Monotone versus Positive

MIKLOS AJTAI
IBM Research, San Jose, California

AND
YURI GUREVICH
University of Michigan, Ann Arbor, Michigan

Abstract

In connection with the least fixed point operator the following question was raised: Suppose that a first-order formula $\varphi(P)$ is (semantically) monotone in a predicate symbol P on finite structures. Is $\varphi(P)$ necessarily equivalent on finite structures to a first-order formula with only positive occurrences of P ? In this paper, this question is answered negatively. Moreover, the counterexample naturally gives a uniform sequence of constant-depth, polynomial-size, monotonc Boolean circuits that is not equivalent to any (however nonuniform) sequence of constant-depth, polynomial-size, positive Boolean circuits.

Categories and Subject Descriptors: F1.1 [Computation by Abstract Devices]: Models of Computation; F.4.1 [Mathematical Logic and Formal Languages]: Mathematical Logic; G.2.1 [Discrete Mathematics]: Combinatorics; G. 3 [Mathematics of Computing]: Probability and Statistics

General Terms: Algorithms, Languages, Theory, Verification
Additional Key Words and Phrases: Boolean circuits, constant-depth, first-order formulas, monotone, polynomial size, positive, probabilistic

1. Introduction

Let $\varphi(P)$ be a first-order formula where P is an l-ary predicate symbol. Let σ be the rest of the signature of φ, and x_{1}, \ldots, x_{m} be the free individual variables of $\varphi(P)$. View the symbols in σ as constants and P as a predicate variable. Then $\varphi(P)$ represents an operator assigning the m-ary predicate $P^{\prime}=\lambda\left(x_{1}, \ldots, x_{m}\right) \cdot \varphi(P)$ to each l-ary predicate P.
$\varphi(P)$ is called monotone (in P) if $P \subseteq Q$ logically implies $P^{\prime} \subseteq Q^{\prime}$. Here Q is a new l-ary predicate variable and $P \subseteq P^{\prime}$ abbreviates $\forall x_{1} \cdots x_{l}\left[P\left(x_{1}, \ldots, x_{l}\right) \rightarrow\right.$ $\left.Q\left(x_{1}, \ldots, x_{l}\right)\right]$. Recognizing monotonicity is an undecidable problem: A σ-sentence α is valid if and only if the sentence $\exists x_{1} \ldots x_{l} P\left(x_{1}, \ldots, x_{l}\right) \rightarrow \alpha$ is monotone. A sufficient condition for the monotonicity of $\varphi(P)$ is that $\varphi(P)$ is logically

A preliminary version of this paper appeared in Monotone versus positive, IBM Tech. Rep. RJ 4697 (50035). IBM Research Center, San Jose, Calif., May 1985.

The work of M. Ajtai was partially supported by National Science Foundation grant DMS 84-01281. The work of Y. Gurevich was partially supported by National Science Foundation grants MCS 8301022 and DCR 85-03275.
Authors' addresses: M. Ajtai, 16712 Chirco Drive, Los Gatos, CA 95030; Y. Gurevich, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109-2122.
Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
(c) 1987 ACM 0004-5411/87/1000-1004 \$01.50
equivalent to a first-order formula that is positive in P (has only positive occurrences of P); and the positivity is, of course, easily recognizable. Lyndon proved that this sufficient condition is necessary [11]. (This desired $\psi(P)$ is a Lyndon interpolant [4] for the implication $\left(P^{\prime} \subseteq P\right) \& \varphi\left(P^{\prime}\right) \rightarrow \varphi(P)$.)

In the rest of this paper we consider only finite structures. Thus, $\varphi(P)$ will be called monotone if $P \subseteq P^{\prime}$ implies $\varphi(P) \subseteq \varphi\left(P^{\prime}\right)$ on finite structures. Again, recognizing monotonicity is an undecidable problem. And again, positivity is a sufficient condition for monotonicity: $\varphi(P)$ is monotone in P if it is equivalent on finite structures to a first-order formula positive in P. It was conjectured that this sufficient condition is not necessary [6]. The conjecture is proved here.

Actually, we prove a stronger result. To formulate it nicely, we use a generalization of the classical Borel hierarchy to finite topological spaces [7]. The original goal of the generalization was to understand the paper [1]. This paper is, in a sense, an offspring of [1], which shares some results with [5]. Connections between circuit complexity and the classical Borel hierarchy were explored in [12].

Subsets of a set S will be called points over S, and sets of points over S will be called point-sets over S.

Definition. Let M be a point-set over a set $S . M$ is positive Borel of level 0 if M is empty or M contains all points over S or $M=\{X \subseteq S: a \in X\}$ for some $a \in S$. M is positive Borel of level $i+1$ if it is the union or the intersection of at most $|S|$ positive Borel point-sets over S of level i.

Claim. Let σ be a signature comprising only predicate symbols and individual constants, P be an additional unary predicate symbol, and $\psi(P)$ be a sentence of the signature $\sigma \cup\{P\}$. Suppose that $\varphi(P)$ is positive in P, d is the logical depth of $\varphi(P)$, and S is a σ-structure. Then the point-set $\{P \subseteq S: S \vDash \psi(P)\}$ over S is positive Borel of level d.

Proof. First extend σ by means of individual constants corresponding to elements of S. Then prove the claim (for sentences in the extended signature) by induction on the logical depth.

Main Theorem. There exists a sequence S_{1}, S_{2}, \ldots of structures of some signature σ, a first-order σ-sentence φ_{0}, and a first-order sentence $\varphi_{1}(P)$ in the signature σ plus an additional unary predicate symbol P such that σ contains only predicate symbols and
(i) an arbitrary σ-structure satisfies φ_{0} if and only if it is isomorphic to some S_{n},
(ii) the sentence $\varphi_{0} \& \varphi_{1}(P)$ is monotone in P, and
(iii) for every i there is n_{i} such that for every $n \geq n_{i}$, the point-set $\left\{P \subseteq S_{n}: S_{n} \vDash\right.$ $\left.\varphi_{1}(P)\right\}$ over S_{n} is not positive Borel of level i.

Corollary 1. The sentence $\varphi_{0} \& \varphi_{1}(P)$ is monotone in P but not equivalent on finite structures to any first-order sentence positive in P.

Proof. By contradiction, suppose that $\varphi_{0} \& \varphi_{1}(P)$ is equivalent on finite structures to a first-order sentence $\psi(P)$ that is positive in P.

Without loss of generality, the signature of $\psi(P)$ contains only predicate symbols and even is included into $\sigma \cup\{P\}$. The extra predicates can be made identically true; the equivalence $\left(\varphi_{0} \& \varphi_{1}(P)\right) \leftrightarrow \psi(P)$ will survive.

Let d be the logical depth of $\psi(P)$ and n be the number n_{d} of (iii). By the Claim, the point-set $\left\{P \subseteq S_{n}: S_{n} \vDash \psi(P)\right\}$ is positive Borel of level d, which contradicts the clause (iii).

We consider Boolean circuits with AND, OR, and NOT gates. A circuit will be called monotone if it computes a Boolean function $f\left(x_{1}, \ldots, x_{i}\right)$ that is monotone: If $x_{i} \leq y_{i}$ for all i, then $f\left(x_{1}, \ldots, x_{i}\right) \leq f\left(y_{1}, \ldots, y_{l}\right)$. A circuit will be called positive if it has no NOT gates.

Corollary 2. There is a constant-depth polynomial-size sequence $C_{1}, C_{2} \ldots$ of monotone Boolean circuits such that for all natural numbers d, s and any sufficiently large natural number n, no positive Boolean circuit of depth $\leq d$ and size $\leq n^{s}$ computes the Boolean function of C_{n}.

Proof. Let structures S_{n} and formulas $\varphi_{0}, \varphi_{1}(P)$ be as in the Main Theorem. Let σ_{n} be the extension of the signature σ by $\left|S_{n}\right|$ individual constants C_{1}, C_{2}, \ldots naming the elements of S_{n}. Turn every first-order sentence ψ in the signature $\sigma_{n} \cup\{P\}$ into a Boolean formula ψ^{*}, as follows: If ψ is an atomic $\sigma_{n}{ }^{-}$ sentence that holds (respectively, fails) in S_{n}, then ψ^{*} is an identically true (respectively, false) Boolean formula. If $\psi=P\left(c_{i}\right)$, then $\psi^{*}=\psi$. If ψ is the conjunction (respectively, disjunction) of α and β, then ψ^{*} is the conjunction (respectively, disjunction) of α^{*} and β^{*}. If $\psi=7 \alpha$, then $\psi^{*}=7 \alpha^{*}$. If ψ is $(\forall x) \alpha(x)$ (respectively, $(\exists x) \alpha(x)$), then ψ^{*} is the conjunction (respectively, disjunction) of formulas $\left(\alpha\left(c_{i}\right)\right)^{*}$. The Boolean formula ($\left.\varphi_{0} \& \varphi_{1}(P)\right)^{*}$ gives the desired circuit C_{n}.

Remark. In our construction, $\left.\left|S_{n}\right|=n \times \log _{2} n\right\rfloor($ for $n>1)$ and C_{n} has $\left|S_{n}\right|$ inputs. It is not difficult to achieve $\left|S_{n}\right|=n$ as one may desire.

Corollary 2 is a kind of lower bound on the complexity of positive Boolean circuits. Boppana [2] gives lower bounds of a different type on the complexity of positive Boolean circuits (called monotone in [2]).

Remark. The sequence of structures S_{n} is uniform in our construction. The corresponding sequence of circuits C_{n} is uniform, of constant depth and polynomially bounded size. This sequence of circuits is not equivalent to any (whatever nonuniform) sequence of constant-depth, polynomial-size, positive circuits.

Note that every monotone Boolean circuit C is equivalent to some positive Boolean circuit. Consider for example a minimal Boolean formula ψ in the disjunctive normal form which is equivalent to the Boolean formula of C. If ψ has a disjunct $\alpha \& \neg y$, then, by the monotonicity, every assignment satisfying α satisfies ψ. Hence $\alpha \& \neg y$ can be replaced by α, which contradicts the minimality of ψ.

Corollary 2 indicates that the conversion of a monotone circuit into an equivalent positive one may not be easy. Since recognizing the monotonicity of a circuit is co-NP-complete [7], there is no polynomial-time algorithm—unless $\mathrm{P}=\mathrm{NP}$ which transforms an arbitrary circuit C into an equivalent circuit C^{\prime} in such a way that C^{\prime} is positive whenever C is monotone.

The Main Theorem is proved in Sections 2-4. Structures S_{n} and sentences φ_{0}, $\varphi_{1}(P)$ are defined in Section 2, and statements (i) and (ii) are proved there too. The universe of S_{n} (for $n>1$) consists of pairs (x, y), of natural numbers such that $x<l=\left\lfloor\log _{2} n\right\rfloor$ and $y<n$. With every subset P of S_{n}, we associate a function

$$
P^{*}(x)=\max \left(\{0\} \cup\left\{y: S_{n} \vDash P(x, y)\right\}\right), \quad 0 \leq x<l
$$

The desired $\varphi_{1}(P)$ says that $\sum P^{*}(x) \geq l(n-1) / 2$. Obviously, $\varphi_{1}(P)$ is monotone in P. In Section 3, we prove that $\left\{P^{*}: \varphi_{1}(P)\right\}$ has many minimal elements with respect to the componentwise ordering. In Section 4, we prove that sets of functions
P^{*}, definable by positive Borel conditions, do not have many minimal elements with respect to the componentwise ordering. This will establish statement (iii). The main difficulty is to formulate an appropriate notion of "many"; our notion of "many" has a probabilistic character.

The question about the status of Lyndon's theorem in the case of finite structures was raised by Chandra and Harel [3] in relation to the extension FO + LFP of first-order logic by means of the following least fixed point formation rule. A formula $\varphi(P, \bar{x})$, where the arity of a predicate variable P equals the length of the tuple \bar{x} of individual variables, represents an operator $P \mapsto \lambda \bar{x} . \varphi(P, \bar{x})$ which can be iterated; if φ is positive in P, then the operator is monotone in P and therefore has a least fixed point $\operatorname{LFP}_{P ; \bar{x}}(\varphi)$. If Lyndon's theorem were true in the case of finite structures, it would be an indication that FO + LFP loses no expressive power by sticking to positive rather than arbitrary monotone formulas. Fortunately, no expressive power is lost anyway: the two extensions coincide by their expressive power [8].

2. The Monotone Formula

In this section we prove the Main Theorem, except for statement (iii).
Definition. $\sigma 1$ is the signature $\{\leq$, Sum, Prod, Exp $\}$, where \leq is a binary predicate symbol, and Sum, Prod, Exp are ternary predicate symbols. A $\sigma 1$ structure S of cardinality n is standard if
(i) the universe of S is the interval $[0, n$) of natural numbers,
(ii) \leq is the standard ordering of the universe of S,

$S \vDash \operatorname{Sum}(x, y, z)$	if and only if	$x+y=z$	modulo n,
$S \vDash \operatorname{Prod}(x, y, z)$	if and only if	$x \cdot y=z$	modulo n,
$S \vDash \operatorname{Exp}(x, y)$	if and only if	$2^{x}=y$	modulo n.

Theorem 2.1. There is a first-order $\sigma 1$-sentence $\psi 1$ such that an arbitrary $\sigma 1-$ structure is a model of $\psi 1$ if and only if it is isomorphic to a standard structure.

Proof. $\psi 1$ says that \leq is a linear order, and Sum, Prod, Exp satisfy the usual recursive definitions [10].

Lemma 2.1. For any positive integer m, let $U(m)$ be the least common multiple of all positive integers up to m. For any integer $n \geq 2, U\left(2\left\lceil\log _{2} n 1\right) \geq n\right.$.

Proof. See [9].
Lemma 2.2. For every integer $n \geq 6$, the number of functions from the interval $\left.\left[0, \mathrm{~L}\left(\log _{2} n\right)^{1 / 4}\right\rfloor\right)$ of natural numbers to the interval $\left[0,2\left\lceil\log _{2} n 1\right)\right.$ of natural numbers is at most n.

Proof. Omitted.
Definition. $\quad \sigma 2=\sigma 1 \cup\{Q, R\}$ where Q is a ternary predicate symbol and R is a quaternary predicate symbol. Let $l=\log _{2} n$ and $f_{0}, f_{1}, \ldots, f_{m-1}$ be the list of functions from $\left[0, L l^{1 / 4}\right\rfloor$) to $[0,2 \Gamma l]$) in the lexicographical order. A $\sigma 2$-structure S of cardinality n is standard if $n \geq 6$ and
(i) the $\sigma 1$-reduct of S is standard,
(ii) $S \vDash Q(i, j, k)$ iff $i<m, j<\left\lfloor l^{1 / 4}\right\rfloor$, and $f_{i}(j)=k$, and
(iii) $S \vDash R(i, x, y, p)$ iff $i<m, x \leq\left\lfloor l^{1 / 4}\right\rfloor, 2 \leq p \leq 2\lceil l\rceil$, and $\sum\left\{f_{i}(j): j<x\right\}=y$ modulo p. (The empty sum by definition is 0 .)

Theorem 2.2. There is a first-order $\sigma 2$-sentence $\psi 2$ such that an arbitrary $\sigma 2$-structure is a model of $\psi 2$ if and only if it is isomorphic to a standard $\sigma 2$-structure.

Proof. $\psi 2$ is a conjunction of four sentences. The first conjunct is $\psi 1$. The second conjunct says that the universe contains at least six elements. The third conjunct describes Q by induction on the first argument. The forth conjunct describes R by induction on the second argument.

Theorem 2.3. Let $\sigma 3=\sigma 2 \cup\{f\}$ where f is a unary function symbol. There is a σ-formula $\psi 3(y)$ satisfying the following condition. Let S be a $\sigma 3$-structure with a standard $\sigma 2$-reduct, and let $n=|S|, l=\log _{2} n$. Suppose that $\sum\left\{f(j): j<L l^{1 / 4} \mathrm{~J}\right\}$ $<n$. Then $S \vDash \psi 3(y)$ if and only if $\sum\left\{f(j): j<\left\lfloor l^{1 / 4}\right\rfloor\right\}=y$.

Proof. Let $f_{0}, f_{1}, \ldots, f_{m-1}$ be as in the definition of standard $\sigma 2$-structures, and let $r=\left[l^{1 / 4} \mathrm{~J}\right.$. The desired formula $\psi 3(y)$ uses the predicates Q and R to say that for every $p \leq 2\lceil l\rceil$ there is $i<m$ such that
(a) for all $j<r, f(j)=f_{i}(j)$ modulo p, and
(b) $\sum\left\{f_{i}(j): j<r\right\}=y$ modulo p.

In virtue of Lemma 2.2, the equality $\Sigma\{f(j): j<r\}=y$ implies $S \vDash \psi 3(y)$. Suppose that $S \vDash \psi 3(y)$. Then $\Sigma\{f(j): j<r\}=y$ modulo every positive $p \leq 2\lceil l]$. Hence $\Sigma\{f(j): j<r\}=y$ modulo the least common multiple of all positive numbers $p \leq 2 \Gamma l 1$. By Lemma $1, \Sigma\{f(j): j<r\}=y$.

Theorem 2.4. There is a $\sigma 3$-formula $\psi 4(y)$ satisfying the following condition. Let S be a $\sigma 3$-structure with a standard $\sigma 2$-reduct, and let $n=|S|, l=\left\lfloor\log _{2} n\right\rfloor$. Suppose that $\sum\{f(i): i<l\}<n$. Then $S \vDash \psi 4(y)$ if and only if $\Sigma\{f(i): i<l\}=y$.

Proof. Let $\alpha(f, y)=\psi 3(y)$. Let $r=\left\lceil l^{1 / 4} 1\right.$, so that $r^{4} \geq l$.
The formula $\alpha(\lambda j . f(r u+j), y)$ says that $\sum\{f(j): r u \leq j<r u+r\}=y$. Let $g(u)=\sum\{f(j): r u \leq j<r u+r\}$. The formula $\alpha(g, y)$ says that $y=$ $\Sigma\left\{f(j): j<r^{2}\right\}$.

Using the same trick again, we arrive at a formula $\beta(f, y)$ saying that $\sum\left\{f(j): j<r^{4}\right\}=y$. Let $h(j)=f(j)$ if $j<l$, and $h(j)=0$, otherwise. $\beta(h, y)$ is the desired $\psi 4(y)$.

The above proof assumes implicitly that $r^{4} \leq n$. We ignore the modification needed to cover the case $r^{4}>n$.

Now we are ready to describe the desired structures S_{n}.
Definition. $\quad \sigma=\sigma 2 \cup\{D, T\}$ where D is a unary predicate symbol and T is a ternary predicate symbol.

Definition. Let $n \geq 4$ and $\left.l=\log _{2} n\right\rfloor$. S_{n} is the σ-structure such that
(i) the universe of S consists of pairs (x, y) of natural numbers where $0 \leq x<l$ and $0 \leq y<n$,
(ii) the map $(x, y) \rightarrow n x+y$ is an isomorphism of the $\sigma 2$-reduct of S onto the $\sigma 2$-standard structure of cardinality \ln,
(iii) the interpretation of T in S is $\{(x, 0),(0, y),(x, y): 0 \leq x<l, 0 \leq y<n\}$,
(iv) the interpretation of D in S is $\{(x, x): 0 \leq x<l\}$.

Clause (ii) requires $l n \geq 6$ because a standard $S 2$-structure contains at least six elements. This explains the restriction $n \geq 4$. Structures S_{1}, S_{2}, S_{3} should be defined
separately; we ignore them and suppose $n \geq 4$ in the rest of the proof of the Main Theorem. Let $l=\left\lfloor\log _{2} n\right\rfloor$.

It is easy to write down the desired first-order σ-sentence φ_{0} such that every model of φ_{0} is isomorphic to some S_{n}. In the following description of φ_{0} we suppose that S is a model of φ_{0}. Our φ_{0} is a conjunction. One conjunct is the sentence $\psi 2$ of Theorem 2.2; this guarantees that the $\sigma 2$-reduct of S is standard. Let A, B be the first and the second projections of T in S, respectively; the projections inherit orderings from S. The second conjunct of φ_{0} says that T is an isomorphism of the lexicographically ordered set $A \times B$ onto the $\{<\}$-reduct of S. The third conjunct says (using the arithmetic built into S) that there are $a, b \in S$ such that $\forall y(y<b \leftrightarrow y \in B), a=\log _{2} b \mathrm{~J}, a \cdot b=|S|$ and $D=\{x \cdot b+x: x<a\}$.

Definition. With each subset P of S_{n} we associate the function $P^{*}(x)=$ $\max (\{0\} \cup\{y: S \vDash P(x, y)\})$ where $0 \leq x<l$ (the associate function of P).

Let P be a unary predicate symbol. Using the formula $\psi 4$ of Theorem 2.4, write down a $\sigma \cup\{P\}$-sentence saying in each S_{n} that $\sum\left\{P^{*}(x): 0 \leq x<l\right\} \geq l(n-1) / 2$; this is the desired sentence $\varphi_{1}(P)$.

The sentence $\varphi_{0} \& \varphi_{1}(P)$ obviously is monotone in P.

3. Abundance of Minimal Elements

Consider any structure S_{n} constructed in Section 2. A function P^{*} was associated with each subset P of S_{n}. In this section we prove that the set $\left\{P: S_{n} \vDash \varphi_{1}(P)\right\}$ has many minimal elements with respect to the componentwise ordering.

Definition. If X is a set and Y is a linearly ordered set, then $\{X \rightarrow Y\}$ is the lattice of functions from X to Y ordered componentwise: $f \leq g$ if and only if $f(x) \leq g(x)$ for all $x \in X$.

Definition. A lattice L is called regular if there are finite nonempty intervals X, Y of natural numbers, functions f and g from X to Y, and a positive integer n such that $g(x)=f(x)+n-1$ for all $x \in X$ (so that each interval $[f(x), g(x)]$ contains n natural numbers), and L is the interval $[f, g]=\{h \in L: f \leq h \leq g\}$ of $[X \rightarrow Y]$. The interval X is called the source of L. The function f is called the bottom of L and denoted bottom m_{L}, the function g is called the $t o p$ of L and denoted top p_{L}. The number n is called the height of L.

Every sublattice of a regular lattice L is an interval [h_{1}, h_{2}] for some functions $h_{1} \leq h_{2}$. An interval of a regular lattice is called regular if it forms a regular sublattice.

Let $l=\left\lfloor\log _{2} n\right]$, and $L=[X \rightarrow Y]$, where X, Y are the intervals $[0, l)$ and $[0, n)$ of natural numbers, respectively.

Proviso. The probability distribution of any random variable is supposed to be uniform (when all possible values are equally probable) unless the contrary is clear from the context.

Theorem 3.1. Suppose that m is an integer such that $3 \leq m<n$ and $n-m$ is even. Let J be a random regular interval of L of height m. Let E be the event that there is $f \in J$ such that $f>$ bottom $_{J}$ and $\sum f(x)=\lceil l(n-1) / 21$. Then $\operatorname{Pr}[E]>(\ln)^{-1}$.

Remark. The restriction " $n-m$ is even" is not essential, but it simplifies somewhat the proof and suffices for our purposes.

We prove Theorem 3.1 using the following lemma.
Lemma 3.1. Let $Y_{K}=y_{1}+\cdots+y_{k}$ where y_{1}, \ldots, y_{k} are independent random variables on a fixed interval $[-r, r]$ of integers. $\operatorname{Then} \operatorname{Pr}\left[Y_{k}=a\right] \geqq \operatorname{Pr}\left[Y_{k}=b\right]$ for all integers a, b with $|a| \leq|b|$.

Proof. The case $k=1$ is obvious. Suppose Lemma 3 is proved for $k, Y=Y_{k}$, $z=y_{k+1}, Z=Y_{k+1}$. We prove $\operatorname{Pr}[Z=a] \geq \operatorname{Pr}[Z=b]$ assuming $|b|=|a|+1$. In virtue of symmetry, $\operatorname{Pr}[Z=c]=\operatorname{Pr}[Z=-c]$ for any c; hence we may suppose that $a \geq 0$ and $b=a+1$.

$$
\begin{aligned}
P[Z=a] & =\sum\{P[z=i] \times P[Y=a-i]:-r \leq i \leq r\} \\
& =(1 /(2 r+1)) \times \sum\{P[Y=a-i]:-r \leq i \leq r\} .
\end{aligned}
$$

Similarly, $P[Z=a+1]=(1 /(2 r+1)) \times \sum\{P[Y=a+1-i]:-r \leq i \leq r\}$. Then $(2 r+1)-(P[Z=a] \times P[Z=a+1])$ equals $P[Y=a-r]-P[Y=a+1+r]$, which is nonnegative since $|a-r| \leq \max \{a, r\}<a+1+r$.

Proof of Theorem 3.1. Let $f(x)=\left[\operatorname{bottom}_{j}(x)+\operatorname{top}_{j}(x)\right] / 2$. Note that $\lfloor f(x)\rfloor>$ bottom $_{f}(x)$ for all x. Since $n-m$ is even, every $f^{\prime}(x)=f(x)$ -$(n-1) / 2$ is integer. Every $f(x)$ has less than n possible values; hence $\sum f^{\prime}(x)$ has fewer than \ln possible values. By Lemma 3.1,

$$
\operatorname{Pr}\left[\sum f(x)=l(n-1) / 2\right]=\operatorname{Pr}\left[\sum f^{\prime}(x)=0\right]>(\ln)^{-1}
$$

If m is odd, then f belongs to J, and we have finished. Suppose that m is even. Set $g(x)=\lfloor f(x)\rfloor$ for $x<\lfloor l / 2\rfloor$, and $g(x)=\lceil f(x)\rceil$ for $\lfloor l / 2\rfloor \leq x<l$. Then g belongs to J. If l is even, then $\sum g(x)=\Sigma f(x)$; hence,

$$
\operatorname{Pr}\left[\sum f(x)=l(n-1) / 2\right]>(l n)^{-1}
$$

If l is odd, then

$$
\begin{aligned}
\sum g(x) & =\frac{1}{2}+\sum f(x), \\
{\left[\frac{l(n-1)}{2}\right] } & =\frac{1}{2}+\frac{l(n-1)}{2}, \\
\operatorname{Pr}\left[\sum g(x)=\left[\frac{l(n-1)}{2}\right]\right] & =\operatorname{Pr}\left[\sum f(x)=\frac{l(n-1)}{2}\right]>(l n)^{-1} .
\end{aligned}
$$

4. A Probabilistic Property of Positive Borel Sets

In this section we complete the proof of the Main Theorem. We start with some notation and terminology.

Recall that a subset S of an arbitrary lattice L is called a semifilter if $S \ni x<y$ $\rightarrow y \in S$. The union as well as the intersection of a family of semifilters is again a semifilter. If S is a semifilter in L and I is an interval of L, then $I \cap S$ is a semifilter in the sublattice I.

Every semifilter S of a regular lattice L is the union of intervals [$h, \operatorname{top}_{L}$], where h is a minimal member of S. Intuitively, S is rich if it has many minimal elements. The richness is related to the number of elements of the source of L in which some minimal member of S exceeds bottom ${ }_{L}$. This motivates the following definition.

Definition. Let $S \subseteq L$ be a semifilter in a regular lattice L with a source W. The set $\left\{u \in W\right.$: there is a minimal $h \in S$ with $\left.h(u)>\operatorname{bottom}_{L}(u)\right\}$ is the base of S in
L, written $\operatorname{base}_{L}(S)$. The cardinality of base (S) is the dimension of S in L, written $\operatorname{dim}_{L}(S)$.
Note that $\operatorname{dim}_{L}(S)$ equals 0 if and only if $S=\varnothing$ or $S=L$.
Lemma 4.1. Let F be \cup or \cap (so that in each lattice, F assigns a semifilter to each family of semifilters). Let L be a regular lattice with a source W, and N be a family of semifilters in L. Then
(i) for every interval J of $L, J \cap F(N)=F(\{J \cap S: S \in N\})$;
(ii) if $\operatorname{dim}_{L}(S) \leq d \leq|N|$ for all $S \in N$, then $F(N)=F\left\{\left(N_{U}: U \subseteq W\right.\right.$ and $|U|=d\}$, where $N_{U}=F\left\{S \in N:\right.$ base $\left._{L}(S) \subseteq U\right\}$; and
(iii) if base $L_{L}(S) \subseteq U \subseteq W$ for all $S \in N$, then base $(F(N) \subseteq U$.

Comment. This simple lemma will allow us later (in the proof of Theorem 4.3) to treat the two operations \cup and \cap simultaneously.

Proof. We only prove statement (iii) for the case of \cap; the rest is obvious. Let g be a minimal function in $\cap N$. Consider the collection X of functions $f \leq g$ such that f is minimal in some $S \in N$, and let h be the joint of X. Obviously, $h \in \cap N$ and $h \leq g$. By the minimality of $g, h=g$. Every $f \in X$ coincides with the bottom of I on $W-U$. Hence g coincides with the bottom of L on $W-U$.

Definition. Let L be a regular lattice of height n, and $0<\alpha<1$. An α-interval of L is a regular interval of L of height $L n^{\pi}$.

Lemma 4.2. Let L be a regular lattice with a source W and the height $n>(2|W|)^{4}$. Let t be a positive integer, and α, β, γ be positive reals such that $\alpha \leq 1 /(4 t)$, and $\beta, \gamma<1$, and $\left\lfloor\left\lfloor n^{\alpha}\right\rfloor^{\beta}\right\rfloor=\left\lfloor n^{\gamma}\right\rfloor$. There is a set S of γ-intervals of L satisfying the following condition. Suppose that A is a random α-interval of L, B is a random β-interval of A, and C is a random γ-interval of L. Then
(i) $\operatorname{Pr}[C \notin S]<n^{-t}$, and
(ii) for every $D \in S, \operatorname{Pr}[C=D]<\sqrt{n} \times \operatorname{Pr}[B=D]$.

Comment. B is a random γ-interval of L with respect to a complicated probability distribution. Think about t as a big enough number. The lemma says that almost everywhere the complicated distribution is bounded by the uniform distribution times \sqrt{n}.

Proof. Without loss of generality, the bottom and the top of L are $\lambda u .0$ and $\lambda u .(n-1)$, respectively. Let $a=\left\lfloor n^{\alpha}\right\rfloor, b=\left\lfloor a^{\beta}\right\rfloor, f=$ bottom $_{A}, g=$ bottom $_{B}$, and $h=\operatorname{bottom}_{C}$. Both B and C have the height b.

For each u in $W, h(u)$ is a random element of $[0, n-b] ; \operatorname{Pr}[h(u)=k]=1 /(n-$ $b+1)$ for each $0 \leq k \leq n-b$. The probability distribution of $g(u)$ is different. Let $0 \leq k \leq n-b . \operatorname{Pr}[g(u)=k]=p(k) \times[1 /(a-b+1)]$ where $p(k)=\operatorname{Pr}[f(u) \leq k \leq$ $f(u)+a-b]$. If $a-b \leq k \leq n-a$, then $p(k)=(a-b+1) /(n-a+1)$ and $\operatorname{Pr}[g(u)=k]=1 /(n-a+1) \geq \operatorname{Pr}[h(u)=k]$. In any case $p(k) \geq 1 /(n-a+1)$ and

$$
\operatorname{Pr}[g(u)=k] \geq \frac{1}{(n-a+1)(a-b+1)} \geq a^{-1} \times \operatorname{Pr}[h(u)=k]
$$

Let S be the set of γ-intervals D of L such that

$$
\mid\left\{u: \text { either } \operatorname{bottom}_{D}(u)<a-b \text { or }^{b^{2}}(u t t o m ~(u)>n-a\} \mid<2 t .\right.
$$

To prove (i), set $V=\{u$: either $h(u)<a-b$ or $h(u)>n-a\}$. For every $u \in W$, $\operatorname{Pr}[u \in V]<2 a / n$. If U is a subset of W of cardinality $2 t$, then $\operatorname{Pr}[U \subseteq V]<$
$(2 a / n)^{2 t}$. Thus $\operatorname{Pr}[C \notin S]=\operatorname{Pr}[$ There is $U \subseteq V,|U|=2 t]<|W|^{2 t} \times(2 a / n)^{2 t} \leq$ $\left[|W|^{2} \times 2^{2} \times n^{2 \alpha} \times n^{-2}\right]^{t}<\left[n^{1 / 2+1 / 2-2}\right]^{t}<n^{-t}$.

To prove (ii), let $D \in S, r=$ bottom $_{D}$ and $V=\{u: r(u)<a-b$ or $r(u)>n-a\}$. Then $\operatorname{Pr}[C=D]=\operatorname{Pr}[h=r]=\Pi\{\operatorname{Pr}[h(u)=r(u)]: u \notin V\} \times \Pi\{\operatorname{Pr}[h(u)=r(u)]:$ $u \in V\}<\Pi\{\operatorname{Pr}[g(u)=r(u)]: u \notin V\} \times\left(a^{2 t} \Pi\{\operatorname{Pr}[g(u)=r(u)]: u \in V\}\right)<$ $\operatorname{Pr}[g=r] \times n^{1 / 2}$.

Theorem 4.1. Suppose that L is a regular lattice with a source W and the height n, S is a semifilter in L of dimension $d>0, b \in B=$ base $_{L}(S), V$ is a subset of W such that $B-V=\{b\}, \epsilon$ is a positive real with $n^{\epsilon}<n / 2, F$ is a member of L such that $F(v)+n^{\epsilon} \leq \operatorname{top}_{L}(v)$ for all $v \in V$, and J is a random ϵ-interval of L with bottom $_{J}(v)=F(v)$ for all $v \in V$. Then $\operatorname{Pr}\left[b \in\right.$ base $\left._{J}(J \cap S)\right]<2 n^{e d-1}$.

Comment. The intuitive meaning of Theorem 4.1 is as follows: If the dimension d of the base of S is fixed and the height ϵ of J diminishes, then the probability of $b \in \operatorname{base}_{J}(J \cap S)$ is rapidly diminishing. Why is this true? Consider the most interesting case $V=W-\{b\}$. Then the only random part of J is the interval [bottom ${ }_{J}(b)$, top $_{J}(b)$] of integers; the rest of J is fixed. If $b \in \operatorname{base}_{J}(J \cap S)$, then there is a minimal function g of $J \cap S$ with $g(b)>\operatorname{bottom}_{J}(b)$. There are not too many choices for the restriction of g to $A=B-\{b\} \subseteq V$, so consider the case in which $g \mid A$ is fixed. How many choices do we have for $g(b)$ now? The answer is: just one.

Proof. We may assume that $V=W-\{b\}$. For, let $U=(W-\{b\})-V$ and r range over functions from U to the set ω of natural numbers such that $r(u)+n^{\epsilon} \leq$ $\operatorname{top}_{L}(u)$ for $u \in U$. If every conditional probability

$$
\operatorname{Pr}\left[b \in \operatorname{base}_{J}(J \cap S) \mid \text { bottom }_{J} \text { coincides with } r \text { on } U\right]
$$

is less than $2 n^{\epsilon d-1}$, then $\operatorname{Pr}\left[b \in \operatorname{base}_{J}(J \cap S)\right]<2 n^{\epsilon d-1}$.
We prove that the probability of a consequence of the event $b \in \operatorname{base}_{J}(J \cap S)$ is less than $2 n^{\text {ed-1 }}$. Let $A=B-\{b\}$,

$$
\begin{aligned}
H & =\left\{h \in[A \rightarrow \omega]: F(a) \leq h(a) \leq F(a)+n^{\epsilon} \text { for all } a \in A\right\} \\
H^{\prime} & =\{h \in H: \text { there is } f \in S \text { with } f(a) \leq h(a) \text { for all } a \in A\}, \\
h^{*} & =\min \{f(b): f \text { is a minimal member of } S \text { with } f(a) \leq h(a) \text { for } a \in A\},
\end{aligned}
$$

for each $h \in H^{\prime}$, and let E be the event "There is $h \in H^{\prime}$ with $\operatorname{bottom}_{J}(b)<h^{*} \leq$ $\operatorname{top}_{J}(b)$."
E is a consequence of the event $b \in \operatorname{base}_{J}(J \cap S)$. For, suppose $b \in \operatorname{base}_{J}(J \cap$ S). Then there is a minimal member g of $J \cap S$ with $g(b)>$ bottom $_{J}(b)$. Let h be the restriction of the function g to A; obviously, $h \in H^{\prime}$. It suffices to prove that $h^{*}=g(b)$. There is a minimal member f of S such that $f(a) \leq h(a)$ for $a \in A$ and $f(b)=h^{*}$. By the definition of $h^{*}, f(b) \leq g(b)$. Since B is the base of S in L, we have $f(u)=\operatorname{bottom}_{L}(u)$ for $u \in W-B$. Thus $f \leq g$. Let f^{J} be the join of f and bottom ${ }_{J}$; obviously $f^{J} \leq g$ and $f^{J} \in J \cap S$. By the minimality of $g, g \leq f^{J}$; hence $g=f^{J}$ and $g(b)=f^{J}(b)=h^{*}$.

It remains to estimate $\operatorname{Pr}[E]$. The number of values for J is $n-\left\lfloor n^{\epsilon}\right\rfloor+1>$ $n-n^{\epsilon}>n / 2 .\left|H^{\prime}\right| \leq|H|=\left\lfloor n^{*}\right\rfloor^{d-1} \leq n^{\epsilon(d-1)}$. For each $h \in H^{\prime}$, the number of values for J with bottom $_{J}(b)<h^{*} \leq \operatorname{top}_{J}(b)$ is less than n^{*}. Thus $\operatorname{Pr}[E]<n^{\epsilon(d-1)} \times$ $n^{\epsilon} \div(n / 2)=2 n^{c d-1}$.

Theorem 4.2. Suppose that A is a regular lattice with a source $W ; l=|W| \geq$ 3, $a=$ height (A), for each $U \subseteq W$ of cardinality $d, S(U)$ is a semifilter in A with
base $_{A}(S(U)) \subseteq U ; \beta \leq 1 /(2 d) ; B$ is a random β-interval of $A ; M=\cup\left\{\right.$ base $_{B}(B \cap$ $S(U)): U \subseteq W,|U|=d\}$; and m is a positive integer. Then $\operatorname{Pr}(|M| \geq d m)<$ $l^{2 d m} a^{-m / 2}$.

Comment. The interesting case is when d, l, m are fixed and a increases. The intuitive meaning of the theorem is that the dimension of $B \cap S(U)$ in B is, in general, small.

Proof. We evaluate the probability of a consequence of $|M| \geq d m$.
Let $Q=\left\{\left(U_{1}, \ldots, U_{m}, u_{1}, \ldots, u_{m}\right): u_{i} \in U_{i} \subseteq W\right.$ and $\left|U_{i}\right|=d$ for all $\left.i\right\}$. Then $|Q| \leq\left(l^{d}\right)^{m} \times d^{m}$. Since $(2 d)^{1 / d}<\max \left\{(2 x)^{1 / x}: 1 \leq x<\infty\right\}<3 \leq l$, we have $d<l^{d} / 2$ and $|Q|<\left(l^{2 d} / 2\right)^{m}$.

Let $R=\left\{\left(U_{1}, \ldots, U_{m}, u_{1}, \ldots, u_{m}\right) \in Q:\right.$ each $u_{i} \in \operatorname{base}_{B}\left(B \cap S\left(U_{i}\right)\right)-$ $\left.\cup\left\{U_{j}: j<i\right\}\right\}$. The event $R \neq \varnothing$ is a consequence of the event $|M| \geq d m$. For, assume $|M| \geq d m$ and pick any $u_{1} \in M$; there is $U_{1} \subseteq W$ of cardinality d such that $u_{1} \in \operatorname{base}_{B}\left(B \cap S\left(U_{1}\right)\right)$. Suppose that $i \leq m$, and U_{1}, \ldots, U_{i-1}, u_{1}, \ldots, u_{i-1} have been chosen. Pick any $u_{i} \in M-\cup\left\{U_{j}: j<i\right\}$; there is $U_{i} \subseteq W$ of power d such that $u_{i} \in \operatorname{base}_{B}\left(B \cap S\left(U_{i}\right)\right)$.

For each sequence $s=\left(U_{1}, \ldots, U_{m}, u_{1}, ., ., u_{m}\right)$ in Q, let $p(s)$ be the probability that $s \in R$. If there are $j<i$ with $u_{i} \in U_{j}$, then $p(s)=0$. We suppose that there is no pair $j<i$ with $u_{i} \in U_{j}$ and give an upper bound for $p(s)$.

Let $f=$ bottom $_{A}, g=$ bottom $_{B}$ and $b=\left\lfloor a^{\beta} \mathrm{\rfloor}\right.$. For each $u \in W, g(u)$ belongs to the interval $[f(u), f(u)+a-b]$. Let $W_{0}=W-\cup\left\{U_{i}: 1 \leq i \leq m\right\}$; and for each $i=1, \ldots, m$, let $W_{i}=\left(U_{i}-\cup_{j<i} U_{j}\right)-\left\{u_{i}\right\}$. Without loss of generality, the function g is produced by the following $1+2 m$ independent choices: first choose the restriction of g to W_{0}, then choose the restriction of g to W_{1}, then choose $g\left(u_{1}\right)$, then choose the restriction of g to W_{2}, then choose $g\left(u_{2}\right)$, etc. By Theorem 4.1 (with $b=u_{i}$), $p(s) \leq\left(2 a^{\beta d-1}\right)^{m} \leq\left(2 a^{-1 / 2}\right)^{m}$.

Clearly, $\operatorname{Pr}[R \neq \varnothing] \leq|Q| \times \max \{p(s): s \in Q\}$. But $|Q|-\max p(s)<\left(l^{2 d} / 2\right)^{m}$ $-\left(2 a^{-1 / 2}\right)^{m}=l^{2 d m} a^{-m / 2}$.

Theorem 4.3. Suppose that L is a regular lattice with a source $W ; l=|W| \geq$ 3; $n=$ height $(L) ; N$ is a family of \ln semifilters in $L ; Y$ is either $\cup N$ or $\cap N ; t$ is a positive integer; $\alpha \leq 1 /(4 t) ; A$ is a random α-interval of L; for every $X \in N$ and some positive integer $d, \operatorname{Pr}\left[\operatorname{dim}_{A}(A \cap X)>d\right)<n^{-t} ; \gamma \leq \alpha /(3 d) ; C$ is a random γ-interval of $L ; m \geq(2 t+2) / \alpha$ is an integer; $n>16 l^{4} ; n \geq l^{2 d m}$. Then $\operatorname{Pr}\left[\operatorname{dim}_{C}(C \cap Y) \geq d m\right)<n^{-t+2}$.

Comment. The intuitive meaning of the theorem is as follows. A relatively large family of semifilters is given. With a great probability, the dimension of each of these semifilters is bounded (by a given number) in a random α-interval. Then, with a great probability, the dimension of the union, as well as the intersection of all these semifilters, is bounded in a random γ-interval, provided γ is small enough.

Proof. Let $a=\left\lfloor n^{\alpha}\right\rfloor, c=\left\lfloor n^{\gamma}\right\rfloor, \beta=\log _{a} n^{\gamma}$, and B be a random β-interval of A. Then $\beta \leq 1 /(2 d)$ since $x^{3 / 2}>x+1$ for $x \geq 3$, and, therefore, $a^{3 / 2}>a+1 \geq n^{\alpha}$, $a \geq n^{2 \alpha / 3} \geq n^{2 \gamma d}=a^{2 \beta d}$. The proof uses two claims.

Claim 1. The conditional probability

$$
\operatorname{Pr}\left[\operatorname{dim}_{B}(B \cap Y) \geq d m \mid \text { every } \operatorname{dim}_{A}(A \cap X) \leq d\right]
$$

is less than n^{-t}.

Proof of Claim 1. Let F be \cup or \cap, so that $Y=F(N)$. Let $N^{\prime}=\{A \cap X$: $X \in N\}$ and $Y^{\prime}=F\left(N^{\prime}\right)$. By Lemma 4.1, $Y^{\prime}=A \cap Y$; hence, $B \cap Y=B \cap Y^{\prime}$.

We are going to use Theorem 4.2. For every $U \subseteq W$, let $S(U)=F\left\{X: X \in N^{\prime}\right.$ and base $\left.A_{A} X \subseteq U\right\}$. Let $M=\cup\left\{\right.$ base $\left._{B}(B \cap S(U)): U \subseteq W,|U|=d\right\}$. If $\operatorname{dim}_{A} X \leq d$ for $X \in N^{\prime}$, then, by Lemma 4.1, $Y^{\prime}=F\{S(U): U \subseteq W,|U|=d\}$ and M includes $\operatorname{base}_{B}\left(B \cap Y^{\prime}\right)$. But, by Theorem 4.2, $\operatorname{Pr}[|M| \geq d m]<l^{2 d m} a^{-m / 2} \leq n^{1-\alpha m / 2} \leq n^{-t}$. Claim 1 is proved.

Claim 2. $\operatorname{Pr}\left[\operatorname{dim}_{B}(B \cap Y) \geq d m\right]<\ln ^{-t+1}+n^{-t}$.
Proof of Claim 2. Let E be the event "There is $X \in N$ with $\operatorname{dim}_{A}(A \cap X)>$ d," and E^{\prime} be the complement of $E . \operatorname{Pr}[E] \leq \ln \times \max \left\{\operatorname{Pr}\left[\operatorname{dim}_{A}(A \cap X)>d\right]: X \in\right.$ $N\}<\ln \times n^{-t}=\ln ^{-t+1}$. Hence

$$
\begin{aligned}
\operatorname{Pr}\left[\operatorname{dim}_{B}(B \cap Y) \geq d m\right] & \leq \operatorname{Pr}[E]+\operatorname{Pr}\left[E^{\prime} \text { and } \operatorname{dim}_{B}(B \cap Y) \geq d m\right] \\
& \leq \operatorname{Pr}[E]+\operatorname{Pr}\left[E^{\prime}\right] \times \operatorname{Pr}\left[\operatorname{dim}_{B}(B \cap Y) \geq d m \mid E^{\prime}\right] \\
& =\ln ^{-t+1}+\left(1-\ln n^{-t+1}\right) \times n^{-t}<\ln ^{-t+1}+n^{-t} \quad \text { (by Claim 1). }
\end{aligned}
$$

Claim 2 is proved.
Now we are ready to prove Theorem 4.3. Note that the height of B equals that of C. By Lemma 4.2, there is a set S of γ-intervals of L such that $\operatorname{Pr}[C \notin S]<n^{-t}$ and $\operatorname{Pr}[C=D]<\sqrt{n} \times \operatorname{Pr}[B=D]$ for all $D \in S$. Thus,

$$
\begin{aligned}
& \operatorname{Pr}\left[\operatorname{dim}_{C}(C \cap Y) \geq d m\right] \\
& \quad=\sum\left\{\operatorname{Pr}[C=D]: D \text { is a } \gamma \text {-interval of } L \text { and } \operatorname{dim}_{D}(D \cap Y) \geq d m\right\} \\
& \quad \leq \sum\left\{\operatorname{Pr}[C=D]: D \in S \text { and } \operatorname{dim}_{D}(D \cap Y) \geq d m\right\}+\sum\{\operatorname{Pr}[C=D]: D \notin S\} \\
& \quad<\sum\left\{\sqrt{n} \times \operatorname{Pr}[B=D]: D \in S \text { and } \operatorname{dim}_{D}(D \cap Y) \geq d m\right\}+\operatorname{Pr}[C \notin S] \\
& \quad<n^{1 / 2} \times \operatorname{Pr}\left[\operatorname{dim}_{B}(B \cap Y) \geq d m\right]+n^{-t} \\
& \quad<\ln ^{-t+3 / 2}+n^{-t+1 / 2}+n^{-t}<n^{-t+2} .
\end{aligned}
$$

We turn now to some specific regular lattices. Recall the structures S_{n} constructed in Section 2. The universe of S_{n} consists of pairs (x, y) of natural numbers such that $0 \leq x<l=\left\lfloor\log _{2} n\right\rfloor$ and $0 \leq y<n$. The subsets of S_{n} (i.e., the points over S_{n}) form a lattice with respect to the inclusion relation. With each subset P of S_{n} we associate a function $P^{*}(x)=\max (\{0\} \cup\{y:(x, y) \in P\})$ where $0 \leq x<l$. With each point-set M over S we associate $M^{*}=\left\{P^{*}: P \in M\right\}$. The associated functions form a regular lattice L_{n} with the source $W=[0, l)$; the height of L_{n} equals n. The mapping $P \mapsto P^{*}$ preserves the order: If $P \subseteq Q$, then $P^{*} \leq Q^{*}$. If M is a semifilter in the lattice of points over S, then M^{*} is a semifilter in L_{n}.

Lemma 4.3. Let M and N be semifilters over S_{n}. Then

$$
(M \cup N)^{*}=M^{*} \cup N^{*} \quad \text { and } \quad(M \cap N)^{*}=M^{*} \cap N^{*}
$$

Proof. We prove only the inclusion $M^{*} \cap N^{*} \subseteq(M \cap N)^{*}$; the rest is obvious. Suppose that $f \in M^{*} \cap N^{*}$, and let P be the subset $\{(x, y): y \leq f(x)\}$. Then $P^{*}=f$ and $P \in M \cap N$.

Theorem 4.4. Let M be a positive Borel point-set over S_{n} of level i, and t be a positive integer. There exist a positive integer d and a positive real $\alpha<1$, both dependent only on i and t, such that if $n \geq 16 l^{4}, n \geq l^{2 d}$ and if J is a random β-interval of L_{n} with $\beta \leq \alpha$, then $\operatorname{Pr}\left[\operatorname{dim}_{J}\left(J \cap M^{*}\right)>d\right]<n^{-t}$.

Proof (by induction on i). The case $i=0$ is trivial. Suppose that $i>0$ and the lemma is proved for $i-1$. By Lemma 4.3, M^{*} is either the union or the intersection of a family $\left\{X_{j}: j=0, \ldots, \ln -1\right\}$ of positive Borel point-set of level i.

Let $t^{\prime}=t+2$. By the induction hypothesis there are d^{\prime} and α^{\prime} such that, if $n \geq 16 l^{4}, n \geq l^{2 d^{\prime}}$, and J is a random β-interval of L_{n} with $\beta \leq \alpha^{\prime}$, then $\operatorname{Pr}\left[\operatorname{dim}_{J}\left(J \cap M_{j}^{*}\right)>d^{\prime}\right]<n^{-t^{\prime}}$ for each j.

Without loss of generality, $\alpha^{\prime} \leq 1 /\left(4 t^{\prime}\right)$. Set $m=\left(2 t^{\prime}+2\right) / \alpha^{\prime}, d=d^{\prime} m+1$, and $\alpha=\alpha^{\prime} /(3 d)$. If $n \geq 16 l^{4}, n \geq l^{2 d}$ and if J is a random β-interval of L_{n} with $\beta \leq \alpha$, then (by Theorem 4.3) $\operatorname{Pr}\left[\operatorname{dim}_{J}\left(J \cap M^{*}\right)>d\right]<n^{-t}$.

Now we are ready to finish the proof of the Main Theorem. The desired structures S_{n} and formulas $\varphi_{0}, \varphi_{1}(P)$ were constructed in Section 2. Statements (i) and (ii) of the Main Theorem were proved in Section 2. It remains to prove statement (iii). By contradiction, suppose that statement (iii) is false. Pick a natural number i that witnesses the failure of (iii). Let $t=2$, and let d and α be as in Theorem 4.4. Since statement (iii) fails, there is a positive integer n such that $l=\left\lfloor\log _{2} n\right\rfloor>d, n \geq 16 l$, $n \geq l^{2 d}$ and the point set $M=\left\{P \subseteq S_{n}: S_{n} \vDash \varphi_{1}(P)\right\}$ over S_{n} is positive Borel of level i. Let L_{n}, M^{*}, and J be as in Theorem 4.4. By Theorem 4.4, $\operatorname{Pr}\left[\operatorname{dim}_{J}\left(J \cap M^{*}\right)>\right.$ $d]<n^{-2}$. But, by the Theorem 3.1, $\operatorname{Pr}\left[\operatorname{dim}_{J}\left(J \cap M^{*}\right)=l\right]>(l n)^{-1}$. The two estimations contradict each other. The Main Theorem is proved.
acknowledgment. The authors would like to thank the referees for their very thorough review of this paper.

REFERENCES

1. AJTAI, M. Σ_{1}-formulae on finite structures. Ann. Pure Appl. Logic 24 (1983), 1-48.
2. Boppana, R. H. Threshold functions and bounded depth monotone circuits. In Proceedings of the 16th ACM Symposium on Theory of Computing (Washington, D.C., Apr. 30-May 2). ACM, New York, 1984, pp. 475-479.
3. Chandra, A. K., and Harel, D. Structure and complexity of relational queries. J. Comput. Syst. Sci. 25 (1980), 156-178.
4. Chang, C. C., and Keisler, H. J. Model Theory. North-Holland, New York, 1977.
5. Furst, M., Saxe, J., and Sipser, M. Parity, circuits, and the polynomial time hierarchy. Math. Syst. Theory 17 (1984), 13-27.
6. Gurevich, Y. Toward logic tailored for computational complexity. In Computation and Proof Theory, M. M. Richter, E. Börger, W. Oberschelp, B. Schinzel, and W. Thomas, Eds. Lecture Notes in Mathematics, vol. 1104. Springer-Verlag, New York, 1984, pp. 175-216.
7. Gurevich, Y. Logic and the challenge of computer science. In Current Trends in Theoretical Computer Science, E. Börger, Ed. Computer Science Press, Rockville, Md., 1987, pp. 1-57.
8. Gurevich, Y., and Shelah, S. Fixed point extensions of first order logic. In Proceedings of the 26th IEEE Symposium on Foundations of Computer Science. IEEE, New York, 1985, pp. 346-353.
9. Hardy, G. H., and Wright, E. M. An Introduction to the Theory of Numbers. Clarendon Press, Oxford, England, 1971.
10. Kleene, S. C. Introduction to Metamathematics. Van Nostrand, New York, 1952.
11. Lyndon, R. C. An interpolation theorem in the predicate calculus. Pacific J. Math. 9 (1959), 155-164.
12. Sipser, M. Borel sets and circuit complexity. In Proceedings of the 15th ACM Symposium on Theory of Computing. ACM New York, 1983, pp. 61-69.

RECEIVED FEBRUARY 1985; REVISED JUNE 1986; ACCEPTED JULY 1986

