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Abstract

This paper addresses a target detection problem for which the covariance matrix of the unknown Gaussian clutter

background has block diagonal structure� This block diagonal structure is the consequence of the target lying along a

boundary between two statistically independent clutter regions� Here� we design adaptive detection algorithmsusing both the

generalized likelihood ratio �GLR� and invariance principles� By exploiting the known covariance structure a set of maximal

invariants is obtained� These maximal invariants are a compression of the image data which retain target information

while being invariant to clutter parameters� We consider three di�erent assumptions on knowledge of the clutter covariance

structure� both clutter types totally unknown� one of the clutter types known except for its variance� and one of the clutter

types completely known� By means of simulation� the GLR and maximal invariant �MI� tests are shown to outperform the

previously proposed invariant test by Bose and Steinhardt which is derived from a similarly structured covariance matrix�

Numerical comparisons are presented which illustrate that the GLR and MI tests are complementary� i�e� neither test

strategy uniformly outperforms the other over all values of SNR� number of chips� and false alarm rate� This suggests that

it may be worthwhile to combine these two tests into a hybrid test to obtain overall optimal performance�

I� Introduction

In this paper� adaptive detection algorithms are developed for imaging radar �IR� targets in structured

clutter by exploiting both the generalized likelihood ratio �GLR� principle and the invariance principle�

In automatic target recognition �ATR�� it is important to be able to reliably detect or classify a target in a

manner which is robust to target and clutter variability yet maintains the highest possible discrimination

capability� The GLR and invariance principles are worthwhile approaches since they often yield good

constant false alarm rate �CFAR� tests� The GLR principle implements the intuitive estimate�and�plug

principle� replacing all unknowns in the likelihood ratio �LR� test by their maximum likelihood estimates

�MLEs�� The GLR is known to be asymptotically optimal� i�e� GLR becomes uniformly most powerful

�UMP� in that it attains the highest probability of correct detection for given probability of false alarm

�PFA�� as the number of observations become much larger than the number of unknown clutter parameters

�	
� In contrast� application of the invariance principle seeks to project away the clutter parameters by

compressing the observations down to a lower dimensional statistic while retaining the maximal amount
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of information for discrimination of the target ��
� ��
� �

� ��
� This statistic is called the maximal invariant

and� if one is lucky� the form of the most powerful �MP� LR test based on the maximal invariant does

not depend on the nuisance parameters� resulting in a uniformly most powerful invariant �UMPI� test

��
� ��
� When properly applied� the invariance principle can yield adaptive target detection algorithms

which outperform the GLR test� sometimes by a signi�cant margin� As we will show in this paper� for the

problem of target detection in unknown but structured clutter background� this margin of improvement

can be quite signi�cant at low signal�to�noise ratio �SNR� for small �xed PFA�

A commonassumption in homogeneous but uncertain clutter scenarios is that the target is of known form

but unknown amplitude in Gaussian noise whose covariance matrix is totally unknown or unstructured�

This assumption induces parameter uncertainty for which the general multivariate analysis of variance

�GMANOVA� model applies and optimal and suboptimal detection algorithms can be easily derived using

the GLR principle ��
� ��
� �	�
�

When some structure on the covariance matrix is known a priori� improvements over this GLR test

are possible� For example� in the context of antenna arrays for detection of an impinging wavefront in

clutter whose covariance matrix has Toeplitz structure� Fuhrmann �		
 showed through simulation that

a signi�cant improvement over the GLR test ��
 is achieved by incorporating a Toeplitz constraint into

the covariance estimation step in the GLR detector� As previously mentioned� an alternative approach

to estimation of the partially known noise covariance is to project the data down to a test statistic

whose noise�alone distribution does not depend on this covariance� Bose and Steinhardt �	�
 proposed

such an invariant detector and showed that it outperforms the GLR for unstructured covariance when

the noise covariance matrix is assumed to have a priori known block diagonal structure� In �	�
� the

di�cult deep hide scenario was considered where the target parks along a known boundary separating

two adjacent clutter regions� e�g� an agricultural �eld and a forest canopy� It was shown there that under

the reasonable assumption that the two clutter types are statistically independent� the induced block

diagonal covariance structure can be used to derive an invariant test with performance advantage similar

to Bose and Steinhardt�s test�

In this paper� we derive the form of the GLR for block structured covariance� Then the invariant

approach considered in �	�
 and �	�
 is developed in the context of imaging radar for deep hide targets�

and compared to the GLR� In this context� the spatial component has clutter covariance matrix R� which

decomposes into a block diagonal matrix under an independence assumption between the two clutter

regions� and the target is assumed to come from a known set of signatures of unknown amplitudes and

orientations� Several cases� denoted in decreasing order of uncertainty as Cases 	� � and �� of block
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diagonal covariance matrices are examined�

R �

�
� RA O

O RB

�
� �	�

� Case 	� RA � �� RB � �

� Case �� RA � �� RB � ��I where �� � �

� Case �� RA � �� RB � I

where the subscripts denote the two di�erent regions A and B� Case 	 corresponds to two completely

unknown clutter covariance matrices RA and RB� and Case � corresponds to one clutter covariance RA

completely unknown and the other RB known up to a scale parameter� As shown in �	�
 the known clutter

covariance matrix in RB � represented by the matrix I� can be taken as the identity matrix without loss

of generality� Case � corresponds to RB known exactly� Cases � and � arise� for example� in application

where one of the clutter regions is well characterized� For real valued observations� the GLR method is

shown to have explicit form for each of Cases 	� � and �� involving the roots of a 
th order algebraic

equation� For complex valued observations� 
th order algebraic equations for real and imaginary parts of

the target amplitude must be solved numerically� The maximal invariant statistics for Cases 	 and � were

previously derived by Bose and Steinhardt and invariant tests were proposed based on these statistics in

�	�
� We treat Cases 	�� in a uni�ed framework and propose alternative maximal invariant �MI� tests

which are better adapted to the deep hide target application� We show via simulation that there are

regimes of operation which separate the performance of the GLR and MI tests� When there are a large

number of independent snapshots of the clutter� the MLEs of the target amplitude and the block diagonal

clutter covariance are reliable and accurate� and the GLR test performs as well as the MI test� Conversely�

when a limited number of snapshots are available and SNR is low� the MLEs are unreliable and the MI

test outperforms the GLR test� This property is also con�rmed by the real data example� i�e� the MI test

can detect weaker targets than the other tests when the number of snapshots is few�

In Section II� the image model for the detection problem is introduced and a canonical form is obtained

by coordinate transformation� We then review the principles of GLR and invariance in Section III� Kelly�s

GLR test ��
 for an unstructured covariance matrix is derived as an illustration of these two principles�

Section IV then reviews the application of these principles to detect a target across a clutter boundary�

There we also extend the detection problem from a single target to one of multiple targets� Finally� the

relations between the GLR and MI tests are explored by analysis and by simulation�
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II� Image Model

A� Radar Imaging

Detection of targets in radar images is a multi�stage process involving pre�processing� image formation

from raw data� and formation of a test statistic� In this section� we review some issues regarding imaging

radars and their image outputs to which we can apply detection algorithms� Further information on the

image formation problem for radar can be found in remote sensing books such as �	

� �	�
�

Radiometric sensors are usually divided into two groups according to their modes of operation� passive

sensors or radiometers� and active sensors such as imaging or non�imaging radar� Most imaging radars used

for remote sensing are divided into two groups� the real�aperture systems that depend on the beamwidth

determined by the baseline of a �xed antenna� and the synthetic�aperture systems that form a virtual

baseline with a moving antenna� Synthetic�aperture radar �SAR� systems can acquire �ne resolution

using a small antenna with spatial resolution independent of the radial distance to target� which has

made spaceborne imaging radar with �ne resolution feasible �	

� Although we restrict our attention

to detection problems for radar images� the same techniques can be applied to passive sensors such as

long�wave infrared or thermal radiometers�

In active imaging radars� the returned signals are processed to extract complex images of target re�

�ectivity which consist of magnitude and phase information� Fig� 	� displays the magnitude of such a

complex valued SAR image which has been converted into decibels �dB�� It is common to model a complex

valued radar image as linear in the target with additive Gaussian distributed clutter� Examples where a

Gaussian model is justi�ed for terrain clutter can be found in �	�
� Even in cases when such a model is

not applicable to the raw data� a whitening and local averaging technique can be implemented to obtain

a Gaussian approximation� e�g� by subtracting the local mean from the original image while minimizing

the third moment of the residual image �	�
� �	�
�

Assume that the complex image has been scanned or reshaped to a column vector x� If multiple

snapshots �chips� x�� � � � � xn of the terrain are available� they can be concatenated into a spatio�temporal

matrixX with columns fxigni	�� Let s be the reshaped target vector to be detected in a clutter background

N having independent� identically distributed �i�i�d�� Gaussian columns with zero mean� Then we have

the simple image model

X � a s bH �N

where a is an unknown target amplitude and bH accounts for the articulation of the target vector into

the snapshot sequence� e�g� possible chip locations of the target� In spatially scanned radar images� the

vector bH would be equal to �	� �� � � � � �
 if the target presence is to be detected in the �rst image chip
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�	st column of X�� In this case� this column will be called primary data while the rest of X will be called

secondary data� In multi�spectral images� described in �	�
 and studied by Reed �	�
� �	�
� as can be

thought of as a vector of unknown spectral intensities and bH represents the known spatial signature� We

will consider a more general p target model in the next subsection�

The most common assumption for clutter is that its spatial covariance matrix is completely unknown�

This assumption makes derivation of the GLR decision rule easy and leads to a CFAR test for which the

false alarm rate is independent of the actual covariance of the clutter ��
� �	�
� However� when available�

inclusion of side information about the noise clutter covariance will give improved performance� even

though the derivation of the GLR is often rendered more di�cult�

B� Problem Formulation

Let fxigni	� be n statistically independent m�	 complex Gaussian vectors constructed by raster scanning

a set of n ��D images� We call each of these vectors subimages or chips and assume that they each have

identicalm�m clutter covariance matricesR but with possibly di�erent mean vectors �targets�� Concrete

examples are� multi�spectral images where subimages correspond to a scene at n di�erent optical or radar

wavelengths� multiple pulse SAR images where repeated probing of a scene produces a sequence of n

subimages� polarized L or C band SAR where subimages correspond to m � � polarization components

�HH� HV� VV� at n di�erent spatial locations� or n non�contiguous spatial cells of a single IR�SAR image�

As explained above� by concatenating these n vectors we obtain the measurement image matrix �m�n�

X � �x�� � � � � xn
� This matrix can be modeled as follows

X � S abH �N ���

where S �
�
s�� � � � � sp

�
is an m � p matrix consisting of signature vectors of p possible targets� a �

�a�� � � � � ap

T

is a p � 	 unknown target amplitude vector for p targets� and bH � �b�� � � � � bn
 is a 	 � n

target location vector which accounts for the presence of target�s� in each subimage� Also we assume that

N is a complex multivariate Gaussian matrix with i�i�d� columns� vecfNg � CN ���R
N
In� where � is

an mn� 	 zero vector� In is an n� n identity matrix� and
N

is the Kronecker product� This model is a

simpli�ed form of the GMANOVA model

X � SAB�N

where S �m � p� of rank p and B �p � n� of rank p are known matrices� and A �p � p� is a matrix of

unknown amplitudes ���
� In this paper� the simpler form ��� will be used throughout and correspond to

the assumption that the target location vectors �rows of B� for p targets are all identical� i�e� the target

components in di�erent subimages di�er only by a scale factor�
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The detection problem is to seek the presence of target�s� for S and b known� a unknown� and the

independent columns of N having the unknown covariance matrixR� By applying coordinate rotations to

both of the column space and the row space of X we can put the image model into a convenient canonical

form as in �	�
� Let S and b have the QR decompositions

S � QS

�
� TS

O

�
� � b � Qb

�
� tb

�

�
�

where QS�m�m�� Qb�n�n� are unitary matrices� TS is a p�p upper�triangular matrix� and tb is a scalar�

Multiplying X on the left and right by QH
S and Qb� respectively� we have the canonical representation

�X � QH
S XQb �

�
� TS

O

�
� a

�
tHb �H

�
� �N

where �N is still n�variate normal with vecf �Ng � CN ��� �QH
S RQS�

N
In� and the target detection prob�

lem is not altered since R is unknown� Now the transformed data has the partition

�X �

�
� x�� X��

x�� X��

�
�

where x�� is a p� 	 vector� x�� is a �m � p�� 	 vector� X�� is p� �n� 	�� and X�� is �m � p�� �n� 	��

Note that QH
S and Qb have put all the target energy into the �rst p pixels of the �rst subimage� x��� This

canonical form is identical to the one found in ��	
� In the sequel� unless stated otherwise� we will assume

that the model has been put into this canonical form�

For the special case of p � 	 �single target�� this model reduces to the one studied by Kelly ��


X � a �� e
T
� �N ���

where a is an unknown complex amplitude� e� � �	� �� � � � � �
T is the n � 	 unit vector� and the known

target signature is transformed into an m � 	 unit vector ��� With the model ��� we can denote the

unknowns by the unknown parameter vector � � fa�Rg � � where � is the prior parameter range of

uncertainty� Let �� and �� partition the parameter space into target absent �H�� and target present �H��

scenarios� �� � fa�R � a � ��R � Hermitian�m � m�g� �� � fa�R � a �� ��R � Hermitian�m � m�g�
Then the general form for the detection problem is expressed via the two mutually exclusive hypotheses�

H� � X � f�X� ���� �� � f��Rg � ��

H� � X � f�X� ���� �� � fa�Rg � ���

Now� following �	�
� we extend ��� to the structured covariance case� Consider Case 	 in Section I� This

is the scenario where a target parks along a known boundary of the two unknown but independent clutter
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regions A and B� Then the target signature s is partitioned as

s �

�
� sA�mA � 	�

sB�mB � 	�

�
�

where mA�mB � m� and the unitary matricesQSA andQSB can be obtained from the QR decompositions

of sA and sB� respectively� Using

QS �

�
� QSA O

O QSB

�
�

in the canonical transformation�the model is then composed of two parts from regions A and B

X �

�
� XA

XB

�
� � a

�
� �sA

�sB

�
� eT� �

�
� NA

NB

�
� �
�

where �sA �
�
sHA � �� � � � � �

�H
and �sB �

�
sHB � �� � � � � �

�H
� NA �mA � n� and NB �mB � n� are independent

Gaussian matrices with unknown covariance matrices RA �mA �mA� and RB �mB �mB�� respectively�

The target detection problem is now simply stated as testing a � � vs� a �� � in �
��

III� Detection Theory

A� Hypothesis Testing

Signal detection is a special case of hypothesis testing theory in statistical inference �	
� As explained

in the previous section� given an observation X a decision has to be made between two hypotheses

corresponding to presence of a target �H�� or no target �H��� respectively� Hypotheses are divided into

two classes according to the parameter � underlying probability density functions �pdfs� of each of the

hypotheses� When � can take on only one value� �xed and known� under each hypothesis� the hypotheses

are said to be simple� In this case� the pdf f�X� �� is known given H� or H�� Otherwise� hypotheses are

said to be composite� In singly composite hypotheses� only one of �� or �� contains a set of values of

�� and in doubly composite hypotheses� both �� and �� contain a set of values of �� Thus composite

hypotheses only specify a family of pdfs for X� There are two general strategies for deciding between

H� and H�� the Bayesian strategy and the frequentist strategy� In Bayes approach to detection� priors

are assigned to the probabilities of H� and H�� and it is assumed that � is a random variable or vector

with a known pdf f���� After assigning a set of costs to incorrect decisions� the Bayes objective is to �nd

and implement a decision rule which has minimum average cost or risk� In many situations� however� it

is di�cult to assign these priors� Moreover� the Bayes approach assures good performance only for the

average parameter values over �� and ��� The Bayes approach does not control the performance of a test

for any speci�c parameter value which can arise� Also it provides no guaranteed protection against false

alarm �deciding H� when H� is true� and miss �deciding H� when H� is true�� For simple hypotheses�
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�� � f��g and �� � f��g� the frequentist approach attempts to maximize the conditional probability

of detection �PD� for �xed conditional probability of false alarm �PFA�� or vice versa� resulting in the

Neyman�Pearson test� Speci�cally� a maximum tolerable level � of false alarm is speci�ed as

PFA���� � �

where PFA��� � P �decideH�jH�� �� and a decision rule is selected which attains the largest PD among all

tests of level �� This test is also called the MP test ���
�

In testing simple hypotheses� both Bayes and Neyman�Pearson criteria lead to the same decision rule

involving the LR test� The only di�erence lies in the selection of the thresholds applied to the test statistic�

However� in a general problem of testing composite hypotheses the two approaches di�er substantially�

For non�random �� if such a test existed� a frequentist would select a test of level � satisfying

max
����

PFA��� � �

which has the highest PD��� among all tests of level � and for all � � ��� Such a test is called a UMP

test� Whenever a UMP test exists� it works as well as if we knew �� Usually� however� such a test does

not exist since the optimal decision region of an LR test depends on the unknown parameters f��� ��g�
and consequently we need to adopt other alternative strategies� For instance� in testing doubly composite

hypotheses� most detectors will have their PFA and PD varying as functions of unknown � � �� and

� � ��� respectively� In such cases� two classes of strategies can be used� one is to optimize alternative

decision criterion and the other is to constrain the form of detectors to a class for which a UMP test may

exist� Several methods utilizing one of these strategies are listed below� Some examples of alternative

criterion are the minmax test and the locally most powerful �LMP� test� A minmax test is a test of level

� which maximizes the worst case power min����
PD���� In order to implement this test� we need to �nd

the least favorable density which maximizes PD while constraining the speci�c level of PFA� However� the

performance of a minmax test can be overly conservative especially if least favorable priors concentrate

on atypical values of �� Furthermore� the least favorable priors may be di�cult to �nd in practice� The

main idea behind a LMP test is to �nd the MP test for detecting a small perturbation of parameters

from H�� The LMP test is particularly useful for weak signals� Some examples of constrained classes of

tests are unbiased tests� CFAR tests� and invariant tests� Unbiased tests are all tests of level � whose

PD��� is greater than � for all � � ��� CFAR refers to the property that the tests have constant false

alarm probability over ��� Sometimes UMP CFAR tests exist when UMP tests do not exist� Finally�

invariant tests seek to �nd a transformation or compression of the data� which results in reducing the e�ect

of nuisance parameters� In many cases� the invariant and unbiased classes of tests contain the minmax

optimal test�
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B� GLR Principle

Generally� optimality is not guaranteed in a composite hypothesis test which involves highly variable

nuisance parameters� and a UMP test rarely exists� When such a test does not exist� a popular sub�

optimal strategy is to use the GLR principle� With unknown parameters � in the likelihood ratio� a

logical procedure is to �nd good estimates of � under H� and H�� and substitute these estimates into the

likelihood ratio statistic as if they were true� This is akin to reformulatingH� andH� as simple hypotheses

depending on the estimated � values for which an MP test always exists� In GLR procedures� the pdfs

of the measurement under both hypotheses are maximized separately over all unknown parameters by

replacing them with their MLEs� As a function of MLEs� this GLR test is asymptoticallyUMP since� under

broad conditions ���
� MLEs are consistent estimators as the number of observations goes to in�nity �	
�

And in many physical problems of interest� either a UMP test will exist or a GLR test will give satisfactory

results� In some instances� however� the optimization or maximization involved in deriving a GLR test

may be intractable to obtain in closed form� Moreover� similarly to MLEs� the performance of a GLR test

can be poor �not even unbiased� in a �nite sample regime�

C� Invariance Principle

The main idea behind the invariance principle is to �nd a statistic which maximally condenses the

data while retaining the discrimination capacity of the original data set� It is instructive to �rst consider

the mechanism of data reduction associated with the minimal su�cient statistic� Recall that a function

T � T �X� of the data is a su�cient statistic for testing between H� and H� if� for all �� � �� and �� � ���

the likelihood ratio � depends on X only through T �X��

��X� ��� ��� �
f�X� ���

f�X� ���
� g�T �X�� ��� ����

The sets fX � T �X� � tgt can be thought of as su�ciency orbits of X which specify constant contours

of ��X�� Thus a su�cient statistic T �X� indexes the orbits and preserves all information needed to

discriminate between H� and H�� Su�cient statistics are not unique and T �X� is a minimal su�cient

statistic if it is a function� i�e� a compression� of any other su�cient statistic�

Data reduction via invariance is achieved by �nding a statistic Z � Z�X�� called the maximal invariant

statistic� which indexes the set values �which we can think of as constant contours� of the set function

���X� � f��X� ��� ��� � �� � ��� �� � ��g� ���

To make this practical� a tractable mathematical characterization of this set function must be adopted�

This can be accomplished when the probability model has functional invariance which can be characterized

by group actions on the measurement space X and induced group actions on the parameter space �� Let
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G be a group of transformations g � 	� 	 acting on X� Assume that for each � � � there exists a unique

 � �  g��� such that f��g�X�� � f���X��  g �  G is called the induced group action on �� The above relation

implies that the natural invariance which exists in the parameter space of � implies a natural invariance

in the space of measurement X� If we further assume that  g���� � ���  g���� � ��� then the model and

the decision problem are said to be invariant to the group G� The orbits of X under actions of G are

de�ned by

X 	 Y if 
 g � G such that Y � g�X��

The orbits of � under actions of  G are similarly de�ned� Note that to capture natural invariance of the

model� the groups G and  G must have group actions with the largest possible degrees of freedom among

all groups leaving the decision problem invariant�

Example� Su�ciency vs� Invariance

To illustrate the statistical reduction or data compression associated with su�ciency and invariance�

consider the signal model de�ned in ��� for real valued measurements� For the special case of m � 	� this

model reduces to

x � a eT� � NT

where� as before� e� is an n� 	 unit vector and NT is a normal row vector with zero mean and covariance

matrix ��I� The above model corresponds to testing for target presence at a single pixel in a sequence of

n snapshots� This is a simple i�i�d� real Gaussian example with unknown parameters � � fa� ��g� and the

pdf of x is

f�x� �
	

��
�n���n
exp

�
�	

�

�
�x� � a��

��
�

nX
i	�

x�i
��

	

���

where x � �x�� x�� � � � � xn
� Since the objective is to decide whether a � � or a �� � when �� is unknown�

we de�ne �� � f�� ���g and �� � fa� ���g which are points in �� � fa� �� � a � �� �� � �g and �� � fa� �� �
a �� �� �� � �g� respectively� The likelihood ratio is

��x� ��� ��� �
f�x� a� ����

f�x� �� ����
�

With the pdf ���� we can express the log likelihood ratio as a function of x�

ln��x� ��� ��� �
a

���
� eT� x�

��� � ���
�����

�
�

� xTx� a�

����
� n ln

��
��

where a � IR and ���� �
�
� � �� Thus � depends on x only through T �x� � ft�� t�g where t� � eT� x and

t� � xTx� T �X� is a minimal su�cient statistic indexing the su�ciency orbit illustrated in Fig� 	 as a

circle in IR� when n � �� Given t� and t� we can recover all of the information in the entire n�sample
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required to discriminate between di�erent values of the parameter pair fa� ��g� Generally for n � �� the

su�ciency orbit of x is the surface of an n� 	 dimensional hypersphere de�ned by the intersection of the

surfaces of the hypersphere fx �
Pn

i	� x
�
i � t�g and the hyperplane fx � x� � t�g�

This su�cient statistic is the minimumamount of information required of x to estimate the parameters

fa� ��g� The maximal invariant is the minimum amount of information required to discriminate between

the sets of parameter values �� and ��� i�e� detection of the target� To determine the maximal invariant�

the set function ��� of the likelihood ratio needs to be de�ned �rst� Since� under H�� a � IR and ���� �
�
� � �

are unknown� the contours of the log likelihood ratio can be equivalently indexed by the parameters

�a � a�eT� x

���� � ����x
Tx

���� � ����x
Tx�

That is� we can express the set function ��� as

ln ���x� �

�
�a

����
�
��eT� x���
xTx

�
���� � ����
�������

�
�

� �a�

�����
�
��eT� x���
xTx

� n ln
���
���

� �a � IR� ����� ��
�
� � �

	
�

We conclude that the set function ��� is indexed by the scalar�

z�x� �

��eT� x���
xTx

which is the maximal invariant in this example� In Fig� �� the invariance orbit is illustrated as a cone

in IR�� Each invariance orbit fx �
��eT� x��� �xTx � zg is indexed by the equivalent maximal invariant�

x���
Pn

i	� x
�
i � which determines the tangent of this cone� Thus� the compression to a scalar function of

x provided by the maximal invariant is a more vigorous compression than that provided by the minimal

su�cient statistic above� �

The principle of invariance stipulates that any optimal decision rule should only depend on X through

the maximal invariant Z � Z�X� which indexes the invariance orbits in the sense that

	� �invariant property� Z�g�X�� � Z�X�� � g � G
�� �maximal property� Z�X� � Z�Y�
 Y � g�X�� g � G�

Clearly� the maximal invariant is not unique� Any other functions of X related to Z�X� in a one�to�one

manner can be maximal invariant� It can also be shown that the probability density f�Z� �� of Z only

depends on � through a reduced set of parameters � � ����� which is the induced maximal invariant under

 G� Use of Z for detection gives the equivalent set of hypotheses

H� � Z � f�Z� ������� �� � ��

H� � Z � f�Z� ������� �� � ���
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Since the new parameterization ���� is generally a dimension reducing function of �� use of the reduced

data Z gives us better chances of �nding a CFAR test whose false alarm rate is independent of �� In

particular� when ����� is constant over �� � ��� the distribution of Z under H� is �xed and therefore any

test based on Z will automatically be CFAR�

When there exists a group G that leaves a testing problem invariant� we can restrict our attention to

the class of invariant tests where a test function 
 on X satis�es


�g�X�� � 
�X�� �g � G�

Any one�to�one function of the maximal invariants produces an equivalent invariant test ���
�

D� Example� Unstructured Covariance Case

We will �rst consider the case where the clutter is totally unknown� Suppose that the measurement

matrix is Gaussian with i�i�d� columns each having the unknown covariance matrix and the problem is to

decide the presence of a known target in a known subimage with an unknown amplitude� Then we can

use the image model in ���� X � a �� e
T
� �N� and its partitioned form

X � �x� X�
 �

�
� x�� x��

x�� X��

�
� ���

where x� is the �rst subimage which may contain the target and all the target energy has been put into the

�rst pixel x�� of this subimage� This is the case studied by Kelly ��
� and the results are brie�y reviewed

here to help illustrate the application of the GLR principle and invariance principle discussed previously�

This will help the reader understand more complicated structured models of interest� covered later in this

paper�

D�	 GLR Approach

Since the m�nmeasurement matrixX is complex multivariate normal withm�n mean E�X
 � a �� e
T
�

and mn � mn covariance cov�vec�X�
 � R
N
I as described in Section II�B� the problem is to decide

whether a is � or not when R is unknown� If we write the i�i�d� columns of X as fx�� x�� � � � � xng� the pdf

of X is

f�X� �
	


mnjRjn exp

�
��x� � a���

HR���x� � a����
nX
i	�

xHi R
��xi



� ���

Obviously� the likelihood ratio involves unknown parameters� a and R� and we derive the GLR by

maximizing the likelihood ratio over those parameters� i�e� by replacing them with their MLEs�

l� �
max����

f�X� ��

max����
f�X� ��

�
maxa f�X� a� !R��

f�X� �� !R��
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where !R� and !R� are the MLEs of R under H� and H�� respectively� It is easily shown�

!R� �
	

n

nX
i	�

xix
H
i �

!R� �
	

n

�
�x� � a����x� � a���

H �
nX
i	�

xix
H
i



�

To ensure these matrices be nonsingular with probability one� we must impose the condition that n � m�

After some algebra� we obtain the following simple form of the GLR for this example by taking the n�th

root of l��

n

p
l� � max

a

�
	 � xH� �X�X

H
� ���x�

	 � �x� � a���
H �X�X

H
� �

���x� � a���



� ���

It remains to maximize this ratio over the unknown complex amplitude a� This can be done by

completing the square in the denominator of ��� giving the MLE of the amplitude as

!a �
�T� �X�X

H
� �

��x�
�T� �X�X

H
� �

����
� �	��

Thus the GLR test is equivalent to 	� 	� n
p
l�� denoted TKu�

TKu �
j�T� �X�X

H
� ���x�j�

�T� �X�X
H
� �

���� � f	 � xH� �X�X
H
� ���x�g

� �		�

This test was obtained by Kelly ��
 and will be called the unstructured Kelly�s test� Kelly also proved in

��
 that this test has the CFAR property�

D�� Invariance Approach

As de�ned above� an invariant test is a test statistic which is a function of the maximal invariants�

Here� we review the derivation of the maximal invariants under the unstructured model described above�

and prove that the Kelly�s GLR test can be represented with the maximal invariant statistics�

With the previous model� we can de�ne the following group of transformations acting on X as

g�X� �

�
� �� �H

�

� M

�
� X

�
� 	 �T

� U

�
� �	��

where �� �� �� �
�
�	��m�	�� andM��m�	���m�	�� are arbitrary� and U��n�	���n�	�� is a unitary

matrix� In order to prove that the decision problem is invariant to this group� it is worthwhile to recall the

important property of the Kronecker product that if an m�n Gaussian matrixX has mean E�X
 � � and

covariance cov�vec�X�
 � R
N
C� then FXH has mean F�H and covariance FRFH

N
HCHH � With

this property and the model X in ���� we have g�X� � �a��e
T
� � �N where �a � ��a and �N is still zero�mean

Gaussian with cov�vec� �N�
 � �R
N
I where

�R �

�
� �� �H

�

� M

�
�R

�
� �� �H

�

� M

�
�
H

�
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Thus the problem remains unchanged under this group since the unknown amplitude a and covariance

matrix R are just replaced by �a and �R� respectively� This group is also the group whose actions have the

largest possible number of free parameters which guarantee that the decision problem remains unchanged�

Indeed if the full linear group of row actions were used� i�e� the �rst column of the left multiplying

matrix in �	�� were to be arbitrary� the signal spatial structure �� would not be preserved� Likewise� if

a larger group of right multiplying matrices than the one in �	�� were applied to the columns of X� the

independence of the columns ofX or the temporal �chip� structure e� of the signal would not be preserved�

Once the invariant group of transformations is obtained� we can now de�ne a set of statistics� i�e�

maximal invariants� which indexes the orbits of X under this group�

Proposition �� With the model ��� and the group of transformations �	��� the maximal invariant is

��dimensional�

z�� � xH� �X�X
H
� �

��x��

z� � xH���X��X
H
���

��x���

And z�� can be replaced by

z� �

��x�� � x��X
H
���X��X

H
���

��x��
���

x��
�
I�XH

���X��X
H
���

��X��

�
xH��

since z�� � z� � z��

Proof� Bose and Steinhardt �	�
� See the appendix for an independent derivation� �

To interpret this set of maximal invariants� consider the group of transformations �	�� as

g�X� �

�
� g��x��X��

g��x���X���

�
� �

�
� �Hx� �HX�U

Mx�� MX��U

�
�

where �H � ��� �
H

�

� From each group action on the measurement scaled by � or M� and rotated by U�

we can construct a orbit �cone� as in Fig� �� Then each cone of g� and g� is indexed respectively by z��

and z� which are the ratios of the norm squared along the axis of the cone to that perpendicular to it� z�

is the sample correlation between primary and secondary data whose distribution is same under H� and

H�� Thus it is an ancillary statistic ���
� Also the representation of z� gives it an interpretation as the

estimated s�prediction SNR� i�e� the ratio of the magnitude squared of the estimated target error to that

of the estimated clutter prediction error� where x��X
H
���X��X

H
���

��x�� is the least�squares estimate of x��

given x�� and X��

Any invariant test will be functions of z� and z�� and we can show that the Kelly�s test �		� is one of

them� As described in Proposition 	� xH� �X�X
H
� ���x� � z� � z� and we have

TKu �
j�T� �X�X

H
� ���x�j�

�T� �X�X
H
� �

���� � f	 � z� � z�g �
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Then using the partition in ��� and relations for the inverse of partitioned matrices ��

� we can show

�T� �X�X
H
� �

���� � fx��
�
I�XH

���X��X
H
���

��X��

�
xH��g���

�T� �X�X
H
� ���x� �

x�� � x��X
H
���X��X

H
���

��x��
x��

�
I �XH

���X��X
H
���

��X��

�
xH��

�

Thus

TKu �
z�

	 � z� � z�
�	��

� which establishes that the GLR test is also an invariant test�

No optimal properties are claimed for this test� and as noted earlier the number of chips� n� must exceed

the numberm of spatial pixels per chip which can be quite large in many radar applications� Kelly derived

the pdf of the test statistic and showed that it depends on the unknown covariance matrixR only through

a SNR involving the unknown signal amplitude a� Thus� under the clutter�alone hypothesis H�� the pdf

of TKu is not a�ected by the unknown parameters� and hence the test is CFAR�

IV� Application to Target Straddling Clutter Boundary

In this section� we consider the problem of detecting a known target straddling the boundary of two

independent clutter regions� From the model �
�� the measurement matrixX is composed of two di�erent

regions A and B and can be partitioned as

X �

�
� XA

XB

�
� �

�
� xA� XA�

xB� XB�

�
� �	
�

where xA� and xB� are the primary vectors which may contain the separated canonical parts of a known

target� sA and sB � respectively� with the unknown common amplitude a� Under the clutter�alone hypoth�

esis H�� any of the i�i�d� columns of X will be multivariate Gaussian with zero mean and a covariance

matrix R having a block diagonal structure as de�ned in �	��

A� GLR Tests

Let fxA�� xA�� � � � � xAng and fxB�� xB�� � � � � xBng represent the i�i�d� columns of the two uncorrelated

matrices XA and XB � respectively� then the pdf of X factors as

f�X� � f�XA�f�XB �

where f�XA� and f�XB� are de�ned similarly as ��� for each region� Now the decision problem is to

decide whether the primary data contains clutter alone �a � �� or clutter plus target �a �� ���

H� � X � f�X� ��RA�RB�

H� � X � f�X� a�RA�RB�
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where RA and RB are the regional covariances as given in �	�� As in the unstructured case� the GLR

maximization can be performed for the unknown covariance matrices RA and RB by replacing them

with their MLEs� Here� the required condition for non�singularity of the estimated covariance matrices

�n � m� is relaxed since we need only n � maxfmA�mBg� This GLR� however� still involves a maximiza�

tion over the unknown amplitude a in a complex quartic equation and cannot be represented in closed

form� However� for real valued data the roots of the quartic equation are explicit� For complex data we

implement the GLR tests� derived under the structured cases� using numerical root �nding and compare

their performance in Section V�

A�	 Case 	� RA � ��RB � �

The GLR for this case is just the product of the likelihood ratios from regions A and B�

�� � max
a

f�XA� a� !RA��f�XB � a� !RB��

f�XA� �� !RA��f�XB � �� !RB��
�

Next we can apply the results of the unstructured example in Section III�D to both of the two regions A

and B separately�

	

n
ln�� � max

a

�
ln

�
	 � p��� sA�XA�

	 � p�a� sA�XA�

�
� ln

�
	 � p��� sB �XB�

	 � p�a� sB �XB�

�

�	��

where

p�a� sA�XA� � �xA� � asA�
H�XA�X

H
A��

���xA� � asA��

Now we call �	�� GLR 	 which reduces to the GLR in ��� when R is unstructured and for which the

maximization over the quadratic equation in the denominator can be easily achieved�

With this structured model� however� the maximization over a cannot be completed explicitly� But

since the maximizing value of the complex amplitude

!a � argmin
a

f�	 � p�a� sA�XA�
 � �	 � p�a� sB �XB�
g

involves a product of two positive quadratic equations� we can derive upper and lower bounds to aid in

numerical search� De�ne the local solutions from each region A� B as in �	���

!aA � argmin
a

p�a� sA�XA� �
sHA �XA�X

H
A��

��xA�
sHA �XA�X

H
A��

��sA
� �	��

!aB � argmin
a

p�a� sB �XB� �
sHB �XB�X

H
B��

��xB�
sHB �XB�X

H
B��

��sB
�

Then we know that !a lies between those local solutions which serve as bounds� and GLR 	 can be

implemented or maximized while varying a in such a way so as to guarantee

minfRef!aAg�Ref!aBgg � Ref!ag � maxfRef!aAg�Ref!aBgg�
minfImf!aAg� Imf!aBgg � Imf!ag � maxfImf!aAg� Imf!aBgg�
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A�� Case �� RA � ��RB � ��I

This case is just as above except that RB is assumed to be diagonal with common unknown variance

�� along the diagonal� With this assumption� the pdf of XB is

f�XB � a� �
�� �

	


mBn��mBn
exp

�
� 	

��

�
jxB� � asB j� �

nX
i	�

jxBij�
	


and the GLR is expressed as

�� � max
a

f�XA� a� !RA��f�XB � a� !���

f�XA� �� !RA��f�XB � �� !���
�

Again MLEs of the variance under both hypotheses can be easily found as

!��� �
	

mBn
q�a� sB �XB��

!��� �
	

mBn
q��� sB �XB�

where

q�a� sB �XB� � tr
�
�XB � asBe

T
� �

H �XB � asBe
T
� �
�
� �	��

As before� the maximization over a in �� cannot be completed in closed form� To bound !a� we �rst

consider the GLR over the region B alone which can be simpli�ed to

l� � max
a

�
q��� sB �XB�

q�a� sB�XB�


mBn

�

We named it l� after the previous unstructured GLR test statistic l� in ���� Then by rewriting q�a� sB�XB�

as

q�a� sB �XB� � jsBj� �
����a� sHBxB�

jsBj�
����
�

�
nX
i	�

jxBij� �
jsHBxB�j�
jsB j�

�

we see that the maximizing value of a is

!aB �
sHBxB�
jsBj�

�	��

where sB is the canonical target of form sB � �sB � �� � � � � �

T � Thus we have the equivalent form of this

GLR

	� 	
mBn
p
l�

�
jxB��j�Pn
i	� jxBij�

� �	��

Now back to ��� GLR � can be expressed as

	

n
ln�� � max

a

�
ln

�
	 � p��� sA�XA�

	 � p�a� sA�XA�

�
�mB � ln

�
q��� sB�XB�

q�a� sB �XB�

�

� ����

and the maximizing value of a can be found between !aA given as �	�� for Case 	 and !aB given in �	���
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A�� Case �� RA � ��RB � I

Suppose RB is exactly known to be an identity matrix� Then from the results of Case � we can derive

a bound on the maximizing value of a required to implement the GLR� De�ne the GLR l� over XB alone�

l� � max
a
fexp�q��� sB�XB� � q�a� sB �XB�
g

where q is the same as de�ned previously in �	��� Hence� the MLE of the amplitude a is equal to !aB given

in �	��� and the GLR over XB is equivalent to

ln l� � jxB��j�� ��	�

Thus� �nally� we can de�ne GLR � using the entire measurement X as

	

n
ln �� � max

a

�
ln

�
	 � p��� sA�XA�

	 � p�a� sA�XA�

�
�

	

n
�q��� sB �XB�� q�a� sB�XB�




����

where the maximization over a can be implemented similarly to Case ��

B� MI Tests

In this section� we apply the invariance principle to the structured covariance cases studied above and

construct a test statistic as a function of the maximal invariants derived� These results parallel those of

Bose and Steinhardt �	�
� It will be convenient to �rst de�ne the partition of X which is re�ned from

�	
��

X �

�
� XA

XB

�
� �

�
�������

xA�� xA��

xA�� XA��

xB�� xB��

xB�� XB��

�
�������
� ����

With this partition� the structured group of transformations induced by each model will be de�ned as

g�X� �

�
� gA�XA�

gB�XB�

�
�

and the maximal invariants under each group can easily be obtained� For each case� MI test is proposed

based on the maximal invariants and compared to the previous results of Kelly ��
 and Bose and Steinhardt

�	�
�



KIM AND HERO� COMPARISON OF GLR AND INVARIANCE METHODS ��

B�	 Case 	� RA � ��RB � �

In this case� the independent regions A and B both have unknown covariance matrices� and we can

construct a structured group of transformations on X which is extended from �	���

g�X� �

�
�������

�
� � �H

A

� MA

�
� XA

�
� 	 �T

� UA

�
�

�
� � �H

B

� MB

�
� XB

�
� 	 �T

� UB

�
�

�
�������

��
�

where � �� �� �
A
�	��mA�	��� �

B
�	��mB�	���MA��mA�	���mA�	�� andMB��mB�	���mB�	��

are arbitrary� and UA and UB are ��n � 	� � �n � 	�� unitary matrices� Showing the invariant property

of this group is analogous to the unstructured example� With this group� the set of maximal invariants is

de�ned in the following� which is also brie�y covered in �	�
�

Proposition �� With the model in �
� and the partition in ����� the maximal invariant under the group

of transformations in ��
� is ��dimensional�

zA� �
juAj�
DA

�

zA� � xHA���XA��X
H
A���

��xA���

zB� �
juBj�
DB

�

zB� � xHB���XB��X
H
B���

��xB���

zAB �
uA
uB

where the subscripts denote whether the quantities are computed over the region A� B or both A and B�

and

uA � xA�� � xA��X
H
A���XA��X

H
A���

��xA���

uB � xB�� � xB��X
H
B���XB��X

H
B���

��xB���

DA � xA��
�
I �XH

A���XA��X
H
A���

��XA��

�
xHA���

DB � xB��
�
I�XH

B���XB��X
H
B���

��XB��

�
xHB���

And zAB can be replaced by

zAB� �
juA�sA � uB�sB j�

DA�jsAj� �DB�jsB j�

or

zAB�� �
juA�sA � uB�sB j�

qADA�jsAj� � qBDB�jsB j�

where qA � 	 � zA� � zA� and qB � 	 � zB� � zB��
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Proof� Bose and Steinhardt �	�
� See the appendix for an independent derivation� �

We can see that zA� and zA� correspond to z� and z� in the unstructured test �Proposition 	� applied to

region A� and zB� and zB� correspond to those applied to region B� The coupling term� zAB � zAB� � or

zAB�� � not present in the unstructured test� captures the common amplitude a for both regions�

Bose and Steinhardt proposed a natural modi�cation of Kelly�s test �		� which re�ects the block co�

variance structure�

TKs �

��sHK��x�
���

sHK��s � f	 � xH� K
��x�g

����

where x� � �xHA� x
H
B�


H � s � �sHA sHB 

H and

K �

�
� XA�X

H
A� O

O XB�X
H
B�

�
� �

To see that this is a function of maximal invariants derived in Proposition �� �rst look at the term in

the bracket in the denominator of ����� 	 � xH� K
��x� � 	 � zA� � zA� � zB� � zB� using the relation�

z�� � z� � z�� in Proposition 	� We can simplify the remaining factor in the test using the results of the

unstructured example�

��sHK��x�
���

sHK��s
�

���DA�jsAj����uA�sA � �DB�jsB j����uB�sB
���

�DA�jsAj���� � �DB�jsBj���� ����

where sA and sB are the �rst elements which are only non�zero in sA and sB� respectively�

Lemma �� Suppose that p� p matrices DA� DB are hermitian and invertible� and uA� uB are column

vectors of size p� then

�D��
A uA �D��

B uB�
H �D��

A �D��
B ����D��

A uA �D��
B uB�

� uHAD
��
A uA � uHBD

��
B uB � �uA � uB�

H �DA �DB�
���uA � uB��

Proof� See the appendix� �

Using Lemma 	� the equation in ���� is a special case for p � 	� Hence the structured Kelly�s test ����

can be expressed as

TKs �
zA� � zB� � zAB�

	 � zA� � zA� � zB� � zB�
� ����
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Alternatively� by looking at the maximal invariant representation of TKs� we can obtain another invari�

ant test which reduces to the unstructured test �	���

T� �

�������
�
sHA sHB

� �� qAXA�X
H
A� O

O qBXB�X
H
B�

�
�
�� �
� xA�

xB�

�
�
�������
�

�
sHA sHB

� �� qAXA�X
H
A� O

O qBXB�X
H
B�

�
�
���
� sA

sB

�
�

� ����

Note that qA and qB are placed in the estimated covariance matrix attempting to separate the coupled

denominator in ����� Thus T� is same as ���� except for qADA and qBDB in place of DA and DB �

respectively� and from Lemma 	 we have

T� �
zA�

	 � zA� � zA�
�

zB�
	 � zB� � zB�

� zAB�� ����

where the di�erent coupling term zAB�� is used instead of zAB� � This MI test will be shown to outperform

���� for some situations�

B�� Case �� RA � ��RB � ��I

Now suppose RB � ��I with unknown ��� then the invariant group of transformations in this case is

g�X� �

�
�������

�
� � �H

A

� MA

�
� XA

�
� 	 �T

� UA

�
�

� XB

�
� 	 �T

� UB

�
�

�
�������

����

since XB still remains Gaussian under this group except that a and �� are replaced by �a � �a and

��� � ������ Similarly to ��
�� the same scaling factor � captures the common amplitude in both regions�

Proposition �� With the partition in ����� the maximal invariant under the group of transformations in

���� is composed of

zA� �
juAj�
DA

�

zA� � xHA���XA��X
H
A���

��xA���

zB �
jxB��j�Pn
i	� jxBij�

�

zAB �
uA
xB��

where uA and DA are same as de�ned in Proposition �� But� since the maximal invariant is not unique�

we can also de�ne alternative forms for zB and zAB� zB can be replaced by

zB� �
jxB��j�

jxB��j� � jxB��j� � jXB��j�F
�
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and zAB can be replaced by either of

zAB� �
juA�sA � xB���sB j�
�DA�jsAj� � v��jsBj�

where

� �
	

�n�mA��	 � zA��
�

v� �
jxB��j� � jxB��j� � jXB��j�F

mBn� 	
�

or

zAB�� �
juA�sA � xB���sB j�

qADA�jsAj� � v��jsBj�

where qA is same as de�ned in Proposition � and

v� �
	

mB

nX
i	�

jxBij��

Proof� Bose and Steinhardt �	�
� See the appendix for an independent derivation� �

zA� and zA� are same as those in Proposition �� and the coupling terms are associated with the common

scaling � for a� Finally� zB or zB� are the maximal invariant for the case that only region B is considered�

Bose and Steinhardt derived identical maximal invariants in the context of array detection problems

and the above results can all be found in �	�
� In ���
� a representation for the joint pdf of the maximal

invariants is derived which gives insight into the marginal distributions� zA�� zA� and zB as F�statistics�

and zAB as complex Cauchy� Based on these statistics an invariant test was proposed in �	�
 which was

shown to be approximately CFAR�

TBS �

�������
�
sHA sHB

� �� �XA�X
H
A� O

O v�I

�
�
�� �
� xA�

xB�

�
�
�������
�

�
sHA sHB

� �� �XA�X
H
A� O

O v�I

�
�
�� �
� sA

sB

�
�

��	�

where � and v� are as in Proposition �� To see the maximal invariant representation� we write this test as

TBS �

����DA�jsAj����uA�sA � �v��jsBj����xB���sB
���

��DA�jsAj���� � �v��jsB j����

then from Lemma 	 we have

TBS � �n �mA�zA��	 � zA�� � �mBn� 	�zB� � zAB� � ����
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However� we can construct another invariant test statistic by considering the structures of both the

GLR test ���� and the MI test 	 �����

T� �

�������
�
sHA sHB

� �� qAXA�X
H
A� O

O v�I

�
�
���
� xA�

xB�

�
�
�������
�

�
sHA sHB

� �� qAXA�X
H
A� O

O v�I

�
�
�� �
� sA

sB

�
�

����

where � and v� in ��	� are replaced by qA and v� de�ned in Proposition �� Then this MI test � has a

maximal invariant form of

T� �
zA�

	 � zA� � zA�
�mB � zB � zAB�� � ��
�

Thus the weighting between the terms from region A and region B is maintained as in ����� and this test

reduces exactly to the unstructured tests� �	�� for XA alone or �	�� for XB alone� This reduction does

not hold for the Bose and Steinhardt�s test �����

B�� Case �� RA � ��RB � I

For this case� the invariant group of transformations is de�ned as

g�X� �

�
�������

�
� � �H

A

� MA

�
� XA

�
� 	 �T

� UA

�
�

XB

�
� 	 �T

� UB

�
�

�
�������

where� unlike the previous two cases� there is no scaling term on the left ofXB since the variance is exactly

known in XB and must not be altered by group actions� Thus g�X� cannot have the common scaling

term for the unknown amplitude in both regions� and the set of maximal invariants doesn�t include any

coupling term from regions A and B�

However� MI test � can be induced from MI test � ���� by replacing v� with v� � n� and we propose

the following MI test �

T� �
zA�
qA

�
	

n
jxB��j� � juA�sA � xB���sBj�

qADA�jsAj� � n�jsBj� � ����

Note that this test also reduces to either of the unstructured cases� �	�� for XA alone or ��	� for XB

alone�

C� Extension of Tests to One of p Known Targets

In this section� the previous results are extended to the problem of detecting the presence of one target

from a known set of p possible targets� Previously� the target signature in the primary vector was assumed
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to be exactly known and the problem was to decide whether the one and only signal vector s is present

or not� In real radar applications� however� a more realistic model can be considered� Suppose that we

know the form of the target of interest� but don�t know its position or orientation in the subimage� Then

di�erent target signature vectors can be constructed according to di�erent positions and orientations in

that subimage�

To accommodate this scenario� let the image model have an m� p matrix S �
�
s�� � � � � sp

�
for p target

signatures�

aS �k e
T
� �N ����

where �k is a p � 	 unit vector ��� � � � � �� 	� �� � � � � �
T and "	� is in position k� Here k � f	� � � � � pg� and
p � m for unstructured clutter or p � minfmA�mBg for structured clutter� The model ���� implies that

only one of the signatures� sk� may be present at a time in the primary vector� and in the structured case

this signature vector is written as sk �
�
sHAk s

H
Bk

�H
�

For the GLR tests �	��� ����� and ����� it is easy to extend the results of the single target case to this

multiple target case� We only need to replace sA and sB in the GLR tests with p possible target signatures

sAk and sBk� and maximize over k � 	� � � � � p� i�e� for i � 	� �� � indexing each of the block covariance

cases discussed above�

max
k	����� �p

	

n
ln�i�sAk� sBk��

Similarly� for the MI tests one can also propose to maximize over the p target signatures� In the following�

the invariance procedure is applied to the model in ���� for both the unstructured and structured cases�

For the structured cases� only Case 	 is investigated�

C�	 Unstructured Case

First� we consider the case of totally unknown covariance� Since S is known� we can de�ne the canonical

model from ���� as

X �

�
� �SHS���SH

PS

�
�faS �k eT� �Ng

� a

�
� �k

�

�
� eT� � �N

where an �m�p��m matrixPS is an orthogonal matrix to �SHS���SH and �N is still zero�mean Gaussian

with i�i�d� columns� We partition X as before

X � �x� X�
 �

�
� x�� X��

x�� X��

�
� ����
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where the p� 	 vector x�� may contain any of the target signatures which have been transformed to unit

vectors f�kgpk	�� With this model� the group of transformations which preserves the problem is de�ned as

g�X� �

�
� # B

O M

�
� X

�
� 	 �T

� U

�
� ����

where # is a p � p diagonal matrix� B �p � �m � p�� and M ��m � p� � �m � p�� are arbitrary� and U

is an �n � 	�� �n� 	� unitary matrix� Note that by putting the model ���� into the canonical form� we

must restrict a diagonal matrix # in ���� instead of an arbitrary matrix in order to preserve the known

canonical form of the signal �k� This group of transformations with larger degrees of freedom will lead to

a larger set of maximal invariants in the following proposition compared to the single target case�

Proposition �� The maximal invariant of the model ���� under the group of transformations in ����

consists of p� � functions of the measurement�

z� � uHD��u�

z� � xH���X��X
H
���

��x���

z�k � uHD���k��
T
kD

���k�
���TkD

��u

where k � 	� � � � � p and

u � x�� �X��X
H
���X��X

H
���

��x���

D � X��

�
I�XH

���X��X
H
���

��X��

�
XH
���

Proof� See the appendix� �

Now the unstructured Kelly�s test �		� can be modi�ed by maximizing over the p target signatures

f�kgpk	��

TKu � max
k	����� �p

����Tk �T
�
�X�X

H
� �

��x�
���

�
�Tk �T

�
�X�X

H
� �

��

�
� �k

�

�
� � f	 � xH� �X�X

H
� ���x�g

�

We will next express this test as a function of the new maximal invariants� Since z� and z� are equivalent

to those in Proposition 	 except for the dimension� it easily follows that 	�xH� �X�X
H
� ���x� � 	�z��z��

Also using the inverse of the partitioned matrix ��

 on �X�X
H
� �

��� we can write

�
�Tk �T

�
�X�X

H
� ���

�
� �k

�

�
� � �TkD

���k�

�
�Tk �T

�
�X�X

H
� ���x� � �TkD

��u

and hence the Kelly�s test is an invariant test of form

TKu � max
k	����� �p

z�k
	 � z� � z�

�
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C�� Structured Case

Next consider Case 	 for the structured model� In this case� the signal model is same as ����� but with

the structured target signature matrix� Then� similarly to the above unstructured case� the canonical

image model is de�ned as

X � a�sk e
T
� �N ����

where �sk �
h
�Tk �T�mA�p��� �

T
k �T�mB�p���

iT
� Thus� this canonical form can be partitioned as

X �

�
� XA

XB

�
� �

�
�������

xA�� XA��

xA�� XA��

xB�� XB��

xB�� XB��

�
�������

and the invariant group of transformations on X is

g�X� �

�
�������

�
� # BA

O MA

�
� XA

�
� 	 �T

� UA

�
�

�
� # BB

O MB

�
� XB

�
� 	 �T

� UB

�
�

�
�������

�
��

where we have the same p� p diagonal matrix # for XA and XB to preserve the signal vector �k and the

same amplitude in region A and B�

Proposition 	� With the model ���� and the group of transformations in �
��� the maximal invariant is

obtained as

zA� � uHAD
��
A uA�

zA� � xHA���XA��X
H
A���

��xA���

zA�k � uHAD
��
A �k��

T
kD

��
A �k�

���TkD
��
A uA�

zB� � uHBD
��
B uB�

zB� � xHB���XB��X
H
B���

��xB���

zB�k � uHBD
��
B �k��

T
kD

��
B �k�

���TkD
��
B uB �

zABk �
��TkD

��
A �k�

���TkD
��
A uA

��TkD
��
B �k�

���TkD
��
B uB

where

uA � xA�� �XA��X
H
A���XA��X

H
A���

��xA���

uB � xB�� �XB��X
H
B���XB��X

H
B���

��xB���

DA � XA��

�
I�XH

A���XA��X
H
A���

��XA��

�
XH
A���

DB � XB��

�
I�XH

B���XB��X
H
B���

��XB��

�
XH
B��
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for k � 	� � � � � p� And the coupling term zABk can be replaced by

zABk� �

����TkD��
A �k�

���TkD
��
A uA � ��TkD

��
B �k�

���TkD
��
B uB

���
��TkD

��
A �k�

�� � ��TkD
��
B �k�

��

or zABk�� which is equivalent to zABk� except that qADA and qBDB are substituted for DA and DB�

respectively� where qA � 	 � zA� � zA� and qB � 	 � zB� � zB��

Proof� See the appendix� �

Note that zA�� zA�� zB� and zB� are again equivalent to those in Proposition � except for the dimension

�p vs� 	��

For Case 	� we had before the structured Kelly�s test� TKs ����� and the MI test� T� ����� First� consider

TKs modi�ed to �t the multiple signature model�

TKs � max
k	����� �p

���sHk K��x�
���

�sHk K
��sk � f	 � xH� K

��x�g
where x� and K are same as de�ned in ����� but for the target signature� we have structured �sk as in

����� Then� as before� we have 	 � xH� K
��x� � 	 � zA� � zA� � zB� � zB�� and from the results of the

previous section and Lemma 	� the remaining term can be written as��sHk K��x�
���

sHk K
��sk

�

���TkD��
A uA � �TkD

��
B uB

���
�TkD

��
A �k � �TkD

��
B �k

� �
	�

Using the Woodbury identity it can be veri�ed that �
	� is identical to zA�k � zB�k � zABk� � Thus TKs is

a function of maximal invariant of form

TKs � max
k	����� �p

zA�k � zB�k � zABk�

	 � zA� � zA� � zB� � zB�
�

MI test can also be modi�ed by replacing the signal vector with sk and maximizing over k� Therefore�

the modi�ed T� is equivalent to �
	� except for qADA and qBDB replacing DA and DB�

T� � max
k	����� �p

���Tk �qADA���uA � �Tk �qBDB���uB
���

�Tk �qADA����k � �Tk �qBDB����k
�

This can also be written as

T� � max
k	����� �p

�
zA�k

	 � zA� � zA�
�

zB�k
	 � zB� � zB�

� zABk��
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V� Simulation Results

To analyze the performance of the GLR and MI tests derived under the three structured covariance

assumptions� Case 	� �� and �� receiver operating characteristic �ROC� curves are generated and compared

in this section� Even though the exact distributions of the test statistics are di�cult to determine� it is
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well known that under H� the log GLR test statistic of the form � ln� has asymptotically a chi�square

distribution with number of degrees of freedom determined by the number of �xed parameters under H�

and H� ���
� This asymptotic approximation can be used to determine the threshold on the GLR which

ensures a given PFA� In each simulation� we generated n 	� � 	� subimages containing � independent

clutter regions of area mA and mB pixels� respectively� and a �� � synthetic canonical target is inserted

into the �rst subimage in such a manner to straddle the boundary of the two di�erent regions� Each of

the subimages is then concatenated into a column vector of size 	�� to obtain a 	�� � n measurement

matrix� Each of the ROC curves �PD vs� PFA� shown below was obtained after ��� simulations�

In the following� the ROC curves are evaluated based on factors such as the target�to�clutter power

ratio� the dimensional parameters� mA� mB and n� and the prior uncertainty on the spatial covariance

R� Case 	� � and � are considered separately under di�erent assumptions on clutter covariance� In each

case� the three GLR tests �	��� ����� ����� and the three MI tests ����� ��
�� ���� matched to one of the

three cases are compared� Also shown are ROC curves for the following tests proposed by other authors�

Kelly�s structured test ���� matched to Case 	� and Bose and Steinhardt�s invariant test ���� matched to

Case �� We also experimented with a real image where both of our GLR and MI tests were applied to a

SAR clutter image with an inserted real target at various pose angles�

A� Comparison with Di
erent SNRs

First� we compared the detectors by varying SNR in region B �SNRB� for Cases 	� � and �� In Figs� �

� �� the ROC curves of � di�erent tests are compared for several SNRs� Structured Kelly�s test ����� Bose

and Steinhardt�s test ����� MI test 	 ����� MI test � ��
�� MI test � ����� GLR 	 �	��� GLR � ����� and

GLR � ����� For each case� two tests stand out as signi�cantly better than the other six� the GLR and

MI tests which are matched to the underlying scenario� e�g� GLR 	 and MI test 	 for Case 	� and GLR

� and MI test � for Case �� This con�rms the results from the previous section� For Case 	� we were

able to achieve performance improvement by separating the same coupled denominator for both regions

found in the matched Kelly�s test ����� For Case �� the ROC improvement over the matched Bose and

Steinhardt�s test is explained by the weighting between two di�erent regions which is carefully managed

in GLR � and MI test �� Note that� however� neither the GLR nor the MI test uniformly outperforms the

other� Of particular interest are the curve crossings in the low PFA regions between the GLR and the MI

tests� In Fig� � �b�� we can observe the gains in PD of MI test 	 over GLR 	 for PFA � ��	� Moreover�

it should be noted that the ROC of the structured Kelly�s test is dominated by that of the MI test 	 in

the low PFA region and by that of the GLR 	 in the high PFA region� In Case � �Fig� 
 �b��� both the

MI test � and GLR � outperform Bose and Steinhardt�s matched invariant test and it appears that MI

test � slightly outperforms GLR � for low PFA� These crossings are also observed for mismatched cases�

between MI test 	 and GLR 	 in Case � �Fig� 
�� and between MI test � and GLR � in Case 	 �Fig� �
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�b���

For Case � �Fig� ��� the ROC curves for GLR � approach those of the matched GLR � in both �a� and

�b� since a large number of pixels �mBn � ��� �	� are available to generate good MLEs of the unknown

variance in region B� Thus� in the following� we will concentrate on the relative performance of GLR vs�

MI tests for Cases 	 and ��

B� Comparison with Di
erent Windows

In this section� ROC curves are compared with di�erent ratios of mA�mB by up and down shifting the

	�� 	� windows used to collect the subimages along the boundary� In Fig� � for Case 	� GLR 	 performs

better as mB decreases since fewer parameters can be more accurately estimated with the same number of

chips �n � �	�� the GLR test has to estimate a covariance matrix �RB� of size ��� �� in �a�� but only of

size 
�� 
� in �c�� For the smaller size covariance of �b�� the structured Kelly�s test is almost as accurate

as the GLR and MI tests� Conversely� in Fig� � of Case �� GLR � performs better as mB increases since

in this case it only needs to estimate the scalar variance in region B and the number of pixels available

increases as mB increases ��a� mBn � ��� �	 vs� �c� mBn � 
�� �	�� Also Bose and Steinhardt�s test is

more sensitive to the number mB than MI test � and GLR �� and its ROC falls below even those of the

mismatched tests shown in �b� and �c��

The relative advantages of MI vs� GLR tests are more closely investigated in the next two �gures�

In Figs� � and �� we consider Case 	 and Case �� respectively� In �a� of both �gures� we increased the

number of chips n while �xing SNR� Note that the GLR and MI tests have ROCs which are virtually

indistinguishable for large n� In �b�� however� we �xed n and increased SNR� The PFA positions of the

crossings of the ROCs for the GLR and MI tests decreased with increasing SNR� In particular� if one

�xes a level of false alarm� say PFA � ��	� then note from Fig� � �b� that the GLR test dominates the

MI test for SNR � 	� dB while the reverse is true for SNR � � dB� This behavior is best explained by

the fact that at high SNR� the MLE is an accurate estimate of target amplitude� while at low SNR the

MLE degrades signi�cantly� Therefore� the GLR which depends on the accuracy of the MLE for accurate

detection breaks down for low SNR�

C� Application to Real Image

Finally� we consider an application to real SAR imagery in Fig� 	�� The image shown is a rural scene

near Redstone Arsenal at Huntsville� Alabama� reproduced from the data collected using the Sandia

National Laboratories Twin Otter SAR sensor payload operating at X band �center frequency � ��� GHz�

band width � ��� MHz�� This clutter image consists of a forest canopy on top and a �eld on bottom�

separated by a coarse boundary� The boundary was hand extracted� and a sequence of � � � SLICY
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targets at di�erent poses were also hand extracted from the image data in Fig� 		� The images in Fig� 		

correspond to the same target but viewed at di�erent pose angles of azimuth� The elevation of ��� was

�xed for all poses� The data from which these images are reproduced was downloaded from the MSTAR

SAR database at the Center for Imaging Science �www�cis�jhu�edu��

In a �rst experiment the target signature at pose of azimuth 	��� from Fig� 		 �e� was tested at

di�erent positions along the boundary� In Fig� 	�� the target is inserted additively with the center at

column ��� so that it straddles the boundary� From the realigned image in Fig� 	�� we took subimages

�chips� along the boundary by centering a ��� �� window at the boundary and sliding it over the image

from left to right� Each of these subimages is then concatenated into a column vector of size m � 
��

where mA � ��� and mB � ���� Since we need at least ��� secondary chips to implement the structured

detectors� clutter�alone pixels above and below those �� � �� subimages taken along the boundary were

used to generate enough secondary data for region A and B� respectively� Each of the subimages along the

boundary was tested as a primary chip� and the test statistics derived under Case 	 were calculated and

maximized over each possible location in the subimage� After normalizing the known target signature� we

obtained the minimum magnitude of target amplitude required for each test to detect the target at the

correct location� The resulting amplitude is the minimum detectable threshold for each of the detectors

and these thresholds are shown in Table I for di�erent number of secondary chips �n�	�� As can be seen�

with a large number of chips �n� 	 � ����� both the GLR and MI tests perform as well as the structured

Kelly�s test� On the other hand� with a limited number of chips �n � 	 � ����� MI test 	 successfully

detects the target down to a signi�cantly lower threshold than for GLR 	 and structured Kelly detectors�

jaj
Test

�n � 	 � ���� �n � 	 � ����

Structured Kelly 	�
��� 	��� 	��
�� 	���

MI test 	 	�
�
� 	��� ������ 	���

GLR 	 	�
��� 	��� 	��
�� 	���

TABLE I

Minimum detectable amplitudes for detection of the target at the correct location�

As a �nal experiment we maximized the test statistics over the di�erent target poses in Fig� 		 as

well as over all possible locations along the boundary� Again the normalized signature from Fig� 		 �e�

was inserted with jaj � ���	�� and ��� secondary chips were obtained from the surrounding clutter� Test

values for the � detectors under Case 	 are obtained using � di�erent target signatures� For each test the

peak values for � target signatures are plotted in Fig� 	�� Note that all the tests successfully picked the

signature at the true pose and location for this target amplitude�
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VI� Conclusion

This paper considered the problem of detecting a target lying across a clutter boundary� Two detection

strategies were investigated� the GLR and the MI test procedures� Both detectors have comparable

ROC performance when a large number of independent clutter samples are available� but the MI test can

outperform the GLR test for a small number of independent clutter samples�

Several issues for further research should be addressed�

� The linearity assumption should be relaxed to accommodate canopy interactions with the target� This

is a very challenging problem�

� For applications where the Gaussian clutter assumption may not be appropriate� non�Gaussian models

should be investigated such as elliptically symmetric distribution or spherically invariant random vector

�SIRV� distribution� Many results exist for GLR and invariant tests in this case ���
�

� Since the known boundary assumption may not be realistic� edge�boundary estimation and its inter�

action with detection should be investigated including sensitivity of detector performance to boundary

estimations and tradeo�s between segmentation and detection�

� For spatial acquisition mode SAR� the case should be considered where a target may lie across two

di�erent chips�

� The methods described herein can also be applied to other detection problems involving boundary

and target interactions� Examples include� detection of cancer nodules imbedded on lung tissues� and

detection of astronomical objects through partially turbulent atmospheres�

Appendix

I� Proof of Proposition �

The maximal invariant should satisfy both the invariant and the maximal properties under the de�ned

group of transformations� Before showing those properties� note that the group action can be partitioned

as

g�X� �

�
� �Hx� �HX�U

Mx�� MX��U

�
�
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where �H �
h
�� �

H

�

i
� Then the invariant property follows directly�

z�� �g�X�� � xH� ���
H
X�UU

HXH
� ��

���Hx�

� xH� �X�X
H
� �

��x�

� z���X��

z��g�X�� � xH��M
H �MX��UU

HXH
��M

H ���Mx��

� xH���X��X
H
���

��x��

� z��X��

Now to show the maximal property� let z�� �X� � z���Y� or

xH� �X�X
H
� ���x� � yH

�
�Y�Y

H
� ���y

�
�

Then by the Vinograd�s theorem ��
�

�Y�Y
H
� ��

�

� y
�
�H�X�X

H
� �

�
�

�x�

for some m�m orthogonal matrix H� and we have

y
�
� Fx� �
��

where F � �Y�Y
H
� �

�

�H�X�X
H
� �

�
�

� � Also from this result�

yH
�
�Y�Y

H
� ���y

�
� xH� F

H �Y�Y
H
� ���Fx��

thus �Y�Y
H
� ��� � �FX�X

H
� F

H ��� or

Y� � FX�U �
��

for some �n� 	�� �n� 	� orthogonal matrix U� Therefore� from �
�� and �
��� we have

Y � FX

�
� 	 �T

� U

�
� � �

�

Next by using z�� i�e� xH���X��X
H
���

��x�� � yH
��
�Y��Y

H
���

��y
��
� and the Vinograd�s theorem again� we

have

h
y
��
Y��

i
� ��M
 �x� X�


�
� 	 �T

� U

�
� �
��

where M � �Y��Y
H
���

�

�J�X��X
H
���

�
�

� for some �m � 	� � �m � 	� orthogonal matrix J� Then from �

�

and �
��� it is veri�ed that Y � g�X�� Therefore� fz��� z�g satis�es both the invariant and the maximal

properties� and hence uniquely indexes the orbits of X under the group action�
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Now we can easily verify that z�� � z�� z� by using the relations for the inverse of a partitioned matrix

��

� De�ne

�X�X
H
� ��� �

�
� x��x

H
�� x��X

H
��

X��x
H
�� X��X

H
��

�
�
��

�

�
� V�� V��

V�� V��

�
� �

then again from that relations�

V�� � fx��
�
I�XH

���X��X
H
���

��X��

�
xH��g���

V�� � �V��x��XH
���X��X

H
���

���

V�� � �V���X��X
H
���

��X��x
H
���

V�� � �X��X
H
���

�� � V���X��X
H
���

��X��x
H
��x��X

H
���X��X

H
���

���

Therefore� plugging these values into the equation

z�� � xH��V��x�� � xH��V��x�� � xH��V��x�� � xH��V��x���

we have

z�� � V��
��x�� � x��X

H
���X��X

H
���

��x��
��� � xH���X��X

H
���

��x��

� z� � z�

and hence fz�� z�g can also serve as the maximal invariant�

II� Proof of Proposition �

From Proposition 	� we can see clearly that fzA�� zA�g is the maximal invariant corresponding to the

group of transformations

gA�XA� �

�
� �� �H

A

� MA

�
�XA

�
� 	 �T

� UA

�
� �
��

and fzB�� zB�g to the group of transformations

gB�XB� �

�
� �� �H

B

� MB

�
�XB

�
� 	 �T

� UB

�
� �
��

where we can only use arbitrary �� and �� separately for each group� So it su�ces to show that zAB is

in the maximal invariant set which gives �� � �� � ��

Since the group action ��
� can be partitioned as

g�X� �

�
�������

�xA�� � �H
A
xA�� ��xA�� � �H

A
XA���UA

MAxA�� MAXA��UA

�xB�� � �H
B
xB�� ��xB�� � �H

B
XB���UB

MBxB�� MBXB��UB

�
�������
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with the partition in �	
�� the following results are �rst calculated for convenience�

uA�g�X�� � �uA�X�

DA�g�X�� � j�j�DA�X��

and

uB�g�X�� � �uB�X�

DB�g�X�� � j�j�DB�X��

Then� it is easily veri�ed that zAB is invariant under g�X� since

zAB�g�X�� �
�uA
�uB

� zAB�X��

Now for the maximal property we need to show that

zAB�X� � zAB�Y� 
 �� � ��

where

Y �

�
� YA

YB

�
� �

�
� gA�XA�

gB�XB�

�
� �
��

with gA in �
�� and gB in �
��� Then it is also straightforward since� from zAB�X� � zAB�Y�� we have

uA
uB

�
��uA
��uB

�

Thus �� � �� and we have proved that

Y � g�X��

Next� zAB� and zAB�� can be shown to be the alternative terms for zAB by expressing them as functions

of the maximal invariant previously veri�ed� First� we can write

zAB� �

juB�sB j� �
������
uA�sA

uB�sB
� 	

������
�

DB�jsBj� �
�
�DA�jsAj�
DB�sBj� � 	

�
A
�

Thus� zAB� is a function of the maximal invariant of form

zAB� � zB� �

������zAB �
sB

sA
� 	

������
�

DA

DB
�
jsB j�
jsAj� � 	
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where sA and sB is known� andDA�DB is just a supplementary term to zAB � Also zAB�� can be represented

similarly with the additional terms qA and qB which are already functions of the maximal invariant� and

this completes the proof�

III� Proof of Proposition �

We know from Proposition � that fzA�� zA�g is the maximal invariant to the group of transformations

on XA

gA�XA� �

�
� �� �H

A

� MA

�
�XA

�
� 	 �T

� UA

�
� �
��

where �� �� � is an arbitrary scalar� Therefore� we need to show that zB is the maximal invariant to the

group action on XB

gB�XB� � ��XB

�
� 	 �T

� UB

�
� ����

where �� �� � is also an arbitrary scalar� and �nally �� � �� with zAB �

First� write zB as

zB �
jxB��j�

trfXH
BXBg

�

Then the invariant property is easily followed�

zB�g�X�� �
j�xB��j�

trf��XB�H ��XB�g � zB�X�

since

trfAg � trfPHAPg

for any n � n matrix A and orthogonal matrix P� ��

� Next� for the maximal property� let zB�XB� �

zB�YB�� then

jxB��j�
trfXH

BXBg �
jyB��j�

trfYH
BYBg

or

xHB��
�
trfXH

BXBg
���

xB�� � yHB��
�
trfYH

BYBg
���

yB���

Thus� from the Vinograd�s theorem� we have

yB�� � ��xB�� ��	�
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where �� �
�
trfYH

BYBg
����

H
�
trfXH

BXBg
�����

for some orthogonal matrixH� Then� we can also write

j��xB��j�
trfYH

BYBg
�

jxB��j�
trfXH

BXBg
and from this� we have

trfYH
BYBg � trf���XB�

H ���XB�g

or

YB � ��XBU ����

for some unitary matrix U� From ��	� and ����� we can say YB � gB�XB� as in ���� and zB is the

maximal invariant under gB on XB � In addition� since zB can be written as

zB �
jxB��j�

jxB��j� � jxB��j� � jxB��j� � jXB��j�F
�

	

	 � 	�zB�

�

zB� is also a maximal invariant which can be substituted for zB �

Now it is quite simple to prove zAB as in the proof of Proposition �� As before� the invariant property

is easily veri�ed since

zAB�g�X�� �
�uA
�xB��

� zAB�X��

and for the maximal property� we have

uA�XA�

xB��
�

uA�YA�

yB��
����

from zAB�X� � zAB�Y�� Since we have already proved that YA � gA�XA� with gA in �
�� and YB �

gB�XB� with gB in ����� we can write

uA�YA� � ��uA�XA��

yB�� � ��xB���

Thus� from ����� �� � �� and zAB implies the common scaling term � in �����

Finally� the proof for the alternative terms� zAB� and zAB�� � are easily followed from the proof of

Proposition � since both terms are equivalent to zAB�� in Proposition � except for xB�� instead of uB � and

the invariant terms �� v� and v��

IV� Proof of Proposition �

Since the group action g�X� in ���� can be partitioned as

g�X� �

�
� #x�� �Bx�� �#X�� �BX���U

Mx�� MX��U

�
� �
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the following results are �rst calculated for convenience�

u�g�X�� � �#x�� �Bx���� �#X�� �BX���X���X��X
H
���

��x��

� #fx�� �X��X���X��X
H
���

��x��g
� #u�X��

D�g�X�� � �#X�� �BX���
�
I�XH

���X��X
H
���

��X��

�
�XH

��#
H �XH

��B
H �

� #fX��

�
I �XH

���X��X
H
���

��X��

�
XH
��g#H

� #D�X�#H�

Then with the partitioned structure ofX and the above results� we can easily verify the invariant property

as follows�

z��g�X�� � uH#H �#D#H���#u

� uHD��u

� z��X��

z��g�X�� � xH��M
H �MX��UU

HXH
��M

H ���Mx��

� xH���X��X
H
���

��x��

� z��X��

and

z�k�g�X�� � uH#H�#D#H����k
�
�Tk �#D#H����k

���
�Tk �#D#H���#u

� uHD���#���k�
�
�#���k�

HD���#���k�
���

�#���k�
HD��u

� uHD���k��
T
kD

���k�
���TkD

��u

� z�k�X��

Next� for the maximal property� it is easily followed from Proposition 	 that z��X� � z��Y� and

z��X� � z��Y� gives

Y �

�
� A B

O M

�
�X

�
� 	 �T

� U

�
�

where we have a p� p non�zero matrix A instead of �� in �	�� and others are de�ned in ����� Note that

this is a general case of Proposition 	 �p � 	� and the proof directly follows that of Proposition 	 except

for the dimension�
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Now we only need to show that A is a p� p diagonal matrix with z�k� Let A
�� �

h
�
�
� � � � � �

p

i
� then

z�k�Y� � uHAH�ADAH����k
�
�Tk �ADA

H����k
���

�Tk �ADA
H���Au

� uHD���A���k�
�
�A���k�

HD���A���k�
���

�A���k�
HD��u

� uHD���
k
��H

k
D���

k
����H

k
D��u�

Then from z�k�X� � z�k�Y��

uHD�� �k�
T
k

�TkD
���k

D��u � uHD��
�
k
�H
k

�H
k
D���

k

D��u�

Thus we have

�k�
T
k

�TkD
���k

�
�
k
�H
k

�H
k
D���

k

� which gives �
k
� ���k �k for some scalar �k �� � and k � 	� � � � � p� This means that

A � diag���

where � � ���� � � � � �p
�

V� Proof of Proposition �

From the proof of Proposition 
� we know that fzA�� zA�� zA�kg and fzB�� zB�� zB�kg are associated with

the groups

gA�XA� �

�
� #A BA

O MA

�
�XA

�
� 	 �H

� U

�
� �

gB�XB� �

�
� #B BB

O MB

�
�XB

�
� 	 �H

� U

�
� �

respectively� So it su�ces to show that #A � #B � # with zABk �

First� the invariant property of zABk directly follows from the properties of u and D on g�X� in the

proof of Proposition 
� Next� for the maximal property of zABk� let zABk�X� � zABk�Y� with

Y �

�
� gA�XA�

gB�XB�

�
�

where #A � diag���A�� � � � � �Ap
� and #B � diag���B�� � � � � �Bp
�� then

��TkD
��
A �k�

���TkD
��
A uA

��TkD
��
B �k�

���TkD
��
B uB

�
�Ak��TkD

��
A �k�

���TkD
��
A uA

�Bk��TkD
��
B �k�

���TkD
��
B uB

�

Therefore� �Ak � �Bk for k � 	� � � � � p and we have proved that #A � #B�
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Finally� we can substitute zABk� for zABk since zABk� is a function of the previously obtained maximal

invariant of form

zABk� � zB�k �
jzABk � 	j�

��TkD
��
A �k�

��

��TkD
��
B �k�

��
� 	

where ��TkD
��
A �k�

�����TkD
��
B �k�

�� is just a supplementary term for zABk� Similarly� zABk�� can also be

shown to be a substitute for the coupling term with the additional functions of the maximal invariant qA

and qB�

VI� Proof of Lemma �

We can write the equation as

�uHAD
��
A � uHBD

��
B ��D��

A �D��
B ����D��

A uA �D��
B uB�

� uHAD
��
A �D��

A �D��
B ���D��

A uA � uHAD
��
A �D��

A �D��
B ���D��

B uB

� uHBD
��
B �D��

B �D��
A ���D��

A uA � uHBD
��
B �D��

B �D��
A ���D��

B uB

and from the Woodbury identity� we have either

�D��
A �D��

B ��� � DA �DA�DB �DA�
��DA�

or �D��
B �D��

A ��� � DB �DB�DA �DB�
��DB�

Thus� applying this identity� the equation becomes

�uHAD
��
A � uHBD

��
B ��D��

A �D��
B ����D��

A uA �D��
B uB�

� uHAD
��
A uA � uHBD

��
B uB � �uA � uB�

H �DA �DB�
���uA � uB� � L� � L�

where

L� � uHA
�
D
��
B � �DA �DB�

�� � �DA �DB�
��DAD

��
B

�
uB �

L� � uHB
�
D��
A � �DA �DB�

�� � �DA �DB�
��DBD

��
A

�
uA�

Now we can remove the extra terms L� and L� since

L� � uHA �DA �DB�
�� ��DA �DB� �DB �DA
D

��
B uB � ��

L� � uHB �DA �DB�
�� ��DA �DB� �DA �DB
D

��
A uA � �

and this completes the proof�
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Fig� ��� SAR clutter image with target in Fig� �� �e� straddling the boundary at column ����

�a� az � �

� �b� az � �
�� �c� az � ��
�
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Fig� ��� SLICY canonical target images at elevation ��� and di�erent azimuth angles �az�� Image in �e� is inserted in Fig�

���
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Fig� �
� Image realigned along the extracted boundary� SLICY target is located at column ��� with jaj � ������ This

target is just above the minimal detectable threshold for the three tests investigated in Fig� ���
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Fig� ��� Peak values obtained by �a� structured Kelly�s test� �b� MI test � and �c� GLR � for � di�erent target images in

Fig� �� �jaj � ������n � � � 
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