE M* rl N*, and let P be the subset ((x, y) : y I f(x)). Then P* = f 
andPEMnN. 0 

THEOREM 4.4. Let M be a positive Bore1 point-set over S,, of level i, and t be a 
positive integer. There exist a positive integer d and a positive real (Y c I, both 
dependent only on i and t, such that if n L 1614, n L 12d and if J is a random 
P-interval of L, with ,B 5 (Y, then Pr[dim.,( J fl AI*) > d] C n-l. 

PROOF (by induction on i). The case i = 0 is trivial. Suppose that i > 0 and the 
lemma is proved for i - 1. By Lemma 4.3, M* is either the union or the intersection 
of a family (Xj:j = 0, . . . , In - 1) of positive Bore1 point-set of level i. 
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Let t’ = t + 2. By the induction hypothesis there are d’ and C-Y’ such that, 
if n 2 1614, n 2 IZd’, and J is a random p-interval of L,, with fl 5 LX’, then 
Pr[dim,(J tl MT) > d’] c n-” for each j. 

Without loss of generality, CY’ 5 1/(4t’). Set m = (2t’ + 2)/a’, d = d’m + 1, and 
(Y = a’/(3d). If n 2 1614, n L lZd and if J is a random ,&interval of L,, with /3 % (Y, 
then (by Theorem 4.3) Pr[dim,( J tl M*) > d] c n-‘. Cl 

Now we are ready to finish the proof of the Main Theorem. The desired structures 
S,, and formulas (oO, ‘PI(P) were constructed in Section 2. Statements (i) and (ii) of 
the Main Theorem were proved in Section 2. It remains to prove statement (iii). 
By contradiction, suppose that statement (iii) is false. Pick a natural number i that 
witnesses the failure of (iii). Let t = 2, and let d and (Y be as in Theorem 4.4. Since 
statement (iii) fails, there is a positive integer n such that I= LlogznJ > d, n > 161, 
n 2 lZd and the point set M = (P C S,, : S,, l= V’,(P)) over S,, is positive Bore1 of level 
i. Let L,, M*, and J be as in Theorem 4.4. By Theorem 4.4, Pr[dimJ( J n M*) > 
d] < nb2. But, by the Theorem 3.1, Pr[dimJ(J tl M*) = I] > (In)-‘. The two 
estimations contradict each other. The Main Theorem is proved. 0 
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