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Abstract 
Previously we introduced the Uniform Cram&-Rao (CR) 

Bound as a lower bound on the variance of biased estimators, 
along with the concept of the delta-sigma tradeoff curve. For 
an estimator whose variance lies on this curve, lower variance 
can only be achieved at the price of increased estimator bias 
gradient norm, and vice versa. 

However, for single pixel estimation, one can specify a 
variety of different estimator point response functions that 
have identical bias-gradient norm but with widely different 
resolution properties. This has lead to some counter-intuitive 
results and interpretation difficulties when using the Uniform 
CR Bound in performance studies of imaging systems. 

We now extend this tradeoff concept by introducing the 
2nd-moment of the point response function as a measure of 
resolution for single-pixel estimation tasks. We derive an 
expression for the delta-gamma-sigma tradeoff surface. This 
surface specifies an "unachievable region" of estimator 
variance. For estimators that lie on this surface, lower variance 
can only be achieved at the price of increased bias gradient 
norm and/or decreased estimator resolution. We present a 
method for computing this surface for linear gaussian inverse 
problems. 

I. INTRODUCTION 
We previously introduced a method for specifying a lower 

bound on the variance of biased estimators using the Uniform 
CramCr-Rao (CR) Bound, along with the concept of the delta- 
sigma tradeoff curve [ 11. For an estimator whose variance lies 
on this curve, lower estimator variance can only be achieved at 
the price of an increased estimator bias gradient norm, and 
vice versa. 

The Uniform CR Bound has been used to calculate 
fundamental limits in estimator performance in medical 
imaging [Z-31, comparing the performance of different medical 
imaging modalities [4], among other applications. 

In [ I ] ,  we showed that a) the estimator bias gradient norm 
is an upper bound on the maximal squared variation of the 
estimator bias function over an ellipsoidal neighborhood, and 
b) equivalent to the difference between the estimator mean 
response to a point source, and the true response. Thus, the 
norm of the estimator bias gradient would seem to be a natural 
measure of estimator bias. 

One problem with using bias gradient norm when 
comparing the variance of different estimators and/or systems 
is that different estimator point response functions can have 
identical bias-gradicnt norm but widely different resolution 

properties. This has lead to interpretation difficulties and 
counter-intuilivc results when using the Uniform CR Bound in 
imaging system performance studieij. Figure 1 shows three 
example point response functions with similar FWHM and 
identical bias gradient length, yet with obviously different 
resolution properties. 
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Figure 1: Three example point response functions with identical bias 
gradient norms and similar FWHM. 

In this paper, we will introducc a fundamental tradeoff 
relationship between bias, resolution, and variance for single 
pixel estimation. Along with the estimator bias gradient norm, 
we now introduce the 2"d-moment of the estimator point 
response function as a resolution measure. A Uniform CR 
Bound will be derived for the variance of single-pixel 
estimators as a function of both the estimator bias gradient 
norm and 2nd-moment of the point response function. The 
concept of tradeoffs in estimator variance now include both 
overall bias error (as measured by the bias gradient norm) 
along with resolution error (as measured by the 2nd-moment 
of the estimator point response function). The surface 
parameterized by bias gradient norm and 2nd-moment 
specifies an "unachievable region" of estimator variance. For 
estimators that lie on this surface, lower variance can only be 
achieved at the price of increased bias gradient norm and/or 
decreased estimator resolution as measured by the 2nd- 
moment of the estimator point response. 

11. DEFINITIONS 

A. Statistical Model 

Let e =[e,, ..., 6,,l E 0 be a vector of unknown, 

nonrandom parameters that parameterize the density fr (@) 
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of the measured random variable 1. The parameter space @ 
is assumed to be an open subset of the n-dimensional 
Euclidean space R" . Let e,, = 61j(x) be an estimator of the 

pLh-component of 6 .  Let this estimator have mean value 

A A  

m, = E, [if], bias bi = E' PPI- el, , and variance 

0; = Eo[@,, - el, )2 1. The estimator el, can be expressed 
A A  

in terms of the vector parameter estimator e =e&) via 

e/, = q, 0, where e,, = (0 ,..., 0,1,0, ..., O)T (the pLh-unit 

vector). The gradient of the estimator bias function Vb, and 

mean response gradient vm,  are therefore related by 

A T A  

In [ I ] ,  we showed that under certain conditions for 
estimating the pLh-pixel in both the linear Gaussian and 
nonlinear Poisson inverse problems, the bias gradient vector 
Vb, is equivalent to the difference between the mean of the 

vector estimator response E, Q to a point source e , ,  and 

the true point response e p .  Similarly, the mean of the 

gradient of the p*-pixel estimator vm,  is equivalent to the 

E^] 

when the input is a point source. 

B. Overall Bias and Resolution Measures 
We will define the bias gradient norm 6 with respect to a 

positive definite matrix c ,  and the point response 2"d-moment 
3. as 

d2 = Vb,TCVb, (1) 

- ' 

i 

Since the mean-response gradient is the sum of the true 
point-response and bias-gradient, Equation #2 can be re- 
written as the ratio of two quadratic forms, 

(3) 

where hi',, is a positive semi-definite diagonal matrix with 
diagonal elements proportional to the square of the distance of 
each pixel from the pLh-pixel. For the ID case, M,, is 

(4) 

where d(i - j )  is (for this expression only) the discrete 
delta function. 

C. CR Bound for Biased Estimators 

For a biased estimator el, of the pLh-pixel, the biased 
estimator CR bound of estimator variance is given by 

(5) 

where the n x n Fisher Information matrix 4 is given by 

and F: is the Moore-Penrose pseudo-inverse of the 
(possibly singular) Fisher Information Matrix. 

Although (5) does give a lower bound on the variance of a 
biased estimator, it only applies to estimators with bias 
gradient vector Vb, . Since the bias-gradient is typically 
unique to a particular estimator, equation (5 )  will be estimator 
specific. 

III. UNIFORM CR-BOUND 
In order to have a bound on estimator variance that does 

not depend on the specific bias gradient Vb, , the Uniform CR 
Bound presented in [ I ]  gave a lower bound to equation (5) 
subject to a constraint on the bias-gradient length or norm 

IVb,I, = Vb,TCVb,, where C is a positive-definite matrix. 

We note that the estimator mean response to a point source 

E Q E ]  is equivalent to the gradient of the mean estimator 

response vm,, and that vm,  = g,, + Vb,. We will now 
add an additional constraint on the estimator bias gradient. 

Since Vm, is equivalent to EB Q , and Vm, = g,, + Vb,, 
a constraint on the 2"d-moment of the estimator response to a 
point source can be expressed as an additional constraint on 
Vb,. 

2 

[̂ I 

A. UCRB with Bias Gradient and Resolution 
Constraints 

Here we present a Uniform CR Bound for biased 
estimators with a given bias-gradient length 6 and 2""-moment 
measure 3 for a non-singular Fisher Information matrix 5. 
Let e,, be an estimator of the pth-component of the parameter 

vector 6 .  For a fixed 6,3 2 0,  let the bias gradient satisfy 

the constraints VbLCVb, < h 2  and 
I 

(L,, + Vbt ) M,, (tp +Vhg 2 2 *  
I y . Then the variance 0, of e,, 

(r p + Vh,C >' GP + vhl) 

(7) 
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where the value of BG, 6,7 ) is given by the following 

I) If 6' 2 VbiCVb,, then 

three cases: 

B(b, 6,7 ) = 0 (8) 

11) If 6' < VbiCVb, and 7 2 7 * ,  then 

(9) 
where A I  > 0 is a lagrange multiplier given by the unique 

solution to 

and 

and 
I d_ki" = -c-' [c-' + n, F y  J L, 

where 

I 
estimators le) = [&, + PP J ATI:-'y. The first estimator 
has penalty matrix P equal to the I"-order neighborhood 
difference (Laplacian) matrix, and the second estimator has 
penalty P equal to the Identity matrix. Note that the first 
estimator penalty corresponds to a roughness penalty, whereas 
the second estimator penalty corresponds to a energy penalty 
or Tikonov regularization. Both estimators have a 
regularization parameters p 2 0 .  The measurement 
covariance used in the estimators was purposely set at 2x the 
true covariance, to show the estimator trajectories lying above 
the bound surface. The choice of norm matrix is c = P-' . 

Figure 2 shows a plot of this surface, along with the 
trajectories in (bias, resolution, variance) of the two PWLS 
estimators for values of the penalty I I O 4 .  

dmin = -[$ + hc + a2 [M,, - y2z]' [F,-I - ~ ~ y ~ i  
(15) 

and A,, 4 2 0 are lagrange multipliers found implicitly 
through the two equality constraints 

IV. RESULTS 

A.  Linear Gaussian Model 
We generated a delta-gamma-sigma surface the show the 

lower bound of a single pixel estimator for a ID  de- 
convolution problem. The measurement equation is 
- Y = A& + E . The parameter and measurement vectors are 
both 128 element vectors corresponding to a 128 pixel ID 
signal. The system matrix A corresponds to a shift-invariant 
gaussian shaped blur kemal with a full-width-half-max of 1 .O 
pixels. The additive noise vector is distributed normally 
with mean 0 and covariance c = 1. The Fisher Information 
Matrix is 4 = A7C-'A.  The estimation task is for the 67'h 

pixel, thus 8,(y) = G6,(z). 
We also overlay on the surface the variance of two 

different Penalized Weighted Least Squares (PWLS) 

'b - 
20 3 *  lz----- 

Figure 2: delta-gamma-sigma surface for linear Gaussian inverse 
problem, along with trajectories of PWLS estimators with roughness 
penalty (circular ticks) and identity penalty (square ticks). 
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