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ABSTRACT

We treat the detection problem for multiple signals embddde
noisy observations from a sensor array as a multiple hypathe
test based on log-likelihood ratios. To control the glolesiel of
the multiple test, we apply the false discovery rate (FDRgdon
proposed by Benjamini and Hochberg. The power of this multi-
ple test has been investigated through narrow band sirantain
previous studies. Here we extend the proposed method td-broa
band signals. Unlike the narrow band case where the teg-stat
tics are characterized biy-distribution, in the broadband case the
test statistics have no closed form distribution functidre apply
the bootstrap technique to overcome this difficulty. Sirtiafes
show that the FDR-controlling procedure always providesemo
powerful results than the familywise error-rate (FWE) cohing
procedure. Furthermore, the reliability of the proposet i®not
affected by the gain in power.

1. INTRODUCTION

This work is concerned with broadband signal detectiongusin
multiple hypothesis test. Estimating the number of sigmeais
bedded in noisy observations is a key issue in array pratgssi
harmonic retrieval, wireless communication and geoplaysap-
plication. In [2] [7], a multiple testing procedure was sagted
to determine the number of signals. Therein, a BonferrawlitH
procedure [6] was used to control the familywise error-(BWE),
the probability of erroneously rejecting any of the true tiyyeses.
As the control of FWE requires each test to be conducted af-a si
nificantly lower level, the Bonferroni-Holm procedure oftkeads

to conservative results. To overcome this drawback, we tadop
the false discovery rate (FDR) criterion suggested by Beimja
and Hochberg [1] to keep balance between type one erroratontr
and power [3]. In addition to the successful numerical tssid-
ported in [3], we examined carefully the independence dardi
required by the Benjamini and Hochberg procedure in [4].

Motivated by the promising results of previous work, we ex-
tend the multiple testing procedure to broadband signatdiké)
the narrow band case in which the test statisticsrudistributed
under null hypothesis, there is no closed form expressiomhi®
distribution of test statistics in the broadband case. &foee, we
incorporate the powerful bootstrap technique to approténtiae

distribution under null hypothesis and estimate the olexbsig-
nificance level.

This paper is organized as follows. We give a brief desaipti
of the signal model in the next section. Then we present tHé-mu
ple test procedure for signal detection. The bootstragipia and
its application to our problem are illustrated in sectionld sec-
tion 5 we introduce the idea of false discovery rate (FDR) ttued
Benjamini Hochberg procedure. Simulation results areeures!
and discussed in section 6. Our concluding remarks are given
section 7.

2. DATA MODEL

Consider an array of. sensors receivingn broad band signals
emitted by far-field sources located @it= [ 61,...,0.,[". The
array outputz(t), (t = 0,...,T — 1) within the kth observation
interval ( or snapshot ) is short time Fourier-transformed

LS uz(t)e "

t=

XP(w) = 1)
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where{w(t)}/ ;' is awindow function. For large number of sam-
plesT, we can describe the frequency domain data approximately
by the following relation

XV (w) = Hw;0)8™ (w) + U™ () @
where the matrixd (w, ) = [d; (w) - - - d;(w) - - - d,,, (w)] €C>™
consists ofm steering vectors with théth columnd,, (w) corre-
sponding to théth incoming wave. In the following analysis, the
signal waveformS*) (w) is considered to be unknown and de-
terministic. The noisd/ ") (w) results only from sensors. Ac-
cording to the asymptotic theory of Fourier transfotki® (w;),
(k=1,...,K,j =1,...,J) are independent, identically com-
plex normally distributed with mea# (w;; 8)S™*) (w;) and co-
variance matrix/(w;)I wherev(w;) is the unknown noise spec-
tral parameter and is an identity matrix of corresponding dimen-
sion. The problem of central interest is to determine thelmemof
sighalsm embedded in the observations.



3. SIGNAL DETECTION USING A MULTIPLE
HYPOTHESISTEST

We formulate the problem of detecting the number of signals a
a multiple hypothesis test. Létf denote the maximal number of
sources. The following procedure detects one signal afiether.
More precisely, form = 1,

H, Data contains only noise.
X(w)=U(w)
A Data contains at leastsignals

X(w) = Hi(w;0,)8,(w) + U(w) )

Form=2,...,M

H,, Data contains at mosin — 1) signals.
X(w) =Hm-1(w;0,, 1)8,, 1(w) +U(w)
Am Data contains at least signals

X(w) = Hi (w3 0,,)8,,(w) + U(w) (4)
We use the subscrigtn—1) or m for the steering matrid (w, 0)
and the signal vectof(w) to emphasize their dimensions under
the hypothesid?,, or alternativeA,,,.

Based on the likelihood ratio (LR) principle, we obtain thett

statisticT,» (9,,,), (m =1,..., M) as follows.

1< tr[( = Prn-1(ws30,,_1))R]
i j;log ( tr[(I — P (w;;0,,))R] )

J
1 N
=:ﬁl%0+%mww)) ()
j=1

whereR = L 3K x®)(w;) X *)(w;) represents a nonpara-
metric power spectral estimate of sensor outputs dvesnap-
shots andP (w;;0,,,) is the projection matrix onto the subspace

spanned by the columns & ,,, (w;;0,.). Whenm = 1, we de-
fine Po(-) = 0. §,, represents the ML estimate assuming that
signals are present in the observation.

Under hypothesis,,,, the statisticFy, (w;;0,,) iS Fryny—
distributed where the degrees of freedam n. are given by [7]

n=KQ2+rm), ne=K(2r;—2m—rm_1)

(6)
with r, = dim(z(¢t)) =n and r,, = dim(f,,,) = m.

From eg. (5) itis easy to see that in the narrow band case,
1, the LR test is equivalent to thE-test proposed by Shumway
[9]. However, in the broadband case, the distribution of tee
statisticT:, (6,,) underH,, can not be expressed in closed form.
To overcome this difficulty, we shall apply the bootstrap imoet
to approximate the distribution &, (4,,.).

4. THEBOOTSTRAP PRINCIPLE

The bootstrap [5], [10] requires little prior knowledge dwe tdata
model. The key idea of bootstrap is that, rather than repgati
the experiment, one obtains the “samples” by reassignnfeheo
original data samples. We give a brief description of thedyzmn-
cept and then introduce our test procedure. For more dethds
reader is referred to [10] and references therein.

Basic concept

Let 2 = {z1,22,...,2m} be ani.i.d. sample set from a com-
pletely unspecified distributiof’. Let ¢ denote an unknown pa-
rameter, such as the mean or varianceF'ofThe goal of the fol-
lowing procedure is to construct the distribution of anrastiord
derived fromZ.

Thebootstrap principle

=

Given a sample se€ = {z1,22,...,2m}
2. Draw abootstrap sampl€* = {z7, 25, ...
from Z by resampling with replacement.

7231}

3. Compute the bootstrap estimaté from Z*.

4. Repeat 2. and 3. to obtai® bootstrap estimates
9%, 05, ..., V%

5. Approximate the distribution af by that ofd*.

In step 2., a pseudo random number generator is used to draw a

random sample ol/ values, with replacement, frod. A possi-
ble bootstrap sample might look lik€* = {z10, 2s, 28, ..., 22}
Given the sample seE, the bootstrap procedure can be easily
adapted to calculate a confidence intervaladr construct a hy-
pothesis test.

For the problem testing the hypothedi : ¢ = ¥, against
Hy : 9 # 9o, we define the test statistic as

o |9 — Jo|

T = (7)

g
wheres? is an estimator of the variance 6f 62 can be obtained
through direct computation or nested bootstrap [10]. Thkigion
of 6 guaranteeq is asymptotically pivotal. Given a significance
level o, the bootstrap test computes the threshgldhased on the
bootstrap approximation for the distributiondfunderHy [10].

When the observed significance level, denotedvhyis de-
sired, for example, in the Benjamini-Hochberg procedune, uses
bootstrap samples to estimate ghealue through the relation

N B
p=p{ I B2y, ®)

where P{-} denotes the probability that the bootstrap estimates

larger than the observed test statisfic This method proceeds as
follows.



Thebootstrap procedurefor estimation of p-values

1. ResamplingDraw a bootstrap sampl&™.
2. Compute the bootstrap statistic

7= =dl
3. Repeat 1. and 2. to obtai bootstrap statistics.
Ranking 7, <73, <... <7,
Choosd. so that
Ty <T <1Yy... <Tp).
Estimate the observegvalue byp = L/B.

Application to multiple signal detection

The test statisti@m(ém) in eq. (5) is the sample mean dfsam-
ples

Zj:log(l—&—%Fm(wj;_ém)),(j L...,0). (9
2

We considerZ;, (j = 1,...,J) as i.i.d. samples of the ran-
dom variableZ,, = log (1 + Z—;Fm) because (1X (w;), (j =
1,...,J) are asymptotically independent. @).(-), (j =1,...,J)
are Fy,, .n,-distributed. Furthermore, undéf,,,, the mean oz,
is given by [8]
_ — g™y M2y g2
o = BZm = W(5 + 2) — W(2)

where¥(s) = (logI'(s))’ represents the first derivative of loga-
rithm of the gamma function.

(10

Under the bootstrap framework, the hypothesis test (4) ean b
reformulated as

H, :
Am

E[Tm(G:m)]

E[ T (0m)] # o -

Hm

The test statistid’, (6 ) is an estimator for the mean. Then we
apply the bootstrap technigue discussed previously to fiadb-
served significance value of the statiskig (0. ) in eq. (5).

5. CONTROL OF THE FALSE DISCOVERY RATE

The control of type one error is an important issue in mugtipk
ferences. A type one error occurs when the null hypoth&sis
is wrongly rejected. The traditional concern in multiplepbthe-
sis problems has been about controlling the familywiserewate
(FWE). Given a certain significance levelthe control of FWE re-
quires each of thd/ tests to be conducted at a lower level. When
the number of tests increases, the power of the FWE-coinigoll
procedures such as Bonferroni-type procedures [6] is anbatly
reduced. The false discovery rate (FDR), suggested by Bemja
and Hochberg [1], is a completely different point of view fmm-
sidering the errors in multiple testing. The FDR is definedhas
expected proportion of errors among the rejected hyposhétall

null hypothese§ H1, Ho, ..., Har } are true, the FDR-controlling
procedure controls the traditional FWE. But when many hiypot
ses are rejected, an erroneous rejection is not as cruciidewing
conclusion from the whole family of tests, the FDR is a dddea
error rate to control.

Assume that among th¥ tested hypothesdd?, Hs, ..., Hu b,

mg are true null hypotheses. LEb1, po, . . ., par } be thep-values
(observed significance values) corresponding to the tatistits
{T1,T>,...,Tx}. By definition, p,, = 1 — Pg,,(T:») where
Pp,, is the distribution function undét .. Benjamini and Hochberg
showed that when the test statistazgresponding to the true null
hypothesesire independent, the following procedure controls the
FDR at levelg - mo/M < g[1].

The Benjamini Hochberg Procedure

Define

k = max {m CPem) < (11)

i}
Mq

and rejectt ;) ... H,. If no suchk exists, reject no hypothesis.

6. SSMULATION

We test the proposed algorithms by numerical experimentsiA
formly linear array of 15 sensors with inter-element spgsiof
half a wavelength is considered. The number of selectedémay
bins J = 10 and the number of snapshdk = 5. Each experi-
ment performs 100 trials.

In the first experiment, the broadband signals are generated
by m = 12 sources of equal amplitudes. The SNR varies from
—14 dB to6 dB in al dB step. For comparison, the simulated
data is applied to the Bonferroni-Holm procedure [6] as wElle
sequentially rejective Bonferroni-Holm procedure kedmsEWE
at the same level as the classical Bonferroni test but is more
powerful than it. The significance level of each test is gibgn
a/(M+1—m). We useg = 0.05 andae = 0.05 in the simulation.

Fig. 1 presents results fd2 sources that are well separated
in arrival angle. The probability of correct detectidt{rn = 12)
increases with increasing SNRs. The FDR-controlling pioce
has a lower SNR threshold and a higher probability of detadti
the threshold region.

In the second experiment, we consider a more difficult sce-
nario: two of the signal sources are closely locate@.at= 9°
andf, = 12° relative to broadside. From the results shown in
fig. 2 we can easily observe that both procedures performewors
than in fig. 1. The gap between FDR- and FWE-controlling pro-
cedures has widened in the threshold region. This impliassttie
FDR-controlling procedure is more useful in critical stioas.

When we apply both procedures to simulated data containing
only noise, the probability of correct decision (implying signal
is detected)P (i = 0), is alwaysl.

In summary, the FDR-controlling procedure leads to a higher
probability of correct detection than the FWE-controllipgpce-
dure. In particular, for situations involving closely lded signals,
the difference between these two procedures become langée
noise only case, the proposed detection scheme has a fatse al
rate of 0 for a choice of FDRy = 0.05.



7. CONCLUSION

We discuss broadband signal detection using a multiple thgpo
sis test under an FDR consideration of Benjamini and Hochber
Compared to the classical FWE criterion, the FDR criterizadls Comparison of FDR- and FWE-controlling procedures, m= 12.
to more powerful tests and controls the errors at a reasethalm|.
Unlike the narrow band case where the test statistics aractes-
ized by F-distribution, the test statistics have no closed form dis-
tribution in the broadband case. We apply the bootstramtgake

to determine the distribution numerically. Simulationswhthat
the FDR-controlling procedure has always a higher prolg!luif
detection than the FWE controlling procedure. More impuiia
the reliability of the proposed test is not affected by thenda
power.
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