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ABSTRACT

We treat the detection problem for multiple signals embedded in
noisy observations from a sensor array as a multiple hypothesis
test based on log-likelihood ratios. To control the global level of
the multiple test, we apply the false discovery rate (FDR) criterion
proposed by Benjamini and Hochberg. The power of this multi-
ple test has been investigated through narrow band simulations in
previous studies. Here we extend the proposed method to broad-
band signals. Unlike the narrow band case where the test statis-
tics are characterized byF -distribution, in the broadband case the
test statistics have no closed form distribution function.We apply
the bootstrap technique to overcome this difficulty. Simulations
show that the FDR-controlling procedure always provides more
powerful results than the familywise error-rate (FWE) controlling
procedure. Furthermore, the reliability of the proposed test is not
affected by the gain in power.

1. INTRODUCTION

This work is concerned with broadband signal detection using a
multiple hypothesis test. Estimating the number of signalsem-
bedded in noisy observations is a key issue in array processing,
harmonic retrieval, wireless communication and geophysical ap-
plication. In [2] [7], a multiple testing procedure was suggested
to determine the number of signals. Therein, a Bonferroni-Holm
procedure [6] was used to control the familywise error-rate(FWE),
the probability of erroneously rejecting any of the true hypotheses.
As the control of FWE requires each test to be conducted at a sig-
nificantly lower level, the Bonferroni-Holm procedure often leads
to conservative results. To overcome this drawback, we adopted
the false discovery rate (FDR) criterion suggested by Benjamini
and Hochberg [1] to keep balance between type one error control
and power [3]. In addition to the successful numerical results re-
ported in [3], we examined carefully the independence condition
required by the Benjamini and Hochberg procedure in [4].

Motivated by the promising results of previous work, we ex-
tend the multiple testing procedure to broadband signals. Unlike
the narrow band case in which the test statistics areF -distributed
under null hypothesis, there is no closed form expression for the
distribution of test statistics in the broadband case. Therefore, we
incorporate the powerful bootstrap technique to approximate the

distribution under null hypothesis and estimate the observed sig-
nificance level.

This paper is organized as follows. We give a brief description
of the signal model in the next section. Then we present the multi-
ple test procedure for signal detection. The bootstrap principle and
its application to our problem are illustrated in section 4.In sec-
tion 5 we introduce the idea of false discovery rate (FDR) andthe
Benjamini Hochberg procedure. Simulation results are presented
and discussed in section 6. Our concluding remarks are givenin
section 7.

2. DATA MODEL

Consider an array ofn sensors receivingm broad band signals
emitted by far-field sources located atθ = [ θ1,. . ., θm]T . The
array outputx(t), (t = 0, . . . , T − 1) within thekth observation
interval ( or snapshot ) is short time Fourier-transformed

X(k)(ω) =
1√
T

T−1
∑

t=0

w(t)x(t)e−jωt (1)

where{w(t)}T−1
t=0 is a window function. For large number of sam-

plesT , we can describe the frequency domain data approximately
by the following relation

X(k)(ω) = H(ω; θ)S(k)(ω) + U (k)(ω) (2)

where the matrixH(ω, θ) = [d1(ω) · · · di(ω) · · · dm(ω)] ∈C
n×m

consists ofm steering vectors with theith columndm(ω) corre-
sponding to theith incoming wave. In the following analysis, the
signal waveformS(k)(ω) is considered to be unknown and de-
terministic. The noiseU (k)(ω) results only from sensors. Ac-
cording to the asymptotic theory of Fourier transform,X(k)(ωj),
(k = 1, . . . , K, j = 1, . . . , J) are independent, identically com-
plex normally distributed with meanH(ωj ; θ)S

(k)(ωj) and co-
variance matrixν(ωj)I whereν(ωj) is the unknown noise spec-
tral parameter andI is an identity matrix of corresponding dimen-
sion. The problem of central interest is to determine the number of
signalsm embedded in the observations.



3. SIGNAL DETECTION USING A MULTIPLE
HYPOTHESIS TEST

We formulate the problem of detecting the number of signals as
a multiple hypothesis test. LetM denote the maximal number of
sources. The following procedure detects one signal after another.
More precisely, form = 1,

H1 : Data contains only noise.

X(ω) = U(ω)

A1 : Data contains at least1 signals.

X(ω) = H1(ω; θ1)S1(ω) + U(ω) (3)

For m = 2, . . . , M

Hm : Data contains at most(m − 1) signals.

X(ω) = Hm−1(ω; θm−1)Sm−1(ω) + U(ω)

Am : Data contains at leastm signals.

X(ω) = Hm(ω; θm)Sm(ω) + U(ω) (4)

We use the subscript(m−1) or m for the steering matrixH(ω, θ)
and the signal vectorS(ω) to emphasize their dimensions under
the hypothesisHm or alternativeAm.

Based on the likelihood ratio (LR) principle, we obtain the test
statisticTm(θ̂m), (m = 1, . . . , M) as follows.

Tm(θ̂m) =
1

J

J
∑

j=1

log

(

tr[(I − P m−1(ωj ; θ̂m−1))R̂]

tr[(I − P m(ωj ; θ̂m))R̂]

)

=
1

J

J
∑

j=1

log

(

1 +
n1

n2
Fm(ωj ; θ̂m)

)

(5)

whereR̂ = 1
K

∑K

k=1 X(k)(ωj)X
(k)(ωj)

H represents a nonpara-
metric power spectral estimate of sensor outputs overK snap-
shots andP (ωj ; θ̂m) is the projection matrix onto the subspace
spanned by the columns ofHm(ωj ; θ̂m). Whenm = 1, we de-
fine P 0(·) = 0. θ̂m represents the ML estimate assuming thatm
signals are present in the observation.

Under hypothesisHm, the statisticFm(ωj ; θ̂m) is Fn1,n2
–

distributed where the degrees of freedomn1, n2 are given by [7]

n1 = K(2 + rm), n2 = K(2rx − 2m − rm−1) (6)

with rx = dim(x(t)) = n and rm = dim(θm) = m.

From eq. (5) it is easy to see that in the narrow band case,J =
1, the LR test is equivalent to theF -test proposed by Shumway
[9]. However, in the broadband case, the distribution of thetest
statisticTm(θ̂m) underHm can not be expressed in closed form.
To overcome this difficulty, we shall apply the bootstrap method
to approximate the distribution ofTm(θ̂m).

4. THE BOOTSTRAP PRINCIPLE

The bootstrap [5], [10] requires little prior knowledge on the data
model. The key idea of bootstrap is that, rather than repeating
the experiment, one obtains the “samples” by reassignment of the
original data samples. We give a brief description of the basic con-
cept and then introduce our test procedure. For more details, the
reader is referred to [10] and references therein.

Basic concept

Let Z = {z1, z2, . . . , zM} be an i.i.d. sample set from a com-
pletely unspecified distributionF . Let ϑ denote an unknown pa-
rameter, such as the mean or variance, ofF . The goal of the fol-
lowing procedure is to construct the distribution of an estimatorϑ̂
derived fromZ.

The bootstrap principle

1. Given a sample setZ = {z1, z2, . . . , zM}
2. Draw a bootstrap sampleZ∗ = {z∗

1 , z∗
2 , . . . , z∗

M}
from Z by resampling with replacement.

3. Compute the bootstrap estimatêϑ∗ from Z∗.

4. Repeat 2. and 3. to obtainB bootstrap estimates

ϑ̂∗
1, ϑ̂∗

2, . . . , ϑ̂∗
B.

5. Approximate the distribution of̂ϑ by that ofϑ̂∗.

In step 2., a pseudo random number generator is used to draw a
random sample ofM values, with replacement, fromZ. A possi-
ble bootstrap sample might look likeZ∗ = {z10, z8, z8, . . . , z2}.
Given the sample setZ, the bootstrap procedure can be easily
adapted to calculate a confidence interval ofϑ̂ or construct a hy-
pothesis test.

For the problem testing the hypothesisH0 : ϑ = ϑ0 against
H0 : ϑ 6= ϑ0, we define the test statistic as

T̂ =
|ϑ̂ − ϑ0|

σ̂
(7)

whereσ̂2 is an estimator of the variance ofϑ̂. σ̂2 can be obtained
through direct computation or nested bootstrap [10]. The inclusion
of σ̂ guaranteeŝT is asymptotically pivotal. Given a significance
level α, the bootstrap test computes the thresholdtα based on the
bootstrap approximation for the distribution ofT̂ underH0 [10].

When the observed significance level, denoted byp , is de-
sired, for example, in the Benjamini-Hochberg procedure, one uses
bootstrap samples to estimate thep-value through the relation

p̂ = P
{ |ϑ̂∗ − ϑ̂|

σ̂∗
≥ |ϑ̂ − ϑ0|

σ̂

}

. (8)

whereP{·} denotes the probability that the bootstrap estimates
larger than the observed test statisticT̂ . This method proceeds as
follows.



The bootstrap procedure for estimation of p-values

1. Resampling: Draw a bootstrap sampleZ∗.

2. Compute the bootstrap statistic

T̂ ∗ = |ϑ̂∗−ϑ0|
σ̂∗

.

3. Repeat 1. and 2. to obtainB bootstrap statistics.

4. Ranking: T̂ ∗
(1) ≤ T̂ ∗

(2) ≤ . . . ≤ T̂ ∗
(B)

5. ChooseL so that

T̂ ∗
(L−1) ≤ T̂ ≤ T̂ ∗

(L) . . . ≤ T̂ ∗
(B).

Estimate the observedp-value byp̂ = L/B.

Application to multiple signal detection

The test statisticTm(θ̂m) in eq. (5) is the sample mean ofJ sam-
ples

Zj = log

(

1 +
n1

n2
Fm(ωj ; θ̂m)

)

, (j = 1, . . . , J). (9)

We considerZj , (j = 1, . . . , J) as i.i.d. samples of the ran-

dom variableZm = log
(

1 + n1

n2

Fm

)

because (1)X(ωj), (j =

1, . . . , J) are asymptotically independent. (2)Fm(·), (j = 1, . . . , J)
areFn1,n2

-distributed. Furthermore, underHm, the mean ofZm

is given by [8]

µm = EZm = Ψ(
n1

2
+

n2

2
) − Ψ(

n2

2
) (10)

whereΨ(s) = (log Γ(s))′ represents the first derivative of loga-
rithm of the gamma function.

Under the bootstrap framework, the hypothesis test (4) can be
reformulated as

Hm : E[ Tm(θ̂m)] = µm

Am : E[ Tm(θ̂m)] 6= µm .

The test statisticTm(θ̂m) is an estimator for the mean. Then we
apply the bootstrap technique discussed previously to find the ob-
served significance value of the statisticTm(θ̂m) in eq. (5).

5. CONTROL OF THE FALSE DISCOVERY RATE

The control of type one error is an important issue in multiple in-
ferences. A type one error occurs when the null hypothesisHm

is wrongly rejected. The traditional concern in multiple hypothe-
sis problems has been about controlling the familywise error-rate
(FWE). Given a certain significance levelα, the control of FWE re-
quires each of theM tests to be conducted at a lower level. When
the number of tests increases, the power of the FWE-controlling
procedures such as Bonferroni-type procedures [6] is substantially
reduced. The false discovery rate (FDR), suggested by Benjamini
and Hochberg [1], is a completely different point of view forcon-
sidering the errors in multiple testing. The FDR is defined asthe
expected proportion of errors among the rejected hypotheses. If all

null hypotheses{H1, H2, . . . , HM} are true, the FDR-controlling
procedure controls the traditional FWE. But when many hypothe-
ses are rejected, an erroneous rejection is not as crucial for drawing
conclusion from the whole family of tests, the FDR is a desirable
error rate to control.

Assume that among theM tested hypotheses{H1, H2, . . . , HM},
m0 are true null hypotheses. Let{p1, p2, . . . , pM} be thep-values
(observed significance values) corresponding to the test statistics
{T1, T2,. . . , TM}. By definition, pm = 1 − PHm

(Tm) where
PHm

is the distribution function underHm. Benjamini and Hochberg
showed that when the test statisticscorresponding to the true null
hypothesesare independent, the following procedure controls the
FDR at levelq · m0/M ≤ q[1].

The Benjamini Hochberg Procedure

Define

k = max
{

m : p(m) ≤
m

M
q
}

(11)

and rejectH(1) . . . H(k). If no suchk exists, reject no hypothesis.

6. SIMULATION

We test the proposed algorithms by numerical experiments. Auni-
formly linear array of 15 sensors with inter-element spacings of
half a wavelength is considered. The number of selected frequency
bins J = 10 and the number of snapshotsK = 5. Each experi-
ment performs 100 trials.

In the first experiment, the broadband signals are generated
by m = 12 sources of equal amplitudes. The SNR varies from
−14 dB to 6 dB in a 1 dB step. For comparison, the simulated
data is applied to the Bonferroni-Holm procedure [6] as well. The
sequentially rejective Bonferroni-Holm procedure keeps the FWE
at the same levelα as the classical Bonferroni test but is more
powerful than it. The significance level of each test is givenby
α/(M+1−m). We useq = 0.05 andα = 0.05 in the simulation.

Fig. 1 presents results for12 sources that are well separated
in arrival angle. The probability of correct detectionP (m̂ = 12)
increases with increasing SNRs. The FDR-controlling procedure
has a lower SNR threshold and a higher probability of detection in
the threshold region.

In the second experiment, we consider a more difficult sce-
nario: two of the signal sources are closely located atθ1 = 9◦

and θ2 = 12◦ relative to broadside. From the results shown in
fig. 2 we can easily observe that both procedures perform worse
than in fig. 1. The gap between FDR- and FWE-controlling pro-
cedures has widened in the threshold region. This implies that the
FDR-controlling procedure is more useful in critical situations.

When we apply both procedures to simulated data containing
only noise, the probability of correct decision (implying no signal
is detected),P (m̂ = 0), is always1.

In summary, the FDR-controlling procedure leads to a higher
probability of correct detection than the FWE-controllingproce-
dure. In particular, for situations involving closely located signals,
the difference between these two procedures become larger.In the
noise only case, the proposed detection scheme has a false alarm
rate of 0 for a choice of FDRq = 0.05.



7. CONCLUSION

We discuss broadband signal detection using a multiple hypothe-
sis test under an FDR consideration of Benjamini and Hochberg.
Compared to the classical FWE criterion, the FDR criterion leads
to more powerful tests and controls the errors at a reasonable level.
Unlike the narrow band case where the test statistics are character-
ized byF -distribution, the test statistics have no closed form dis-
tribution in the broadband case. We apply the bootstrap technique
to determine the distribution numerically. Simulations show that
the FDR-controlling procedure has always a higher probability of
detection than the FWE controlling procedure. More importantly,
the reliability of the proposed test is not affected by the gain in
power.
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Comparison of FDR− and FWE−controlling procedures, m= 12.
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Fig. 1. Probability of correct detection.M = 12, SNR= [−14 : 1 : 6]
dB, number of frequency binsJ = 10, number of snapshotsK = 5. All
sources are apart more than7◦ .
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Comparison of FDR− and FWE−controlling procedures, m= 12.

FDR

FWE

Fig. 2. Probability of correct detection.M = 12, SNR= [−14 : 1 : 6]
dB, number of frequency binsJ = 10, number of snapshotsK = 5. Two
sources are closely located.


