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Abstract. In connection with the least fixed point operator the following question was raised: Suppose
that a first-order formula ¥(P) is (semantically) monotone in a predicate symbol P on finite structures.
Is P(P) necessarily equivalent on finite structures to a first-order formula with only positive occurrences
of P? In this paper, this question is answered negatively. Moreover, the counterexample naturally gives
a uniform sequence of constant-depth, polynomial-size, monotone Boolean circuits that is not equivalent
to any (however nonuniform) sequence of constant-depth, polynomial-size, positive Boolean circuits.
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1. Introduction

Let ¢(P) be a first-order formula where P is an /-ary predicate symbol. Let ¢ be the
rest of the signature of ¢, and X, . . ., X, be the free individual variables of ¥(P).
View the symbols in ¢ as constants and P as a predicate variable. Then #(P)
represents an operator assigning the m-ary predicate P’ = \(xi, ..., Xm).#(P) to
each [-ary predicate P.

®(P) is called monotone (in P) if P C Q logically implies P’ C Q’. Here Qis a
new [l-ary predicate variable and P C P’ abbreviates ¥Yx; - -- x[P(xi, ..., X)) —
QO(x, . . ., x;)]. Recognizing monotonicity is an undecidable problem: A g-sentence
« is valid if and only if the sentence 3x; --- x,P(xy, ..., X;) = a is monotone.
A sufficient condition for the monotonicity of ¥(P) is that ¥(P) is logically
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equivalent to a first-order formula that is positive in P (has only positive occurrences
of P); and the positivity is, of course, easily recognizable. Lyndon proved that this
sufficient condition is necessary [11]. (This desired y(P) is a Lyndon interpolant
[4] for the implication (P’ C P) & ¢(P’) — ¥(P).)

In the rest of this paper we consider only finite structures. Thus, ¥(P) will be
called monotone if P € P’ implies ¢(P) € ¢(P’) on finite structures. Again,
recognizing monotonicity is an undecidable problem. And again, positivity is a
sufficient condition for monotonicity: #(P) is monotone in P if it is equivalent on
finite structures to a first-order formula positive in P. It was conjectured that this
sufficient condition is not necessary [6]. The conjecture is proved here.

Actually, we prove a stronger result. To formulate it nicely, we use a generali-
zation of the classical Borel hierarchy to finite topological spaces [7]. The original
goal of the generalization was to understand the paper [1]. This paper is, in a sense,
an offspring of [1], which shares some results with [5]. Connections between circuit
complexity and the classical Borel hierarchy were explored in [12].

Subsets of a set .S will be called points over S, and sets of points over S will be
called point-sets over S.

Definition. Let M be a point-set over a set S. M is positive Borel of level 0 if M
is empty or M contains all points over Sor M = {X C §:a € X} for some a € S.
M is positive Borel of level i + 1 if it is the union or the intersection of at most | S |
positive Borel point-sets over S of level .

CLAIM. Let o be a signature comprising only predicate symbols and individual
constants, P be an additional unary predicate symbol, and y(P) be a sentence of
the signature ¢ U {P}. Suppose that P(P) is positive in P, d is the logical depth of
©(P), and S is a o-structure. Then the point-set {P C S : S &= y(P)} over S is positive
Borel of level d.

Proor. First extend o by means of individual constants corresponding to
elements of S. Then prove the claim (for sentences in the extended signature) by
induction on the logical depth. [

MAIN THEOREM. There exists a sequence Sy, S», ... of structures of some
signature o, a first-order o-sentence ¥,, and a first-order sentence P,(P) in the
signature o plus an additional unary predicate symbol P such that ¢ contains only
predicate symbols and

(i) an arbitrary o-structure satisfies P, if and only if it is isomorphic to some S,,
(ii) the sentence ¥y & P1(P) is monotone in P, and
(iii) for every i there is n; such that for evéry n = n;, the point-set {P C S, S, &
©(P)} over S, is not positive Borel of level i.

COROLLARY 1. The sentence Yo & ¢ \(P) is monotone in P but not equivalent
on finite structures to any first-order sentence positive in P.

ProoF. By contradiction, suppose that ¢, & ¥,(P) is equivalent on finite
structures to a first-order sentence Y(P) that is positive in P,

Without loss of generality, the signature of ¥ (P) contains only predicate symbols
and even is included into o U {P}. The extra predicates can be made identically
true; the equivalence ($y & @1(P)) < ¢(P) will survive.

Let d be the logical depth of ¥ (P) and n be the number 7, of (iii). By the Claim,
the point-set {P C S,: S, = ¢(P)} is positive Borel of level d, which contradicts the
clause (i1). O
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We consider Boolean circuits with AND, OR, and NOT gates. A circuit will be

called monotone if it computes a Boolean function f(x;, ..., x;) that is monotone:
If x; < y; for all i, then f(xi, ..., x) <f(», ..., ¥)- A circuit will be called positive
if it has no NOT gates.

COROLLARY 2. There is a constant-depth polynomial-size sequence Cy, C, . ..
of monotone Boolean circuits such that for all natural numbers d, s and any
sufficiently large natural number n, no positive Boolean circuit of depth <d and
size <n® computes the Boolean function of C,.

PROOF. Let structures S, and formulas ¥,, ¥,(P) be as in the Main Theorem.
Let o, be the extension of the signature o by |S,| individual constants
Ci, C,, ... naming the elements of S,. Turn every first-order sentence ¢ in the
signature ¢, U {P} into a Boolean formula ¢*, as follows: If ¢ is an atomic o,-
sentence that holds (respectively, fails) in S,, then ¢* is an identically true
(respectively, false) Boolean formula. If ¢y = P(c;), then ¢* = . If ¢ is the
conjunction (respectively, disjunction) of a and B, then ¢* is the conjunction
(respectively, disjunction) of a* and 8*. If ¢ = 7a, then y* = 7a*. If { is (VX)a(x)
(respectively, (3x)a(x)), then y* is the conjunction (respectively, disjunction)
of formulas (a(c;))*. The Boolean formula (¥, & ¢(P))* gives the desired
circuit C,. 0O

Remark. In our construction, | S, | = n X Llogynl) (for n > 1) and C, has | S, |
inputs. It is not difficult to achieve | S, | = n as one may desire.

Corollary 2 is a kind of lower bound on the complexity of positive Boolean
circuits. Boppana [2] gives lower bounds of a different type on the complexity of
positive Boolean circuits (called monotone in [2]).

Remark. The sequence of structures S, is uniform in our construction. The
corresponding sequence of circuits C, is uniform, of constant depth and polynom-
ially bounded size. This sequence of circuits is not equivalent to any (whatever
nonuniform) sequence of constant-depth, polynomial-size, positive circuits.

Note that every monotone Boolean circuit C is equivalent to some positive
Boolean circuit. Consider for example a minimal Boolean formula ¢ in the
disjunctive normal form which is equivalent to the Boolean formula of C. If ¢ has
a disjunct « & 1y, then, by the monotonicity, every assignment satisfying « satisfies
v. Hence a & 7y can be replaced by «, which contradicts the minimality of y.

Corollary 2 indicates that the conversion of a monotone circuit into an equivalent
positive one may not be easy. Since recognizing the monotonicity of a circuit is
co-NP-complete [7], there is no polynomial-time algorithm—unless P = NP—
which transforms an arbitrary circuit C into an equivalent circuit C’ in such a way
that C’ is positive whenever C is monotone.

The Main Theorem is proved in Sections 2-4. Structures S, and sentences ¥,
©,(P) are defined in Section 2, and statements (i) and (ii) are proved there too. The
universe of S, (for n > 1) consists of pairs (x, y), of natural numbers such that
x < l=llogynl and y < n. With every subset P of S,, we associate a function

P*(x) = max({0} U {y: S, E P(x, »)}), 0=x<l

The desired ¥,(P) says that ¥ P*(x) = {(n — 1)/2. Obviously, ¥,(P) is monotone
in P. In Section 3, we prove that {P*:¥,(P)} has many minimal elements with
respect to the componentwise ordering. In Section 4, we prove that sets of functions
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P*, definable by positive Borel conditions, do not have many minimal elements
with respect to the componentwise ordering. This will establish statement (iii). The
main difficulty is to formulate an appropriate notion of “many”; our notion of
“many” has a probabilistic character.

The question about the status of Lyndon’s theorem in the case of finite structures
was raised by Chandra and Harel [3] in relation to the extension FO + LFP of
first-order logic by means of the following least fixed point formation rule. A
formula ¢ (P, x), where the arity of a predicate variable P equals the length of the
tuple x of individual variables, represents an operator P — Ax.9(P, x) which can
be iterated; if ¥ is positive in P, then the operator is monotone in P and therefore
has a least fixed point LFPp.(¥). If Lyndon’s theorem were true in the case of
finite structures, it would be an indication that FO + LFP loses no expressive
power by sticking to positive rather than arbitrary monotone formulas. Fortunately,
no expressive power is lost anyway: the two extensions coincide by their expressive
power [8].

2. The Monotone Formula
In this section we prove the Main Theorem, except for statement (iii).

Definition. ¢l is the signature {<, Sum, Prod, Exp}, where < is a binary
predicate symbol, and Sum, Prod, Exp are ternary predicate symbols. A ¢l-
structure S of cardinality » is standard if

(i) the universe of S is the interval [0, ) of natural numbers,
(ii) = is the standard ordering of the universe of S,

S FE Sum(x, y, 2) ifand onlyif x+ y =2z modulo n,
S E Prod(x, y, 2) ifand only if x -y =2z modulo n,
S E Exp(x, ») if and only if 2* =y modulo n.

THEOREM 2.1. There is a first-order ol-sentence Y1 such that an arbitrary
ol-structure is a model of Y1 if and only if it is isomorphic to a standard structure.

PROOF. {1 says that < is a linear order, and Sum, Prod, Exp satisfy the usual
recursive definitions [10]. O

LEMMA 2.1. For any positive integer m, let U(m) be the least common multiple
of all positive integers up to m. For any integer n = 2, U(2[log, nl) = n.

+PrROOF. See[9]. O

LEMMA 2.2, For every integer n = 6, the number of functions from the interval
[0, L(log> n)'/*1) of natural numbers to the interval [0, 2 log, n) of natural numbers
is at most n.

PrOOF. Omitted. O

Definition. o2 = ¢1 U {Q, R} where Q is a ternary predicate symbol and R is
a quaternary predicate symbol. Let / = log,n and f, fi, ..., fm—1 be the list of
functions from [0, L/'/*]) to [0, 2[/7) in the lexicographical order. A o2-structure S
of cardinality 7 is standard if n = 6 and

(i) the o1-reduct of S is standard,
(i) SEQG, J, k)iffi <m, j<LI'4], and fi(j) = k, and
(i) SERG x, y,p)iffi<mx<UY),2=p=<2[N,and ¥ {fi(j):j<x}=y
modulo p. (The empty sum by definition is 0.)
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THEOREM 2.2. There is a first-order a2-sentence Y2 such that an arbitrary
a2-structure is a model of Y2 if and only if it is isomorphic to a standard
a2-structure.

PROOF. {2 is a conjunction of four sentences. The first conjunct is ¢1. The
second conjunct says that the universe contains at least six elements. The third
conjunct describes Q by induction on the first argument. The forth conjunct
describes R by induction on the second argument. [

THEOREM 2.3. Let 63 = 02 U { f} where fis a unary function symbol. There is
a o3-formula 3(y) satisfying the following condition. Let S be a o3-structure with
a standard o2-reduct, and let n = | S |, | = log, n. Suppose that ¥ { f(j):j < LI'*]}
<n. Then SE=Y3(y)ifand only if 3 { f(j): j< LIV} = y.

PrROOF. Let fy, fi, ..., fm—1 be as in the definition of standard ¢2-structures,
and let r = L/4). The desired formula ¥3(y) uses the predicates Q and R to say
that for every p < 2[/1 there is i < m such that

(a) forallj<r, f(j)=f(j) modulo p, and
(b) X {£(j):j <r}=ymodulo p.

In virtue of Lemma 2.2, the equality ¥ {f(j):j < r} = y implies S E ¢3(y).
Suppose that S = ¢3(y). Then ¥, { f(j):j < r} = y modulo every positive p < 2[/1.
Hence Y {f(j):j < r} = y modulo the least common multiple of all positive
numbers p < 2[/1. By Lemma 1, ¥ { f(j):j<r}=y. 0O

THEOREM 2.4. There is a o3-formula ¢4(y) satisfying the following condition.
Let S be a ¢3-structure with a standard ¢2-reduct, and let n = | S|, | = Llog; nl.
Suppose that 3 { f(i):i<ly<n. Then SEya(y) ifand only if ¥ { f(i):i< ]} = y.

PROOF. Let o f, ¥) = ¢3(). Let r =111, so that r* = .

The formula o(Aj.f(ru + j), y) says that 3 {f(j):ru = j < ru + r} = y.
Let g(w) = X {f(J):ru = j < ru + r}. The formula a(g, y) says that y =
T{fG)i<r

Using the same trick again, we arrive at a formula G(f, y) saying that
Y{fU):j<r}=y Leth(j)=f(j)ifj <l and h(j) = 0, otherwise. 8(h, y) is the
desired y4( y).

The above proof assumes implicitly that 7* < n. We ignore the modification
needed to cover the case r*>n. O

Now we are ready to describe the desired structures S,.

Definition. ¢ = ¢2 U {D, T} where D is a unary predicate symbol and T is a
ternary predicate symbol.

Definition. Let n =4 and [ = Llogy nl. S, is the g-structure such that

(i) the universe of S consists of pairs (x, y) of natural numbers where 0 < x </
and0=y<n,
(ii) the map (x, y) — nx + y is an isomorphism of the ¢2-reduct of S onto the
o2-standard structure of cardinality /n,
(iii) the interpretation of T'in S'is {(x, 0), (0, ), (x,):0=x<[ 0 =< y<n},
(iv) the interpretation of D in S'is {(x, x):0 = x < [}.

Clause (ii) requires /n = 6 because a standard S2-structure contains at least six
elements. This explains the restriction # = 4. Structures S, 5>, 53 should be defined
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separately; we ignore them and suppose n = 4 in the rest of the proof of the
Main Theorem. Let / = Llog, nl.

It is easy to write down the desired first-order o-sentence ¥, such that every
model of ¥, is isomorphic to some S,,. In the following description of ¥, we suppose
that S is a model of ¥,. Our ¥, is a conjunction. One conjunct is the sentence 2
of Theorem 2.2; this guarantees that the ¢2-reduct of S is standard. Let 4, B be the
first and the second projections of T in S, respectively; the projections inherit
orderings from S. The second conjunct of ¥, says that 7T is an isomorphism of
the lexicographically ordered set A X B onto the {<}-reduct of S. The third
conjunct says (using the arithmetic built into S) that there are a, b € S such that
Vy(y<beyEB),a=lloggbl,a -b=|S|andD={x- b+ x:x<al.

Definition. With each subset P of S, we associate the function P*(x) =
max({0} U {y: S P(x, y)}) where 0 < x < [ (the associate function of P).

Let P be a unary predicate symbol. Using the formula ¢4 of Theorem 2.4, write
down a o U {P}-sentence saying in each S, that ¥, {P*(x):0 = x <!} = l(n — 1)/2;
this is the desired sentence ¢,(P).

The sentence ¥, & ¥,(P) obviously is monotone in P.

3. Abundance of Minimal Elements

Consider any structure S, constructed in Section 2. A function P* was associated
with each subset P of S,. In this section we prove that the set {P:S, = ¢,(P)} has
many minimal elements with respect to the componentwise ordering.

Definition. If X is a set and Y is a linearly ordered set, then {X — Y} is the
lattice of functions from X to Y ordered componentwise: f < g if and only
if f(x) = g(x) for all x € X.

Definition. A lattice L is called regular if there are finite nonempty intervals X,
Y of natural numbers, functions fand g from X to Y, and a positive integer » such
that g(x) = f(x) + n — 1 for all x € X (so that each interval [ f(x), g(x)] contains n
natural numbers), and L is the interval [f, gl = {h € L:f<sh =g}l of [X— Y]
The interval X is called the source of L. The function f'is called the bottom of L
and denoted bottom;, the function g is called the top of L and denoted top.. The
number # is called the height of L.

Every sublattice of a regular lattice L is an interval [, A,] for some functions
h, < h,. An interval of a regular lattice is called regular if it forms a regular
sublattice.

Let / = lloganl, and L = [X — Y], where X, Y are the intervals [0, /) and [0, »)
of natural numbers, respectively.

Proviso. The probability distribution of any random variable is supposed to be
uniform (when all possible values are equally probable) unless the contrary is clear
from the context.

THEOREM 3.1. Suppose that m is an integer such that 3 <m<nandn—m
is even. Let J be a random regular interval of L of height m. Let E be the
event that there is f € J such that f> bottom; and ¥, f(x) = Tl(n — 1)/21. Then
Pr[E]> (In)™".

Remark. The restriction “n — m is even” is not essential, but it simplifies
somewhat the proof and suffices for our purposes.
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We prove Theorem 3.1 using the following lemma.

LEMMA 3.1. LetYx=y1+ ... + yi where y\, . .., Vi are independent random
variables on a fixed interval [—r, r] of integers. Then Pr[Yy = a] = Pr[Y, = b] for
all integers a, b with | a| < | b|.

Proor. The case k = 1 is obvious. Suppose Lemma 3 is proved for k, Y = Y,,
Z= Yiy1, Z = Yie1. We prove Pr{Z = a] = Pr[Z = b] assuming | b| = |a| + 1. In
virtue of symmetry, Pr[Z = ¢] = Pr[Z = —c] for any ¢; hence we may suppose that
az0andb=a+ 1.

P[Z=a)l|=Y{P[z=i]XP[Y=a—-i]:-r=si=<r}
=({/Qr+ 1) XY {P[Y=a—-i]l:-r=i=r}

Similarly, P[Z=a+ 1]=(1/Q2r+ D)X Y {P[Y=a+ 1 ~i{]:—r=<i=<r}. Then
@r+ 1)—(P[Z=a]X P[Z=a+ 1))equals P[Y=a—-r]—P[Y=a+1+7r],
which is nonnegative since |a — 7| = max{a, r}<a+1+r. O

ProOOF OF THEOREM 3.l1. Let f(x) = [bottom,(x) + tops(x)]/2. Note that
Lf(x)] > bottomy(x) for all x. Since n — m is even, every f'(x) = f(x) ~
(n — 1)/2 is integer. Every f(x) has less than #n possible values; hence ¥ f’(x) has
fewer than /n possible values. By Lemma 3.1,

Pr{Y f(x) = I(n = 1)/2] = Pr[T f'(x) = 0] > (In)™".
If m is odd, then fbelongs to J, and we have finished. Suppose that m is even.

Set g(x) = Lf(x)] for x < LI/2], and g(x) = [f(x)1 for Li/2] = x < [. Then g belongs
to J. If [ is even, then ¥ g(x) = ¥ f(x); hence,

Pr[Y f(x) = I(n — 1)/2] > (In)™".
If [ is odd, then

T glx) = ;+2ﬂn
Pm—lﬂ_l Kn—U
=3t

Pr[z £0) = [ H r[z @) = ’] > (In)”". a

4. A Probabilistic Property of Positive Borel Sets

In this section we complete the proof of the Main Theorem. We start with some
notation and terminology.

Recall that a subset .S of an arbitrary lattice L is called a semifilter if S22 x <y
— y € S. The union as well as the intersection of a family of semifilters is again a
semifilter. If S'is a semifilter in L and 7 is an interval of L, then I N S is a semifilter
in the sublattice 7.

Every semifilter S of a regular lattice L is the union of intervals [, top.], where
h is a minimal member of S. Intuitively, .S is rich if it has many minimal elements.
The richness is related to the number of elements of the source of L in which some
minimal member of S exceeds bottom;. This motivates the following definition.

Definition. Let S C L be a semifilter in a regular lattice L with a source W. The
set {u € W:there is a minimal 4 € S with A(u) > bottom(u)} is the base of S in
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L, written base,(S). The cardinality of base,(S) is the dimension of S in L, written
dim(S).
Note that dim;(S) equals 0 if and only if S=Q or S = L.

LEMMA 4.1. Let F be U or N (so that in each lattice, F assigns a semifilter to
each family of semifilters). Let L be a regular lattice with a source W, and N be a
Sfamily of semifilters in L. Then

(i) for every interval J of L, J N F(N) = F({JN S:S € N});
(i) if dim(S) <= d < |N| for all S € N, then F(N) = F{{Ny:U € W and
| U| = d}, where Ny = F{S € N:base,(S) C U}; and
(iii) if base (S) € U C W for all S € N, then base,(F(N)) C U.

Comment. This simple lemma will allow us later (in the proof of Theorem 4.3)
to treat the two operations U and M simultaneously.

PROOF. We only prove statement (iii) for the case of M; the rest is obvious. Let
£ be a minimal function in MN. Consider the collection X of functions f < g
such that f is minimal in some S € N, and let & be the joint of X. Obviously,
h € NN and & < g. By the minimality of g, # = g. Every f € X coincides with the
bottom of 7 on W — U. Hence g coincides with the bottom of Lon W - U, 0O

Definition. Let L be a regular lattice of height #, and 0 < a < 1. An a-interval
of L is a regular interval of L of height Ln*l.

LEMMA 4.2. Let L be a regular lattice with a source W and the height
n> (2 | W|)*. Let t be a positive integer, and o, B8, v be positive reals such that
a < 1/(4), and 8, v < 1, and LLn*1%) = Ln 1. There is a set S of y-intervals of L
satisfying the following condition. Suppose that A is a random a-interval of L, B is
a random B-interval of A, and C is a random ~-interval of L. Then

(i) PriC & S1<n™, and
(ii) for every D € S, Pr[C = D] < ¥n % Pr[B = D].

Comment. B is a random ~-interval of L with respect to a complicated
probability distribution. Think about ¢ as a big enough number. The lemma says
that almost everywhere the complicated distribution is bounded by the uniform
distribution times V7.

PrROOF. Without loss of generality, the bottom and the top of L are Au.0 and
Au.(n — 1), respectively. Let a = Ln°l, b = La®l, f = bottom,, g = bottomp, and
h = bottom¢. Both B and C have the height b.

For each u in W, h(u) is a random element of [0, n — b]; Pr[A(u) = k] = 1/(n —
b + 1) for each 0 < k = n — b. The probability distribution of g(u) is different. Let
O0<k=<n->b Prig(u)=k])=pk) X [1/(a— b+ 1)] where pk) =Pr[f(u) <k =
fW+a—-bl.lfa—-b=sk=n—ag, thenpk)=(@—-b+ 1)/(n~-a+ 1)and
Pr{g(u) = k] = 1/(n — a+ 1) = Pr[h(u) = k]. In any case p(k) = 1/(n—a + 1) and

pa——— l)l(a—b+ l)za“ X Pr[h(u) = k).

Let S be the set of y-intervals D of L such that

| {u: either bottomp(u) < a — b or bottomp(u) > n — a} | < 2t.

Prig(u) = k] = (

To prove (i), set V = {u:either h(u) < a — b or #(u) > n — a}. For every u € W,
Pr{u € V] < 2a/n. If U is a subset of W of cardinality 2¢, then Pr{U C V] <
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(2a/ny*. Thus Pr{C & S] =Pr[Thereis UC V, |U| = 2t] < | W|* X (2a/n)* <
“ W|2 X 22 x n2a X n——2]t < [n1/2+l/2—2]t <n

To prove (ii), let D € S, r = bottomp and V = {u:r(u) <a — bor r(u) > n — aj.
Then Pr{C = D] = Pr[h = r] = [] {Prlh(u) = r(w)]:u & V} X I {Pr{h(u) = r(w)]:
u€e V<]l {Prigw) = r(w):u & V} X (a* 1[I {Prlg(w) = r(w]:u € V}) <
Prig=r]xn'2 O

THEOREM 4.1. Suppose that L is a regular lattice with a source W and the
height n, S is a semifilter in L of dimension d> 0, b € B = base;(S), V is a subset
of W such that B — V = b}, ¢ is a positive real with n* < n/2, F is a member of L
such that F(v) + n* < top(v) for all v € V, and J is a random e-interval of L with
bottom(v) = F(v) for all v € V. Then Pr[b € base;(J N S)] < 2n!.

Comment. The intuitive meaning of Theorem 4.1 is as follows: If the dimension
d of the base of S is fixed and the height ¢ of J diminishes, then the probability of
b € baseJ N S) is rapidly diminishing. Why is this true? Consider the most
interesting case V' = W — {b}. Then the only random part of J is the interval
[bottom ;(b), tops(b)] of integers; the rest of J is fixed. If b € base,(J N S), then
there is a minimal function g of J N S with g(b) > bottom,(). There are not too
many choices for the restriction of g to 4 = B — {b} C V, so consider the case in
which g| A4 is fixed. How many choices do we have for g(b) now? The answer is:
just one.

PrOOF. We may assume that V= W — {b}. For, let U= (W ~ {b}) — Vand r
range over functions from U to the set w of natural numbers such that r(u) + n* <
top.(u) for u € U. If every conditional probability

Pr[b € base,(J N S)| bottom; coincides with  on U]

is less than 2n°¢"!, then Pr[b € base,(J N S)] < 2n*4~1,
We prove that the probability of a consequence of the event b &€ base (J N S) is
less than 274", Let A = B — {b},

H=1{he[4— w]:F(a) < h(a) = F(a) + n* for all g € A4},
H’ = {h € H:there is f € S with f(a) < h(a) for all a € A4},
* = min{ f(b):fis a minimal member of § with f(a) < h(a) for a € A4},

for each 7 € H’, and let E be the event “There is # € H’ with bottom(b) < h* <
tops(b).”

E is a consequence of the event b € base,(J N S). For, suppose b € base;(J N
S). Then there is a minimal member g of J N S with g(b) > bottom(b). Let h be
the restriction of the function g to A; obviously, 2 € H’. It suffices to prove that
h* = g(b). There is a minimal member f of S such that f(a) < h(a) for a € A and
f(b) = h*. By the definition of A*, f(b) = g(b). Since B is the base of Sin L, we
have f(u) = bottom,(u) for u € W — B. Thus f < g. Let f7 be the join of f and
bottom,; obviously /7 < g and f/ € J N S. By the minimality of g, g < f”; hence
g=f" and g(b) = f(b) = h*.

It remains to estimate Pr[F]. The number of values for Jis n — ln‘l + 1 >
n—n>nf2. |H| <|H|=Ln1"" < n“Y, For each h € H’, the number of
values for J with bottom,(b) < h* < top,(d) is less than n*. Thus Pr[E] < n<“™D x
nt+(n/2) =2n“"'. O

THEOREM 4.2. Suppose that A is a regular lattice with a source W,l= | W | =
3, a = height(A), for each U C W of cardinality d, S(U) is a semifilter in A with
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base (S(U)) C U; 8 < 1/(2d);, B is a random B-interval of A; M = U {basez(B N
S(U):UC W, |U| = d}; and m is a positive integer. Then Pr(| M | = dm) <
ldea—m/Z

Comment. The interesting case is when d, [, m are fixed and a increases. The
intuitive meaning of the theorem is that the dimension of B N S(U) in B is, in
general, small.

Proor. We evaluate the probability of a consequence of | M | = dm.

LetQ={U,..., Un,us,..., Un):u; € U;C Wand | U;| = d for all i}. Then
| Q| = (19" x d™. Since 2d)"? < max{(2x)'*:1 = x < ©} < 3 = [, we have
d<1[°2and | Q| < (*/2)".

Let R = {(Uy, ..., Un, Uy, ..., Uy) € Q: each u; € baseg(B N S(U;)) —
U {U;: j < i}}. The event R # O is a consequence of the event | M| = dm.
For, assume | M | = dm and pick any u, € M; there is U; C W of cardinality d
such that u; € baseg(B N S(U,)). Suppose that i < m, and U, ..., U,
ui, ..., u— have been chosen. Pick any v, E M — U {U;:j < i}; there is U, C W
of power d such that u; € baseg(B N S(U))).

For each sequence s = (U,, ..., Un, U1, ., ., Un) in Q, let p(s) be the probability
that s € R. If there are j < i/ with 4; € U;, then p(s) = 0. We suppose that there is
no pair j < i with ¥; € U; and give an upper bound for p(s).

Let f = bottom,, g = bottomg and b = La?). For each u € W, g(u) belongs
to the interval [ f(u), f(u) + a — b). Let Wy = W~ U {U;:1 < i < mj}; and for
eachi=1,...,m,let W;= (U; ~ Uj; U)) — {u;}. Without loss of generality, the
function g is produced by the following 1 + 2m independent choices: first
choose the restriction of g to W,, then choose the restriction of g to W,
then choose g(u;), then choose the restriction of g to W, then choose g(uy), etc.
By Theorem 4.1 (with b = w;), p(s) < (2a*'Y" < 2a~'*™.

Clearly, Pr[R # @] < | Q| X max{p(s) : s € Q}. But | Q | — max p(s) < (%/2)"
_ (za—l/Z)m = ldea—m/Z. 0O

THEOREM 4.3. Suppose that L is a regular lattice with a source W, l= | W | =
3; n = height(L), N is a family of In semifilters in L; Y is either UN or NN t is
a positive integer; a < 1/(4t); A is a random o-interval of L; for every X € N
and some positive integer d, Pridim 4 N X) > d)<n™ v < a/(3d); C is a
random ~-interval of L; m = (2t + 2)/a is an integer; n > 161, n = I?*™. Then
Pridimc(CN Y) =dm) < n™**2

Comment. The intuitive meaning of the theorem is as follows. A relatively
large family of semifilters is given. With a great probability, the dimension of each
of these semifilters is bounded (by a given number) in a random «-interval. Then,
with a great probability, the dimension of the union, as well as the intersection of
all these semifilters, is bounded in a random vy-interval, provided « is small enough.

PrROOF. Leta =1Ln"), c=1Ln"l, 8 =log,n", and B be a random gB-interval of 4.
Then 8 < 1/(2d) since x> > x + 1 for x = 3, and, therefore, a*?> > a + 1 = n°,
a = n* = n®¥ = q%4 The proof uses two claims.

CLAIM 1. The conditional probability
Pridimg(B N Y) = dm | every dimf4 N X) = d]

is less than n™".
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PROOF OF CLAIM 1. Let Fbe Uor N, so that Y= F(N). Let N’ = {4 N X:
XENjand Y =F(N’).ByLemmad4.1,Y =4ANY;hence, BNY=BNY'.

We are going to use Theorem 4.2. For every UC W, let S(U) = FIX: X € N’
and base X C U}. Let M = U {bases(BN S(U)): UC W, |U| =d}. Ifdim,X=<d
for X € N’, then, by Lemma 4.1, Y’ = F{S(U): UC W, | U | = d} and M includes
basez(B N Y’). But, by Theorem 4.2, Pr[| M | = dm] < [**"a™"? < p'~*"? < n™,
Claim 1 is proved. O

CLAM 2. Pr[dimg(BNY)z=dml<In7*' + n™

PrROOF OF CLAIM 2. Let E be the event “There is X € N with dim(4 N X) >
d,” and E’ be the complement of E. Pr[E] < In X max{Pr[dim (4 N X)>d]: X €
N}<inx n™=In""*'. Hence

Pr[dimz(B N Y) = dm] < Pr[E] + Pr{E’ and dimz(B N Y) = dm]
< Pr[E] + Pr{E’] X Pr{dimz(B N Y) = dm| E’]
=™+ (=" xnt<in™'+n* (byClaim1).

Claim 2 is proved. O

Now we are ready to prove Theorem 4.3. Note that the height of B equals that
of C. By Lemma 4.2, there is a set S of y-intervals of L such that PrfC & S]<n™
and Pr{C = D] < vn x Pt{B = D] for all D € S. Thus,

Prldimc(CN Y) = dm]
=Y {Pr{C = D}: Dis a y-interval of L and dimp(D N Y) = dm}
=Y {Pr[C=D]:DeSanddimp(DNY)=dm}+ 3 {Pr[C=D]:D & S}
<Y {vnxPr[B=D]:D € Sand dimy(D N Y) = dm} + Pr[C & S]
<n'?x Pr[dimg(BNY)=dm] +n™"
< ln-t+3/2 -+ n—t+1/2 + n—t< n-t+2. D

We turn now to some specific regular lattices. Recall the structures .S, constructed
in Section 2. The universe of S, consists of pairs (x, y) of natural numbers such
that 0 = x < /= llogynl and 0 = y < n. The subsets of S, (i.e., the points over S,)
form a lattice with respect to the inclusion relation. With each subset P of S, we
associate a function P*(x) = max({0} U { y:(x, y) € P}) where 0 < x < /. With each
point-set M over S we associate M * = {P*. P € M}. The associated functions form
a regular lattice L, with the source W = [0, [); the height of L, equals n. The
mapping P — P* preserves the order: If P C Q, then P* < Q*. If M is a semifilter
in the lattice of points over S, then M * is a semifilter in L,.

LEMMA 4.3. Let M and N be semifilters over S,. Then
(MUN*=M*UN* and (MNON*=M*nN*~

PROOF. We prove only the inclusion M* N N* C (M N N)*; the rest is obvious.
Suppose that f€ M* N N*, and let P be the subset {(x, }):y < f(x)}. Then P* = f
andPeEMNN. O

THEOREM 4.4. Let M be a positive Borel point-set over S, of level i, and t be a
positive integer. There exist a positive integer d and a positive real o < 1, both
dependent only on i and t, such that if n = 16/*, n = I’? and if J is a random
B-interval of L, with 8 < a, then Prldim(J N M*)>d}<n™".

PROOF (by induction on {). The case i = 0 is trivial. Suppose that > 0 and the
lemma is proved for i — 1. By Lemma 4.3, M* is either the union or the intersection
of a family {X;:j =0, ..., In — 1} of positive Borel point-set of level i.

!
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Let ¢’ = t + 2. By the induction hypothesis there are d’ and a’ such that,
if n = 16/* n = I*?, and J is a random @-interval of L, with 8 = «’, then
Pr[dimAJ N M¥) > d’] < n™ for each j.

Without loss of generality, o’ < 1/(4t'). Set m = (2t’ + 2)/a’,d=d’'m + 1, and
a=a'/(3d). If n = 16/* n = I** and if J is a random @B-interval of L, with 8 < «,
then (by Theorem 4.3) Pr[dim, (/N M*) >d]<n™ 0O

Now we are ready to finish the proof of the Main Theorem. The desired structures
S, and formulas ¥,, ¥,(P) were constructed in Section 2. Statements (i) and (ii) of
the Main Theorem were proved in Section 2. It remains to prove statement (iii).
By contradiction, suppose that statement (iii) is false. Pick a natural number ; that
witnesses the failure of (iii). Let ¢ = 2, and let d and « be as in Theorem 4.4. Since
statement (iii) fails, there is a positive integer » such that / = llogonl > d, n = 16/,
n = [*? and the point set M = {P C S,:.S, = ¢,(P)} over S, is positive Borel of level
i. Let L,, M*, and J be as in Theorem 4.4. By Theorem 4.4, Pr{dim(J N M*) >
d] < n~2. But, by the Theorem 3.1, Pr[dim/(J N M*) = [] > (In)~'. The two
estimations contradict each other. The Main Theorem is proved. O
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