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Abstract

This paper addresses a target detection problem for which the covariance matrix of the unknown Gaussian clutter
background has block diagonal structure. This block diagonal structure is the consequence of the target lying along a
boundary between two statistically independent clutter regions. Here, we design adaptive detection algorithms using both the
generalized likelihood ratio (GLR) and invariance principles. By exploiting the known covariance structure a set of maximal
invariants is obtained. These maximal invariants are a compression of the image data which retain target information
while being invariant to clutter parameters. We consider three different assumptions on knowledge of the clutter covariance
structure: both clutter types totally unknown, one of the clutter types known except for its variance, and one of the clutter
types completely known. By means of simulation, the GLR and maximal invariant (MI) tests are shown to outperform the
previously proposed invariant test by Bose and Steinhardt which is derived from a similarly structured covariance matrix.
Numerical comparisons are presented which illustrate that the GLR and MI tests are complementary, i.e. neither test
strategy uniformly outperforms the other over all values of SNR, number of chips, and false alarm rate. This suggests that

it may be worthwhile to combine these two tests into a hybrid test to obtain overall optimal performance.

I. INTRODUCTION

In this paper, adaptive detection algorithms are developed for imaging radar (IR) targets in structured
clutter by exploiting both the generalized likelihood ratio (GLR) principle and the invariance principle.
In automatic target recognition (ATR), it is important to be able to reliably detect or classify a target in a
manner which is robust to target and clutter variability yet maintains the highest possible discrimination
capability. The GLR and invariance principles are worthwhile approaches since they often yield good
constant false alarm rate (CFAR) tests. The GLR principle implements the intuitive estimate-and-plug
principle: replacing all unknowns in the likelihood ratio (LR) test by their maximum likelihood estimates
(MLEs). The GLR is known to be asymptotically optimal, i.e. GLR becomes uniformly most powerful
(UMP) in that it attains the highest probability of correct detection for given probability of false alarm
(Pra), as the number of observations become much larger than the number of unknown clutter parameters
[1]. In contrast, application of the invariance principle seeks to project away the clutter parameters by

compressing the observations down to a lower dimensional statistic while retaining the maximal amount
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of information for discrimination of the target [2], [3], [4], [5]. This statistic is called the maximal invariant
and, if one is lucky, the form of the most powerful (MP) LR test based on the maximal invariant does
not depend on the nuisance parameters, resulting in a uniformly most powerful invariant (UMPI) test
[6], [T]. When properly applied, the invariance principle can yield adaptive target detection algorithms
which outperform the GLR test, sometimes by a significant margin. As we will show in this paper, for the
problem of target detection in unknown but structured clutter background, this margin of improvement

can be quite significant at low signal-to-noise ratio (SNR) for small fixed Pp4.

A common assumption in homogeneous but uncertain clutter scenarios is that the target is of known form
but unknown amplitude in Gaussian noise whose covariance matrix is totally unknown or unstructured.
This assumption induces parameter uncertainty for which the general multivariate analysis of variance
(GMANOVA) model applies and optimal and suboptimal detection algorithms can be easily derived using
the GLR principle [8], [9], [10].

When some structure on the covariance matrix 1s known a priori, improvements over this GLR test
are possible. For example, in the context of antenna arrays for detection of an impinging wavefront in
clutter whose covariance matrix has Toeplitz structure, Fuhrmann [11] showed through simulation that
a significant improvement over the GLR test [9] is achieved by incorporating a Toeplitz constraint into
the covariance estimation step in the GLR detector. As previously mentioned, an alternative approach
to estimation of the partially known noise covariance is to project the data down to a test statistic
whose noise-alone distribution does not depend on this covariance. Bose and Steinhardt [12] proposed
such an invariant detector and showed that it outperforms the GLR for unstructured covariance when
the noise covariance matrix is assumed to have a priori known block diagonal structure. In [13], the
difficult deep hide scenario was considered where the target parks along a known boundary separating
two adjacent clutter regions, e.g. an agricultural field and a forest canopy. It was shown there that under
the reasonable assumption that the two clutter types are statistically independent, the induced block
diagonal covariance structure can be used to derive an invariant test with performance advantage similar

to Bose and Steinhardt’s test.

In this paper, we derive the form of the GLR for block structured covariance. Then the invariant
approach considered in [12] and [13] is developed in the context of imaging radar for deep hide targets,
and compared to the GLR. In this context, the spatial component has clutter covariance matrix R, which
decomposes into a block diagonal matrix under an independence assumption between the two clutter
regions, and the target is assumed to come from a known set of signatures of unknown amplitudes and

orientations. Several cases, denoted in decreasing order of uncertainty as Cases 1, 2 and 3, of block
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diagonal covariance matrices are examined:

R4 O
O Rp

e Case 1: Ry >0, R >0
o Case 2: Ry >0, Rp = ¢2I where ¢2 > 0
e Case 3: Ry >0, Rg =1

where the subscripts denote the two different regions A and B. Case 1 corresponds to two completely
unknown clutter covariance matrices R4 and Rpg, and Case 2 corresponds to one clutter covariance R 4
completely unknown and the other Rg known up to a scale parameter. As shown in [12] the known clutter
covariance matrix in Rp, represented by the matrix I, can be taken as the identity matrix without loss
of generality. Case 3 corresponds to Rp known exactly. Cases 2 and 3 arise, for example, in application
where one of the clutter regions is well characterized. For real valued observations, the GLR method is
shown to have explicit form for each of Cases 1, 2 and 3, involving the roots of a 4th order algebraic
equation. For complex valued observations, 4th order algebraic equations for real and imaginary parts of
the target amplitude must be solved numerically. The maximal invariant statistics for Cases 1 and 2 were
previously derived by Bose and Steinhardt and invariant tests were proposed based on these statistics in
[12]. We treat Cases 1-3 in a unified framework and propose alternative maximal invariant (MI) tests
which are better adapted to the deep hide target application. We show via simulation that there are
regimes of operation which separate the performance of the GLR and MI tests. When there are a large
number of independent snapshots of the clutter, the MLEs of the target amplitude and the block diagonal
clutter covariance are reliable and accurate, and the GLR test performs as well as the MI test. Conversely,
when a limited number of snapshots are available and SNR, is low, the MLEs are unreliable and the MI
test outperforms the GLR test. This property is also confirmed by the real data example, 1.e. the MI test

can detect weaker targets than the other tests when the number of snapshots is few.

In Section II, the image model for the detection problem is introduced and a canonical form is obtained
by coordinate transformation. We then review the principles of GLR, and invariance in Section III. Kelly’s
GLR test [9] for an unstructured covariance matrix is derived as an illustration of these two principles.
Section IV then reviews the application of these principles to detect a target across a clutter boundary.
There we also extend the detection problem from a single target to one of multiple targets. Finally, the

relations between the GLR and MI tests are explored by analysis and by simulation.
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II. IMAGE MODEL
A. Radar Imaging

Detection of targets in radar images is a multi-stage process involving pre-processing, image formation
from raw data, and formation of a test statistic. In this section, we review some issues regarding imaging
radars and their image outputs to which we can apply detection algorithms. Further information on the

image formation problem for radar can be found in remote sensing books such as [14], [15].

Radiometric sensors are usually divided into two groups according to their modes of operation: passive
sensors or radiometers, and active sensors such as imaging or non-imaging radar. Most imaging radars used
for remote sensing are divided into two groups: the real-aperture systems that depend on the beamwidth
determined by the baseline of a fixed antenna, and the synthetic-aperture systems that form a virtual
baseline with a moving antenna. Synthetic-aperture radar (SAR) systems can acquire fine resolution
using a small antenna with spatial resolution independent of the radial distance to target, which has
made spaceborne imaging radar with fine resolution feasible [14]. Although we restrict our attention
to detection problems for radar images, the same techniques can be applied to passive sensors such as

long-wave infrared or thermal radiometers.

In active imaging radars, the returned signals are processed to extract complex images of target re-
flectivity which consist of magnitude and phase information. Fig. 10 displays the magnitude of such a
complex valued SAR image which has been converted into decibels (dB). It is common to model a complex
valued radar image as linear in the target with additive Gaussian distributed clutter. Examples where a
Gaussian model is justified for terrain clutter can be found in [16]. Even in cases when such a model is
not applicable to the raw data, a whitening and local averaging technique can be implemented to obtain
a Gaussian approximation, e.g. by subtracting the local mean from the original image while minimizing

the third moment of the residual image [17], [18].

Assume that the complex image has been scanned or reshaped to a column vector z. If multiple
snapshots (chips) z;,...,z, of the terrain are available, they can be concatenated into a spatio-temporal
matrix X with columns {z,}7_;. Let s be the reshaped target vector to be detected in a clutter background
N having independent, identically distributed (i.i.d.) Gaussian columns with zero mean. Then we have

the simple image model
X=as QH + N

where a is an unknown target amplitude and b7 accounts for the articulation of the target vector into
the snapshot sequence, e.g. possible chip locations of the target. In spatially scanned radar images, the

vector b would be equal to [1,0,...,0] if the target presence is to be detected in the first image chip
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(1st column of X). In this case, this column will be called primary data while the rest of X will be called
secondary data. In multi-spectral images, described in [15] and studied by Reed [17], [18], as can be
thought of as a vector of unknown spectral intensities and v represents the known spatial signature. We

will consider a more general p target model in the next subsection.

The most common assumption for clutter is that its spatial covariance matrix is completely unknown.
This assumption makes derivation of the GLR decision rule easy and leads to a CFAR, test for which the
false alarm rate is independent of the actual covariance of the clutter [9], [19]. However, when available,
inclusion of side information about the noise clutter covariance will give improved performance, even

though the derivation of the GLR is often rendered more difficult.

B. Problem Formulation

Let {z; }7_, be n statistically independent mx1 complex Gaussian vectors constructed by raster scanning
a set of n 2-D images. We call each of these vectors subimages or chips and assume that they each have
identical m x m clutter covariance matrices R but with possibly different mean vectors (targets). Concrete
examples are: multi-spectral images where subimages correspond to a scene at n different optical or radar
wavelengths; multiple pulse SAR images where repeated probing of a scene produces a sequence of n
subimages; polarized L or C band SAR where subimages correspond to m = 3 polarization components

(HH, HV, VV) at n different spatial locations; or n non-contiguous spatial cells of a single IR/SAR image.

As explained above, by concatenating these n vectors we obtain the measurement image matrix (m x n)

X =[zy,...,2,]. This matrix can be modeled as follows

X=Sab? + N (2)
where S = [§1, . ,§p] is an m X p matrix consisting of signature vectors of p possible targets, a =
[ai, ... ,ap]T is a p x 1 unknown target amplitude vector for p targets, and b7 = [by,... b,]isa 1 x n

target location vector which accounts for the presence of target(s) in each subimage. Also we assume that
N is a complex multivariate Gaussian matrix with i.i.d. columns: vec{N} ~ CAN(0, R @ 1,) where 0 is

an mn x 1 zero vector, I, is an n x n identity matrix, and ) is the Kronecker product. This model is a

simplified form of the GMANOVA model
X=SAB+N

where S (m x p) of rank p and B (p x n) of rank p are known matrices, and A (p x p) is a matrix of
unknown amplitudes [20]. In this paper, the simpler form (2) will be used throughout and correspond to
the assumption that the target location vectors (rows of B) for p targets are all identical, i.e. the target

components in different subimages differ only by a scale factor.
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The detection problem is to seek the presence of target(s) for S and b known, a unknown, and the
independent columns of N having the unknown covariance matrix R. By applying coordinate rotations to
both of the column space and the row space of X we can put the image model into a convenient canonical
form as in [19]. Let S and b have the QR decompositions

Tg iy

S=Qs , 0=Qp
O 0

where Qg (mxm), Qp(nxn) are unitary matrices, Tg is a p x p upper-triangular matrix, and ¢; is a scalar.

Multiplying X on the left and right by ng and Qp, respectively, we have the canonical representation

- T -
X=QfxQ=| " |a[tff 0"]+N
0]
where N is still n-variate normal with vec{N} ~ CA(0, QIR Qs) ®I,,) and the target detection prob-
lem is not altered since R, is unknown. Now the transformed data has the partition
X — z1; X1
zy1 Xoo
where z,, is a p X 1 vector, z,; is a (m — p) x 1 vector, X192 is p X (n— 1), and Xz is (m —p) x (n — 1).
Note that ng and Qp have put all the target energy into the first p pixels of the first subimage, z,,. This
canonical form is identical to the one found in [21]. In the sequel, unless stated otherwise, we will assume

that the model has been put into this canonical form.

For the special case of p =1 (single target), this model reduces to the one studied by Kelly [9]
X =agel +N (3)

where a is an unknown complex amplitude, e; = [1,0,...,0]7 is the n x 1 unit vector, and the known
target signature is transformed into an m x 1 unit vector £;. With the model (3) we can denote the
unknowns by the unknown parameter vector § = {a, R} € © where O is the prior parameter range of
uncertainty. Let Oy and ©; partition the parameter space into target absent (Hyp) and target present (Hy)
scenarios: Oy = {a,R : a = 0, R € Hermitian(m x m)}, ©; = {a,R : a # 0,R € Hermitian(m x m)}.

Then the general form for the detection problem is expressed via the two mutually exclusive hypotheses:
Ho . XNf(X,HO), HOZ{O,R}EGO

Hy XNf(X,Hl), le{a,R}E(Bl.

Now, following [12], we extend (3) to the structured covariance case. Consider Case 1 in Section I. This

is the scenario where a target parks along a known boundary of the two unknown but independent clutter
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regions A and B. Then the target signature s is partitioned as
sa(ma x 1)
sp(mp x 1)
where ma+mp = m, and the unitary matrices Qg, and Qg can be obtained from the QR decompositions

of 5, and sp, respectively. Using

Qs, O
0O Qsp

Qs =

in the canonical transformation the model is then composed of two parts from regions A and B

X s N
X=| " l=a| ™ |4 ] 1 (4)
Xp Sp Np
where §, = [55,0, e ,O]H and 3 = [sg,O, e ,O]H. N4 (ma x n) and Np (mp x n) are independent

Gaussian matrices with unknown covariance matrices R4 (ma X ma) and Rp (mp X mp), respectively.

The target detection problem is now simply stated as testing a =0 vs. a # 0 in (4).

I1I. DETECTION THEORY
A. Hypothesis Testing

Signal detection is a special case of hypothesis testing theory in statistical inference [1]. As explained
in the previous section, given an observation X a decision has to be made between two hypotheses
corresponding to presence of a target (H1) or no target (Hp), respectively. Hypotheses are divided into
two classes according to the parameter # underlying probability density functions (pdfs) of each of the
hypotheses. When 6 can take on only one value, fixed and known, under each hypothesis, the hypotheses
are said to be simple. In this case, the pdf f(X;8) is known given Hg or H;. Otherwise, hypotheses are
said to be composite. In singly composite hypotheses, only one of ©y or ©; contains a set of values of
¢, and in doubly composite hypotheses, both ©y and ©; contain a set of values of #. Thus composite
hypotheses only specify a family of pdfs for X. There are two general strategies for deciding between
Hy and Hi: the Bayesian strategy and the frequentist strategy. In Bayes approach to detection, priors
are assigned to the probabilities of Hy and H;, and it is assumed that # is a random variable or vector
with a known pdf f(#). After assigning a set of costs to incorrect decisions, the Bayes objective is to find
and implement a decision rule which has minimum average cost or risk. In many situations, however, it
1s difficult to assign these priors. Moreover, the Bayes approach assures good performance only for the
average parameter values over @y and ©;. The Bayes approach does not control the performance of a test
for any specific parameter value which can arise. Also it provides no guaranteed protection against false

alarm (deciding H; when Hy is true) and miss (deciding Hy when H; is true). For simple hypotheses,
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©o = {6y} and ©; = {0}, the frequentist approach attempts to maximize the conditional probability
of detection (Pp) for fixed conditional probability of false alarm (Pp4), or vice versa, resulting in the

Neyman-Pearson test. Specifically, a maximum tolerable level a of false alarm is specified as

PFA(HQ) S «

where Pp4(0) = P(decide Hi|Hy; 0) and a decision rule is selected which attains the largest Pp among all
tests of level «r. This test is also called the MP test [22].

In testing simple hypotheses, both Bayes and Neyman-Pearson criteria lead to the same decision rule
involving the LR test. The only difference lies in the selection of the thresholds applied to the test statistic.
However, in a general problem of testing composite hypotheses the two approaches differ substantially.

For non-random 8, if such a test existed, a frequentist would select a test of level a satisfying

grelg)g Pra(0) < a
which has the highest Pp(6) among all tests of level o and for all § € ©;. Such a test is called a UMP
test. Whenever a UMP test exists, it works as well as if we knew 6. Usually, however, such a test does
not exist since the optimal decision region of an LR test depends on the unknown parameters {6g, 61},
and consequently we need to adopt other alternative strategies. For instance, in testing doubly composite
hypotheses, most detectors will have their Pry and Pp varying as functions of unknown 6 € ©; and
f € O, respectively. In such cases, two classes of strategies can be used: one is to optimize alternative
decision criterion and the other is to constrain the form of detectors to a class for which a UMP test may
exist. Several methods utilizing one of these strategies are listed below. Some examples of alternative
criterion are the minmax test and the locally most powerful (LMP) test. A minmax test is a test of level
« which maximizes the worst case power mingee, Pp(f). In order to implement this test, we need to find
the least favorable density which maximizes Pp while constraining the specific level of Pr4. However, the
performance of a minmax test can be overly conservative especially if least favorable priors concentrate
on atypical values of #. Furthermore, the least favorable priors may be difficult to find in practice. The
main idea behind a LMP test is to find the MP test for detecting a small perturbation of parameters
from Hy. The LMP test is particularly useful for weak signals. Some examples of constrained classes of
tests are unbiased tests, CFAR tests, and invariant tests. Unbiased tests are all tests of level o whose
Pp(0) is greater than « for all # € ©;. CFAR refers to the property that the tests have constant false
alarm probability over ©y. Sometimes UMP CFAR tests exist when UMP tests do not exist. Finally,
invariant tests seek to find a transformation or compression of the data, which results in reducing the effect
of nuisance parameters. In many cases, the invariant and unbiased classes of tests contain the minmax

optimal test.
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B. GLR Principle

Generally, optimality is not guaranteed in a composite hypothesis test which involves highly variable
nuisance parameters, and a UMP test rarely exists. When such a test does not exist, a popular sub-
optimal strategy is to use the GLR principle. With unknown parameters § in the likelihood ratio, a
logical procedure is to find good estimates of # under Hy and H;, and substitute these estimates into the
likelihood ratio statistic as if they were true. This is akin to reformulating Hy and H; as simple hypotheses
depending on the estimated 6 values for which an MP test always exists. In GLR procedures, the pdfs
of the measurement under both hypotheses are maximized separately over all unknown parameters by
replacing them with their MLEs. As afunction of MLEs, this GLR test is asymptotically UMP since, under
broad conditions [23], MLEs are consistent estimators as the number of observations goes to infinity [1].
And in many physical problems of interest, either a UMP test will exist or a GLR test will give satisfactory
results. In some instances, however, the optimization or maximization involved in deriving a GLR test
may be intractable to obtain in closed form. Moreover, similarly to MLEs, the performance of a GLR test

can be poor (not even unbiased) in a finite sample regime.

C. Invariance Principle

The main idea behind the invariance principle is to find a statistic which maximally condenses the
data while retaining the discrimination capacity of the original data set. It is instructive to first consider
the mechanism of data reduction associated with the minimal sufficient statistic. Recall that a function
T = T(X) of the data is a sufficient statistic for testing between Hy and H; if, for all y € ©g and 6, € O,
the likelihood ratio A depends on X only through 7'(X):

A(X;00,0,) = % = g(T(X); 00, 6,).

The sets {X : T(X) = t};+ can be thought of as sufficiency orbits of X which specify constant contours
of A(X). Thus a sufficient statistic 7(X) indexes the orbits and preserves all information needed to
discriminate between Hy and H;. Sufficient statistics are not unique and 7(X) is a minimal sufficient

statistic if it is a function, i.e. a compression, of any other sufficient statistic.

Data reduction via invariance is achieved by finding a statistic Z = Z(X), called the maximal invariant

statistic, which indexes the set values (which we can think of as constant contours) of the set function

A(X) £ {A(X;60,61) : 0 € Op, 6, €O, }. (5)
To make this practical, a tractable mathematical characterization of this set function must be adopted.
This can be accomplished when the probability model has functional invariance which can be characterized

by group actions on the measurement space X and induced group actions on the parameter space ©. Let
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G be a group of transformations g : y = x acting on X. Assume that for each 8 € © there exists a unique
0 = g(6) such that fs(9(X)) = f7(X). g € G is called the induced group action on ©. The above relation
implies that the natural invariance which exists in the parameter space of # implies a natural invariance
in the space of measurement X. If we further assume that §(0y) = Og, §(01) = ©1, then the model and
the decision problem are said to be invariant to the group G. The orbits of X under actions of G are

defined by
X =Y if3g € G such that Y = ¢(X).

The orbits of # under actions of G are similarly defined. Note that to capture natural invariance of the
model, the groups G and G must have group actions with the largest possible degrees of freedom among

all groups leaving the decision problem invariant.

Ezxample: Sufficiency vs. Invariance

To illustrate the statistical reduction or data compression associated with sufficiency and invariance,
consider the signal model defined in (3) for real valued measurements. For the special case of m = 1, this

model reduces to

where, as before, e, is an n x 1 unit vector and N7 is a normal row vector with zero mean and covariance
matrix o2I. The above model corresponds to testing for target presence at a single pixel in a sequence of
n snapshots. This is a simple i.i.d. real Gaussian example with unknown parameters ¢ = {a, 0}, and the

pdf of z 1s

1 1 1‘1—02 - xlz
flz) = Wexp [—5 {% +;§}] (6)

2 is unknown,

where & = [21, 29, ..., @,]. Since the objective is to decide whether a = 0 or @ # 0 when o
we define 0y = {0, 02} and 6, = {a, 7} which are points in Oy = {a,0% : a = 0,0 > 0} and ©; = {a,0? :
a # 0,02 > 0}, respectively. The likelihood ratio is

f(x;a,07)

F(z;0,05)

With the pdf (6), we can express the log likelihood ratio as a function of x:

A(z;00,61) =

2 2 2
a o] — 0O a o
A(z:00,01) = — elz+ 2’z — g +nln—
o 20507 207 o1

where @ € R and o2,06? > 0. Thus A depends on z only through T(z) = {t;,t5} where ¢; = el z and
to = 2Tz, T(X) is a minimal sufficient statistic indexing the sufficiency orbit illustrated in Fig. 1 as a

circle in R® when n = 3. Given t; and ¢» we can recover all of the information in the entire n-sample
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required to discriminate between different values of the parameter pair {a,o?}. Generally for n > 2, the
sufficiency orbit of x is the surface of an n — 1 dimensional hypersphere defined by the intersection of the

surfaces of the hypersphere {z : Y, #7 = t»} and the hyperplane {z : & = ¢;}.

This sufficient statistic is the minimum amount of information required of z to estimate the parameters
{a,0?}. The maximal invariant is the minimum amount of information required to discriminate between
the sets of parameter values ©y and ©1, i.e. detection of the target. To determine the maximal invariant,
the set function (5) of the likelihood ratio needs to be defined first. Since, under Hy, a € R and ¢2,0? > 0

are unknown, the contours of the log likelihood ratio can be equivalently indexed by the parameters

a = afejzx
2 = o2feTe
72 = oifeTe

~ T2  ~2  ~2 =2 T, |2 ~
o a |ex o o a gz 0o - =2
InAfz) =9 = | T| + 1~2~20— — | T| +nln—:aeR;52,67>0.
of z'z 2040 207 zlz o1

which 1s the maximal invariant in this example. In Fig. 2, the invariance orbit is illustrated as a cone
in R®. Each invariance orbit {z : |Q{£|2 JeTx = z} is indexed by the equivalent maximal invariant,
x?/ 57", x?, which determines the tangent of this cone. Thus, the compression to a scalar function of
 provided by the maximal invariant is a more vigorous compression than that provided by the minimal

sufficient statistic above. [ |

The principle of invariance stipulates that any optimal decision rule should only depend on X through

the maximal invariant Z = Z(X) which indexes the invariance orbits in the sense that

1. (invariant property) Z(¢(X)) = Z2(X), Vg € G
2. (maximal property) Z(X)=Z(Y)=>Y =¢(X), g €G.

Clearly, the maximal invariant is not unique. Any other functions of X related to Z(X) in a one-to-one
manner can be maximal invariant. It can also be shown that the probability density f(Z;d) of Z only
depends on @ through a reduced set of parameters § = §(6), which is the induced maximal invariant under

G. Use of Z for detection gives the equivalent set of hypotheses

Ho : ZNf(Z,(S(HQ)), 906@0
Hy ZNf(Z,(S(Hl)), f, € O.
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Since the new parameterization §(60) is generally a dimension reducing function of #, use of the reduced
data Z gives us better chances of finding a CFAR test whose false alarm rate is independent of 4. In
particular, when d(fy) is constant over 0y € ©Og, the distribution of Z under Hy is fixed and therefore any

test based on Z will automatically be CFAR.

When there exists a group G that leaves a testing problem invariant, we can restrict our attention to

the class of invariant tests where a test function ¢ on X satisfies

¢(9(X)) = ¢(X), Vg €G.

Any one-to-one function of the maximal invariants produces an equivalent invariant test [20].

D. Ezample: Unstructured Covariance Case

We will first consider the case where the clutter is totally unknown. Suppose that the measurement
matrix is Gaussian with i.1.d. columns each having the unknown covariance matrix and the problem is to
decide the presence of a known target in a known subimage with an unknown amplitude. Then we can

use the image model in (3), X = ag, ef + N, and its partitioned form

11 Ly9

X=[z; Xo] = (7)

Lo X

where z; is the first subimage which may contain the target and all the target energy has been put into the
first pixel 11 of this subimage. This is the case studied by Kelly [9], and the results are briefly reviewed
here to help illustrate the application of the GLR principle and invariance principle discussed previously.

This will help the reader understand more complicated structured models of interest, covered later in this

paper.
D.1 GLR Approach

Since the m x n measurement matrix X is complex multivariate normal with m x n mean E[X] = ag, eF

and mn x mn covariance cov[vec(X)] = RQ)T as described in Section II-B, the problem is to decide
whether a is 0 or not when R is unknown. If we write the i.i.d. columns of X as {z;,2,,...,%,}, the pdf
of X is

FX) = gy &P |~ —az) "R —ag) - ZZ_;E’R‘E : (8)

Obviously, the likelihood ratio involves unknown parameters, a and R, and we derive the GLR by

maximizing the likelihood ratio over those parameters, i.e. by replacing them with their MLEs:

j, _ MaXseo, J(X;0)  max, f(X;a,f{l)
' maxgeo, f(X50)  f(X;0,Ro)
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where Rg and R; are the MLEs of R under Hy and Hy, respectively. It is easily shown:

1 n

8 H

Ry = —E Tz
i=1

R, =

3

S|

To ensure these matrices be nonsingular with probability one, we must impose the condition that n > m.
After some algebra, we obtain the following simple form of the GLR for this example by taking the n-th

root of {;:

H Hy—1
{L/E _ max{ 1+ £1H(X2X2H) T } . )
a L+ (zy —ag) )7 (X2 X5 )1z — ag))

It remains to maximize this ratio over the unknown complex amplitude a. This can be done by

completing the square in the denominator of (9) giving the MLE of the amplitude as

e (XoX) ™2y

0= =———=—. 10
XXz, 10
Thus the GLR test is equivalent to 1 — 1/%, denoted Tk:
T X XH -1 2
TKU — = = |§1( 2439 ) H£1| = ) (11)
g1 (XoXy')7ley {1+ 2y (XX )7tz }

This test was obtained by Kelly [9] and will be called the unstructured Kelly’s test. Kelly also proved in
[9] that this test has the CFAR property.

D.2 Invariance Approach

As defined above, an invariant test is a test statistic which is a function of the maximal invariants.
Here, we review the derivation of the maximal invariants under the unstructured model described above,

and prove that the Kelly’s GLR test can be represented with the maximal invariant statistics.

With the previous model, we can define the following group of transformations acting on X as

H T
10
A _52 X B (12)
0 M (U )

9(X) =

where 51 # 0, ﬁz(l x (m—1)) and M((m—1) x (m—1)) are arbitrary, and U((n—1) x (n—1)) is a unitary
matrix. In order to prove that the decision problem is invariant to this group, it is worthwhile to recall the
important property of the Kronecker product that if an m x n Gaussian matrix X has mean E[X] = p and
covariance cov[vee(X)] = R® C, then FXH has mean FuH and covariance FRF# @ HCHY. With
this property and the model X in (7), we have ¢(X) = ag,ef + N where @ = $1a and N is still zero-mean
Gaussian with cov[vec(N)] = R ® I where

i ﬁlngm@f
0 M 0 M
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Thus the problem remains unchanged under this group since the unknown amplitude @ and covariance
matrix R are just replaced by a and f{, respectively. This group is also the group whose actions have the
largest possible number of free parameters which guarantee that the decision problem remains unchanged.
Indeed if the full linear group of row actions were used, i.e. the first column of the left multiplying
matrix in (12) were to be arbitrary, the signal spatial structure g¢; would not be preserved. Likewise, if
a larger group of right multiplying matrices than the one in (12) were applied to the columns of X, the

independence of the columns of X or the temporal (chip) structure e, of the signal would not be preserved.

Once the invariant group of transformations is obtained, we can now define a set of statistics, i.e.

maximal invariants, which indexes the orbits of X under this group.

Proposition 1: With the model (7) and the group of transformations (12), the maximal invariant is

2-dimensional:

o= e (XeXy) ey,
2 = gﬁ(Xng)_lgm.

And zy/ can be replaced by

_ 2
. |$11—£12X12LI2(X22X512) 1£21|

1 =
Ly [T — XE (Koo XE) =1 X | 2l
since 21 = 21 + 2.
Proof: Bose and Steinhardt [12]. See the appendix for an independent derivation. ]

To interpret this set of maximal invariants, consider the group of transformations (12) as

= | wlanX) | g, pTX,U

ga(z9, Xa2) Mgz, MX.U
where ﬁH =[5 ﬁf] From each group action on the measurement scaled by 3 or M, and rotated by U,
we can construct a orbit (cone) as in Fig. 2. Then each cone of g1 and g2 is indexed respectively by z1/
and zo which are the ratios of the norm squared along the axis of the cone to that perpendicular to it. z;
1s the sample correlation between primary and secondary data whose distribution is same under Hg and
Hy. Thus it is an ancillary statistic [20]. Also the representation of z; gives it an interpretation as the
estimated s-prediction SNR, i.e. the ratio of the magnitude squared of the estimated target error to that
of the estimated clutter prediction error, where glzngz(xzzxg)—lgm is the least-squares estimate of x1

given z,, and Xo.

Any invariant test will be functions of z; and z2, and we can show that the Kelly’s test (11) is one of
them. As described in Proposition 1, 2 (Xo X4 )=z, = 2; + 25 and we have

KX
o= e (XX 1g, {1421 + 22}
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Then using the partition in (7) and relations for the inverse of partitioned matrices [24], we can show

e] (XoXi) ey {215 [T— X35 (X0 XE) ™ Ko 275} 71,
211 — 2, X5 (Xoa X)) "y

2y [T — X (Koo X)) 71 X g0 ] 2l

Q?(X2X12q)_1£1

Thus

— c1
Itz

, which establishes that the GLR test is also an invariant test.

Tk (13)

No optimal properties are claimed for this test, and as noted earlier the number of chips, n, must exceed
the number m of spatial pixels per chip which can be quite large in many radar applications. Kelly derived
the pdf of the test statistic and showed that it depends on the unknown covariance matrix R only through
a SNR involving the unknown signal amplitude a. Thus, under the clutter-alone hypothesis Hy, the pdf
of Tk, 1s not affected by the unknown parameters, and hence the test is CFAR.

IV. APPLICATION TO TARGET STRADDLING CLUTTER BOUNDARY

In this section, we consider the problem of detecting a known target straddling the boundary of two
independent clutter regions. From the model (4), the measurement matrix X is composed of two different

regions A and B and can be partitioned as

Xa z Xa2
X = — | A (14)

Xp zp; Xp2
where z,4; and zg, are the primary vectors which may contain the separated canonical parts of a known
target, s, and sp, respectively, with the unknown common amplitude a. Under the clutter-alone hypoth-

esis Hy, any of the i.1.d. columns of X will be multivariate Gaussian with zero mean and a covariance

matrix R having a block diagonal structure as defined in (1).

A. GLR Tests

Let {241,249, - 24, and {2g,2ps,...,2p,} represent the i.i.d. columns of the two uncorrelated

matrices X 4 and Xpg, respectively, then the pdf of X factors as

f(X) = f(X4)f(XB)
where f(X4) and f(Xp) are defined similarly as (8) for each region. Now the decision problem is to
decide whether the primary data contains clutter alone (a = 0) or clutter plus target (a # 0):
Hy @ X~ f(X;0,R4,Rp)

Hy @ X~ f(X;a,Ra,Rp)
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where R4 and Rp are the regional covariances as given in (1). As in the unstructured case, the GLR
maximization can be performed for the unknown covariance matrices R4 and Rp by replacing them
with their MLEs. Here, the required condition for non-singularity of the estimated covariance matrices
(n > m) is relaxed since we need only n > max{my, mp}. This GLR, however, still involves a maximiza-
tion over the unknown amplitude a in a complex quartic equation and cannot be represented in closed
form. However, for real valued data the roots of the quartic equation are explicit. For complex data we
implement the GLR tests, derived under the structured cases, using numerical root finding and compare

their performance in Section V.

Al Case 1: R4 >0,Rg >0

The GLR for this case is just the product of the likelihood ratios from regions A and B:

A — Ff(Xa;a,Ra1)f(Xp;a,Rp1)

1 = max - - .

@ f(X4;0,R40)f(Xp;0,Rpon)

Next we can apply the results of the unstructured example in Section III-D to both of the two regions A

and B separately:

1 1+p(0a§AaXA) 1+p(0a§BaXB)
—InA; = In | ——W——————~ In| ——W————~ 1
n n mjx{n[1+p(aa§AaXA) +n 1+p(aa§BaXB) ( 5)

where

pla, sy, Xa) = (241 — aéA)H(XMng)_l(&m —asy).

Now we call (15) GLR 1 which reduces to the GLR in (9) when R is unstructured and for which the

maximization over the quadratic equation in the denominator can be easily achieved.

With this structured model, however, the maximization over a cannot be completed explicitly. But

since the maximizing value of the complex amplitude
a = argmin{[1 + p(a, 54, Xa)] - [1 + p(a, 55, XB)]}

involves a product of two positive quadratic equations, we can derive upper and lower bounds to aid in
numerical search. Define the local solutions from each region A, B as in (10):

s (XaoX i) " l2 gy

aa = argminp(a,sy,Xa)= — ; (16)
a §£(XA2X52) 'sa
) sH(X g XH )z gy
ap = argminp(a,sg,Xp) =2 B2° Bl
a o sp (XpaXH,) " 'sp

Then we know that & lies between those local solutions which serve as bounds, and GLR 1 can be

implemented or maximized while varying @ in such a way so as to guarantee

min{Re{as},Re{ap}} < Re{a} < max{Re{ds}, Re{ap}},

min{Im{as},Im{ag}} < Im{a} < max{Im{as},Im{ag}}.
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A2 Case 2: Ry > 0,Rp =1

This case 1s just as above except that Rp is assumed to be diagonal with common unknown variance

o? along the diagonal. With this assumption, the pdf of Xp is

1 1 -
f(Xp;a,0%) = —pngzmpn OXP l—g {|£Bl —asp|’ + Z|£Bi|2}]

i=2

and the GLR is expressed as

f(Xasa, Rai)f(Xp;a,01)
9 = max — —.
¢ f(XA;OaRAO)f(XB;OaUO)
Again MLEs of the variance under both hypotheses can be easily found as

.2
= X
a4 mBnQ(aa§Ba B)a
1
2
= 0 X
(o5} mBTLq( ySB) B)
where
q(a,55,Xp) = tr {(Xp —aspe] )" (Xp —aspe] )} - (17)

As before, the maximization over a in Ay cannot be completed in closed form. To bound a, we first
consider the GLR over the region B alone which can be simplified to
0 X men
lzzmax{iq( 2B B)} .
a | g(a,s5,Xp)

We named it l3 after the previous unstructured GLR test statistic {1 in (9). Then by rewriting ¢(a, sz, Xp)

as
H 2 n H 2
2 $BZB1 2 |spzp|
g(a,35,Xp) = |sp|” - ja = =57 + |2l = = 5
|sp]? ZZ_; ' |spl?
we see that the maximizing value of a is
H
ap = 281 (18)
|sp|
where sp is the canonical target of form sp = [sp,0,...,0]7. Thus we have the equivalent form of this
GLR
1 |ezenl?

I — ) . (19)
5/l Y iy lepl?

Now back to As, GLR 2 can be expressed as

1 1 X X
—lnAQ:max{ln [M] +mp-In [M]}’ (20)
n @ 1+p(aa§AaXA) q(aaéBaXB)

and the maximizing value of a can be found between a4 given as (16) for Case 1 and ap given in (18).
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A3 Case 3: Ry >0,Rg =1

Suppose Rp is exactly known to be an identity matrix. Then from the results of Case 2 we can derive

a bound on the maximizing value of a required to implement the GLR. Define the GLR I3 over Xp alone:
ls = max{exp[q(0, 5, Xp) — ¢(a, 55, X )]}

where ¢ is the same as defined previously in (17). Hence, the MLE of the amplitude a is equal to ap given

in (18), and the GLR over Xp is equivalent to

11113 = |l‘311|2. (21)

Thus, finally, we can define GLR 3 using the entire measurement X as

1 1+p(0a§AaXA) 1
—InAz = In|——————2——= — Xp)— X 22
n nAs maax{ n |:1 +p(a,§A,XA) + n [q(0a§Ba B) Q(aa§Ba B)] ( )

where the maximization over a can be implemented similarly to Case 2.

B. MI Tests

In this section, we apply the invariance principle to the structured covariance cases studied above and
construct a test statistic as a function of the maximal invariants derived. These results parallel those of
Bose and Steinhardt [12]. Tt will be convenient to first define the partition of X which is refined from
(14):

TA1l L a2

Xa L A91 X422
Xp TB11 ZXpi9

;3 Xp22

With this partition, the structured group of transformations induced by each model will be defined as

9(X) =

and the maximal invariants under each group can easily be obtained. For each case, MI test is proposed
based on the maximal invariants and compared to the previous results of Kelly [9] and Bose and Steinhardt

[12].
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B.1 Case 1: R4y >0,Rg >0

In this case, the independent regions A and B both have unknown covariance matrices, and we can

construct a structured group of transformations on X which is extended from (12):

H T
1 0
s & 0
0 My 0 Uga
9(X) = 5 gt Lo (24)
B XB =
0 Mp 0 Up

where 3 # 0, QA(I x (ma—1)), QB(I x(mp—1)), Ma((ma—1)x(ma—1)) and Mp((mp—1) x (mp—1))
are arbitrary, and U, and Upg are ((n — 1) x (n — 1)) unitary matrices. Showing the invariant property
of this group is analogous to the unstructured example. With this group, the set of maximal invariants is

defined in the following, which is also briefly covered in [12].

Proposition 2: With the model in (4) and the partition in (23), the maximal invariant under the group

of transformations in (24) is 5-dimensional:

L |ual?
Al — DA )
zaz = 2o (Xa2eXHo0) 240,
I lug|®
Bl — DB )
2y = o1 (Xp2oXHan) g0,
U4
ZAB = —
up

where the subscripts denote whether the quantities are computed over the region A, B or both A and B,

and
_ H H -1
ua = Tan — £A12XA22(XA22XA22) L a2t
_ H H -1
up = Tp11 — Tp12Xpaa(Xp22Xpan) Zpay,
_ H H -1 H
Da = z41s [I - XAzz(XAzzxAzz) XA22] La12
_ H H -1 H
Dp = zp» [I — X522(XB22X3595) XB22] LpB12-

And z4p can be replaced by

lua/sa —up/sgl|”
Da/lsal* + Dg/|sp|?

ZAB =

or

lua/sa —up/sg|’
qaDa/lsal? +qsDp/|sB|?

ZAB” =

where g4 = 1+ 241 + 242 and qg = 1 + 251 + 2B2.
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Proof: Bose and Steinhardt [12]. See the appendix for an independent derivation. ]

We can see that 241 and za2 correspond to z; and zy in the unstructured test (Proposition 1) applied to
region A, and zp; and zps correspond to those applied to region B. The coupling term, zap, zap/, or

zap!, not present in the unstructured test, captures the common amplitude a for both regions.

Bose and Steinhardt proposed a natural modification of Kelly’s test (11) which reflects the block co-

variance structure:

_ 2
|§HK 1£1|

Tis = 25
Ko = gHK1s {1+ 2P K- 1z,} )
where 2, = [@fl £g1]Ha s = [§f §§I]H and
K — XA2X£2 0

0O  Xp.X4,

To see that this is a function of maximal invariants derived in Proposition 2, first look at the term in
the bracket in the denominator of (25): 1+ @?K‘lgl = 14 za1 + za2 + zB1 + zp2 using the relation,
z1/ = z1 + z2, 1n Proposition 1. We can simplify the remaining factor in the test using the results of the

unstructured example:

2 2
sPK  zy | |(Da/lsal’) " ua/sa + (Dp/|spl?) " us/sB]|
sHK=1s (Da/lsal?)=t +(Dg/lsp|*)~!

where s4 and sp are the first elements which are only non-zero in s, and sp, respectively.

Lemma 1: Suppose that p x p matrices D4, Dp are hermitian and invertible, and w4, up are column

vectors of size p, then

(D3 uy + Dp'up)” (D3 + D)~ (Dy uy + Dp'up)
= uiD;'uy +upDy'up — (ug — up)(Da+Dp) " (uy — up).
Proof: See the appendix. ]

Using Lemma 1, the equation in (26) is a special case for p = 1. Hence the structured Kelly’s test (25)

can be expressed as

ZA1+ 2B1 — ZAB’ 27)

Trks = .
1+ za1+ 242+ 21 + 2B2
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Alternatively, by looking at the maximal invariant representation of Tk, we can obtain another invari-
ant test which reduces to the unstructured test (13):

1 .

[§£ §g] QAXA2X£2 O LAy
o ‘JBXB2X§2 TR
T = — . (28)
[sH 1] qaX 42 X4, O S
O qpXp2 X%, sp |

Note that g4 and gqp are placed in the estimated covariance matrix attempting to separate the coupled
denominator in (27). Thus 7 is same as (26) except for ¢gaD4 and ¢gpDp in place of Dy and Dg,

respectively, and from Lemma 1 we have

ZA1 ZB1 (29)

T, = =+ 4 1
YT Tz 2as L+ g+ 2o Ap

where the different coupling term z4p:/ is used instead of z4p:. This MI test will be shown to outperform

(27) for some situations.

B.2 Case 2: Ry > 0,Rp = ¢’1I

Now suppose Rp = I with unknown o7, then the invariant group of transformations in this case is

H T

1 0

g g, X, 0

0 My 0 Uga

9(X) = . (30)
1 0
B Xg

0 Ug

since Xp still remains Gaussian under this group except that a and ¢? are replaced by @ = fa and

62 = (Bo)?. Similarly to (24), the same scaling factor 3 captures the common amplitude in both regions.

Proposition 3: With the partition in (23), the maximal invariant under the group of transformations in

(30) is composed of

L |ual?
Al — DA )
zaz = 2o (Xa2eXHo0) 240,
- |96‘B11|2
2?21 |£Bi|2’
ua
zZAB =
TB11

where uy and D4 are same as defined in Proposition 2. But, since the maximal invariant is not unique,

we can also define alternative forms for zg and z4p: zp can be replaced by

_ |96‘B11|2
l2p12|* + |2pa1|* + [ Xp2a|f

B!
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and z4p can be replaced by either of

_ |ua/sa—=xp11/sB|?

ZAB! =
pDa/lsal® +vi/lsp|?
where
1
po= )
(n — mA)(l + ZAz)
v = 215" + |20y [* + [Xpo2lf
mpn — 1 ’
or
_ |ua/sa —xp11/sB|?
ZAB! —

gaDa/lsal* +va/|sp|?

where ¢4 1s same as defined in Proposition 2 and

1 <& .
Vg = — Lol .
2 mp ;_1: |_Bz|

Proof: Bose and Steinhardt [12]. See the appendix for an independent derivation. ]

za1 and z4» are same as those in Proposition 2, and the coupling terms are associated with the common

scaling [ for a. Finally, zp or zps are the maximal invariant for the case that only region B is considered.

Bose and Steinhardt derived identical maximal invariants in the context of array detection problems
and the above results can all be found in [12]. In [25], a representation for the joint pdf of the maximal
invariants is derived which gives insight into the marginal distributions: z41, z42 and zp as F-statistics,
and z4p as complex Cauchy. Based on these statistics an invariant test was proposed in [12] which was

shown to be approximately CFAR:

H H PXAZng o La1
[sh sH]
O v 1 g
Tps = — . (31)
H H pXAZXEZ O Sa
54 sH]
O v 1 Sp

where p and vy are as in Proposition 3. To see the maximal invariant representation, we write this test as

2
S |(pDa/lsal?) " ua/sa + (v1/lsB|*) " ep11 /58]
e (pDa/lsa?)=T + (v1/[sp[?)?

then from Lemma 1 we have

Trs :(n—mA)zA1(1+zA2)+(mBn—1)231—ZAB/. (32)
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However, we can construct another invariant test statistic by considering the structures of both the

GLR test (20) and the MT test 1 (28):

H H qAXA2X£2 O £A1
[§A §B]
O vl g
Ty = — - (33)
H H qAXA2X£2 O §A
[§A §B]
O vl Sp

where p and vy in (31) are replaced by ¢4 and vy defined in Proposition 3. Then this MI test 2 has a
maximal invariant form of

o ZAL
1+ za1+ 242

Thus the weighting between the terms from region A and region B is maintained as in (20), and this test

Ty +mp -2 — zZaB. (34)

reduces exactly to the unstructured tests: (13) for X4 alone or (19) for Xp alone. This reduction does

not hold for the Bose and Steinhardt’s test (32).

B3 Case 3: Ry >0,Rg =1

For this case, the invariant group of transformations is defined as

H T
1 0
g g, X, g

0 My 0 Uy

9(X) = Lot
Xp N

0 Ug

where, unlike the previous two cases, there is no scaling term on the left of X g since the variance is exactly
known in Xp and must not be altered by group actions. Thus g(X) cannot have the common scaling
term for the unknown amplitude in both regions, and the set of maximal invariants doesn’t include any

coupling term from regions A and B.

However, MI test 3 can be induced from MI test 2 (33) by replacing vz with vs = n, and we propose
the following MI test 3

zar 1 ua/sa —xpi1/sel’
T3:—1—|——|x311|2— |ua/ - 11/58| .
ga n gaDa/lsal* +n/|sp|

Note that this test also reduces to either of the unstructured cases: (13) for X4 alone or (21) for Xp

(35)

alone.

C. Extension of Tests to One of p Known Targets

In this section, the previous results are extended to the problem of detecting the presence of one target

from a known set of p possible targets. Previously, the target signature in the primary vector was assumed
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to be exactly known and the problem was to decide whether the one and only signal vector s is present
or not. In real radar applications, however, a more realistic model can be considered. Suppose that we
know the form of the target of interest, but don’t know 1its position or orientation in the subimage. Then
different target signature vectors can be constructed according to different positions and orientations in

that subimage.

To accommodate this scenario, let the image model have an m x p matrix S = [§1, . ,§p] for p target

signatures:
aSgel +N (36)

where ¢, is a p x 1 unit vector [0,...,0,1,0,...,0]" and ‘1’ is in position k. Here k € {1,...,p}, and
p < m for unstructured clutter or p < min{mu, mp} for structured clutter. The model (36) implies that
only one of the signatures, s,, may be present at a time in the primary vector, and in the structured case
this signature vector is written as s, = [§fk §gk]H

For the GLR tests (15), (20), and (22), it is easy to extend the results of the single target case to this
multiple target case. We only need to replace s, and sg in the GLR tests with p possible target signatures
sa, and sp;, and maximize over k = 1,... p, i.e. for ¢ = 1,2, 3 indexing each of the block covariance

cases discussed above:

1
max —InA;(s41,5p8).
k=1,...p1n Z(_Ak’_Bk)

Similarly, for the MI tests one can also propose to maximize over the p target signatures. In the following,
the invariance procedure is applied to the model in (36) for both the unstructured and structured cases.

For the structured cases, only Case 1 is investigated.

C.1 Unstructured Case

First, we consider the case of totally unknown covariance. Since S is known, we can define the canonical

model from (36) as

(ss)-1sH .
X = P {aS¢, e5 + N}
S

€k <
= a g?—i—N

0

where an (m—p) x m matrix Pg is an orthogonal matrix to (87 8)~1S# and N is still zero-mean Gaussian

with 1.1.d. columns. We partition X as before
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where the p x 1 vector z;; may contain any of the target signatures which have been transformed to unit

vectors {¢; }h_,. With this model, the group of transformations which preserves the problem is defined as

A B 1 0T
9(X) = X (38)
0O M 0 U

where A is a p x p diagonal matrix, B (p x (m — p)) and M ((m — p) x (m — p)) are arbitrary, and U
is an (n — 1) x (n — 1) unitary matrix. Note that by putting the model (36) into the canonical form, we
must restrict a diagonal matrix A in (38) instead of an arbitrary matrix in order to preserve the known
canonical form of the signal ¢;,. This group of transformations with larger degrees of freedom will lead to

a larger set of maximal invariants in the following proposition compared to the single target case.

Proposition 4: The maximal invariant of the model (37) under the group of transformations in (38)

consists of p + 2 functions of the measurement:

s = u'D7
o= 25 (XaaX3h) iz,
s = u'D g (¢fD7g) Dy
where £k =1,...,pand
¥y = Iy - X12X§2(X22X§2)_1£21’
D = Xi»[I- X (X00XE) X0 XP,.
Proof: See the appendix. |

Now the unstructured Kelly’s test (11) can be modified by maximizing over the p target signatures

L& o

[F 07 ] (XoXE) ey |”

Try = max
k=1,...,p

€
[e] 07] (XX E) 1 0 AL+ e (XX ) ley )

We will next express this test as a function of the new maximal invariants. Since z; and z» are equivalent
to those in Proposition 1 except for the dimension, it easily follows that 1+ 2z (Xo X )=z, = 142, + 25.

Also using the inverse of the partitioned matrix [24] on (X2XZ4)~1 we can write

€k

[ 07] (XX 4yt & D¢,

[ 0] (XoX5) ey = D7 'u
and hence the Kelly’s test is an invariant test of form

<3k
Ty = max ———.
k=1,....p 1 + 21 + 29
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C.2 Structured Case

Next consider Case 1 for the structured model. In this case, the signal model is same as (36), but with
the structured target signature matrix. Then, similarly to the above unstructured case, the canonical

image model is defined as

X=a3ef +N (39)
T
where 3, = gg Q(TmA_p)Xl gg Q(TmB_p)Xl . Thus, this canonical form can be partitioned as
Ta1p Xalz
XA xr XA
X — — LA21 22
Xg Zp11 XB12

B2 Xp22

and the invariant group of transformations on X is

A By 1 0T
Xa
O M 0 U
9(X) = ! - (40)
T
A Bgp 10
Xn
O MB Q UB

where we have the same p x p diagonal matrix A for X4 and Xp to preserve the signal vector ¢, and the

same amplitude in region A and B.

Proposition 5: With the model (39) and the group of transformations in (40), the maximal invariant is

obtained as

A — @szlﬂA,
ZA2 = ££21(XA22X£22)_1£A21’
zase = uhDI'e (gD e) el Dy uy,
zp1 = upDglug,
Zp2 = £gz1(XB22ngz)_1£lea
zpsk = upDp'e (e Dp'e) i Dy'up,

(/D 'e) el Dy uy

ZABK =
T-1 -1, T-1
(¢ Dp &) ' Dp up
where

_ H H -1
Uy = apy— Xa12XG05(Xa22X%90) 7 Zaons

_ H H -1
up = zpy — XB12Xp2a(Xp22XpEa0) " o1,

_ H H -1 H
Dy = Xain[T— X0y (Xa2X20) " Xaz] X4,

Dp = Xpiz [I - ngz(XBngzz)_lXBZZ] Xglz
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for k=1,...,p. And the coupling term z4pr can be replaced by

— _ — _ _ _ 2
(I D3 e) tef Dy uy — (1 Dg'e,) " tef Dylup

(efDy'e) ™! + (£ Dp'e) !

ZABK' =

or zaprr which is equivalent to z4pg: except that 4D 4 and ¢gDpg are substituted for D4 and Dpg,

respectively, where g4 = 1+ 241 + 242 and ¢qg = 1 + zB1 + 2B2.
Proof: See the appendix. ]

Note that z41, 242, zp1 and zp» are again equivalent to those in Proposition 2 except for the dimension

(p vs. 1).

For Case 1, we had before the structured Kelly’s test, Tx; (25), and the MI test, T} (28). First, consider
Tr s modified to fit the multiple signature model:
Ky

k=1,.. p ngK—1§k A1+ 2 K1z}

where z; and K are same as defined in (25), but for the target signature, we have structured 3, as in
(39). Then, as before, we have 1 + @{IK_lgl =1+ 241 + 242 + zB1 + 2p2, and from the results of the

previous section and Lemma 1, the remaining term can be written as

Hyr—1, |2 THy-1 -1, |2
s K £1| _|£kDA uy +6, Dy up

41
s K15, &d'DLle, + Dy, (4D

Using the Woodbury identity it can be verified that (41) is identical to zasg + 23k — zapk’. Thus Tk, is

a function of maximal invariant of form

T — max ZA3k T ZB3k — ZABk’
Ks — .
k=1,..p 1+ 241 + 242 + 2B1 + 2B2

MI test can also be modified by replacing the signal vector with s, and maximizing over k. Therefore,

the modified 77 is equivalent to (41) except for ¢aD 4 and ¢gDp replacing D4 and Dp:

2
|/ (qaDa) " uy + ¢f (¢8Dp) " ug]|
k=l.p ¢ (qaDa)~teg + € (¢sDB) g,

This can also be written as

2 A3k <B3k
71 = max + — ZABEK! ¢ -
k=1,..p {14+ 2za1+ 242 1+ 21+ 282

V. SIMULATION RESULTS

To analyze the performance of the GLR and MI tests derived under the three structured covariance
assumptions, Case 1, 2, and 3, receiver operating characteristic (ROC) curves are generated and compared

in this section. Even though the exact distributions of the test statistics are difficult to determine, it is
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well known that under Hg the log GLR test statistic of the form 21In A has asymptotically a chi-square
distribution with number of degrees of freedom determined by the number of fixed parameters under Hy
and H; [26]. This asymptotic approximation can be used to determine the threshold on the GLR which
ensures a given Ppa. In each simulation, we generated n 10 x 10 subimages containing 2 independent
clutter regions of area m 4 and mp pixels, respectively, and a b x 5 synthetic canonical target is inserted
into the first subimage in such a manner to straddle the boundary of the two different regions. Each of
the subimages is then concatenated into a column vector of size 100 to obtain a 100 x n measurement

matrix. Each of the ROC curves (Pp vs. Pra) shown below was obtained after 500 simulations.

In the following, the ROC curves are evaluated based on factors such as the target-to-clutter power
ratio; the dimensional parameters, m4, mp and n; and the prior uncertainty on the spatial covariance
R. Case 1, 2 and 3 are considered separately under different assumptions on clutter covariance. In each
case, the three GLR tests (15), (20), (22), and the three MI tests (29), (34), (35) matched to one of the
three cases are compared. Also shown are ROC curves for the following tests proposed by other authors:
Kelly’s structured test (27) matched to Case 1, and Bose and Steinhardt’s invariant test (32) matched to
Case 2. We also experimented with a real image where both of our GLR and MI tests were applied to a

SAR clutter image with an inserted real target at various pose angles.

A. Comparison with Different SNRs

First, we compared the detectors by varying SNR in region B (SNRp) for Cases 1, 2 and 3. In Figs. 3
- b, the ROC curves of 8 different tests are compared for several SNRs: Structured Kelly’s test (27), Bose
and Steinhardt’s test (32), MI test 1 (29), MI test 2 (34), MI test 3 (35), GLR 1 (15), GLR 2 (20), and
GLR 3 (22). For each case, two tests stand out as significantly better than the other six: the GLR and
MI tests which are matched to the underlying scenario, e.g. GLR 1 and MI test 1 for Case 1; and GLR
2 and MI test 2 for Case 2. This confirms the results from the previous section. For Case 1, we were
able to achieve performance improvement by separating the same coupled denominator for both regions
found in the matched Kelly’s test (27). For Case 2, the ROC improvement over the matched Bose and
Steinhardt’s test is explained by the weighting between two different regions which is carefully managed
in GLR 2 and MI test 2. Note that, however, neither the GLR nor the MI test uniformly outperforms the
other. Of particular interest are the curve crossings in the low Pp4 regions between the GLR and the MI
tests. In Fig. 3 (b), we can observe the gains in Pp of MI test 1 over GLR 1 for Ppy < 0.1. Moreover,
it should be noted that the ROC of the structured Kelly’s test is dominated by that of the MI test 1 in
the low Ppa region and by that of the GLR 1 in the high Ppy region. In Case 2 (Fig. 4 (b)), both the
MI test 2 and GLR 2 outperform Bose and Steinhardt’s matched invariant test and it appears that MI
test 2 slightly outperforms GLR 2 for low Pr4. These crossings are also observed for mismatched cases:

between MI test 1 and GLR 1 in Case 2 (Fig. 4), and between MI test 2 and GLR 2 in Case 1 (Fig. 3
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(b))-

For Case 3 (Fig. 5), the ROC curves for GLR 2 approach those of the matched GLR 3 in both (a) and
(b) since a large number of pixels (mpn = 60 x 61) are available to generate good MLEs of the unknown
variance in region B. Thus, in the following, we will concentrate on the relative performance of GLR vs.

MI tests for Cases 1 and 2.

B. Comparison with Different Windows

In this section, ROC curves are compared with different ratios of m4/mpg by up and down shifting the
10 x 10 windows used to collect the subimages along the boundary. In Fig. 6 for Case 1, GLR 1 performs
better as mp decreases since fewer parameters can be more accurately estimated with the same number of
chips (n = 61): the GLR test has to estimate a covariance matrix (Rp) of size 60 x 60 in (a), but only of
size 40 x 40 in (c). For the smaller size covariance of (b), the structured Kelly’s test is almost as accurate
as the GLR and MI tests. Conversely, in Fig. 7 of Case 2, GLR 2 performs better as mp increases since
in this case it only needs to estimate the scalar variance in region B and the number of pixels available
increases as mp increases ((a) mpn = 60 x 61 vs. (c) mpn =40 x 61). Also Bose and Steinhardt’s test is
more sensitive to the number mp than MI test 2 and GLR 2, and its ROC falls below even those of the

mismatched tests shown in (b) and (c).

The relative advantages of MI vs. GLR tests are more closely investigated in the next two figures.
In Figs. 8 and 9, we consider Case 1 and Case 2, respectively. In (a) of both figures, we increased the
number of chips n while fixing SNR. Note that the GLR and MI tests have ROCs which are virtually
indistinguishable for large n. In (b), however, we fixed n and increased SNR. The Pr4 positions of the
crossings of the ROCs for the GLR and MI tests decreased with increasing SNR. In particular, if one
fixes a level of false alarm, say Pp4q = 0.1, then note from Fig. 8 (b) that the GLR test dominates the
MI test for SNR = 19 dB while the reverse is true for SNR = 7 dB. This behavior is best explained by
the fact that at high SNR, the MLE is an accurate estimate of target amplitude, while at low SNR the
MLE degrades significantly. Therefore, the GLR which depends on the accuracy of the MLE for accurate
detection breaks down for low SNR.

C. Application to Real Image

Finally, we consider an application to real SAR imagery in Fig. 10. The image shown is a rural scene
near Redstone Arsenal at Huntsville, Alabama, reproduced from the data collected using the Sandia
National Laboratories Twin Otter SAR sensor payload operating at X band (center frequency = 9.6 GHz,
band width = 590 MHz). This clutter image consists of a forest canopy on top and a field on bottom,
separated by a coarse boundary. The boundary was hand extracted, and a sequence of 9 x 7 SLICY
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targets at different poses were also hand extracted from the image data in Fig. 11. The images in Fig. 11
correspond to the same target but viewed at different pose angles of azimuth. The elevation of 39° was
fixed for all poses. The data from which these images are reproduced was downloaded from the MSTAR
SAR database at the Center for Imaging Science (www.cis.jhu.edu).

In a first experiment the target signature at pose of azimuth 163° from Fig. 11 (e) was tested at
different positions along the boundary. In Fig. 10, the target is inserted additively with the center at
column 305 so that it straddles the boundary. From the realigned image in Fig. 12, we took subimages
(chips) along the boundary by centering a 20 x 20 window at the boundary and sliding it over the image
from left to right. Each of these subimages is then concatenated into a column vector of size m = 400
where ms = 200 and mp = 200. Since we need at least 200 secondary chips to implement the structured
detectors, clutter-alone pixels above and below those 20 x 20 subimages taken along the boundary were
used to generate enough secondary data for region A and B, respectively. Each of the subimages along the
boundary was tested as a primary chip, and the test statistics derived under Case 1 were calculated and
maximized over each possible location in the subimage. After normalizing the known target signature, we
obtained the minimum magnitude of target amplitude required for each test to detect the target at the
correct location. The resulting amplitude is the minimum detectable threshold for each of the detectors
and these thresholds are shown in Table I for different number of secondary chips (n—1). As can be seen,
with a large number of chips (n — 1 = 250), both the GLR and MI tests perform as well as the structured
Kelly’s test. On the other hand, with a limited number of chips (n — 1 = 200), MT test 1 successfully
detects the target down to a significantly lower threshold than for GLR 1 and structured Kelly detectors.

|al

(n—1=250) | (n—1=200)

Test

Structured Kelly || 1.407 x 1072 | 1.049 x 107!

MI test 1 1.454 x 1072 | 0.609 x 107!
GLR 1 1.462 x 1072 | 1.042 x 107!
TABLE I

MINIMUM DETECTABLE AMPLITUDES FOR DETECTION OF THE TARGET AT THE CORRECT LOCATION.

As a final experiment we maximized the test statistics over the different target poses in Fig. 11 as
well as over all possible locations along the boundary. Again the normalized signature from Fig. 11 (e)
was inserted with |a| = 0.015, and 250 secondary chips were obtained from the surrounding clutter. Test
values for the 3 detectors under Case 1 are obtained using 9 different target signatures. For each test the
peak values for 9 target signatures are plotted in Fig. 13. Note that all the tests successfully picked the

signature at the true pose and location for this target amplitude.
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VI. CONCLUSION

This paper considered the problem of detecting a target lying across a clutter boundary. Two detection
strategies were investigated: the GLR and the MI test procedures. Both detectors have comparable
ROC performance when a large number of independent clutter samples are available, but the MI test can

outperform the GLR test for a small number of independent clutter samples.

Several 1ssues for further research should be addressed.

¢ The linearity assumption should be relaxed to accommodate canopy interactions with the target. This
is a very challenging problem.

o For applications where the Gaussian clutter assumption may not be appropriate, non-Gaussian models
should be investigated such as elliptically symmetric distribution or spherically invariant random vector
(SIRV) distribution. Many results exist for GLR and invariant tests in this case [20].

o Since the known boundary assumption may not be realistic, edge/boundary estimation and its inter-
action with detection should be investigated including sensitivity of detector performance to boundary
estimations and tradeoffs between segmentation and detection.

o For spatial acquisition mode SAR, the case should be considered where a target may lie across two
different chips.

¢ The methods described herein can also be applied to other detection problems involving boundary
and target interactions. Examples include: detection of cancer nodules imbedded on lung tissues, and

detection of astronomical objects through partially turbulent atmospheres.

APPENDIX

I. PROOF OF PROPOSITION 1

The maximal invariant should satisfy both the invariant and the maximal properties under the defined
group of transformations. Before showing those properties, note that the group action can be partitioned

as

Bz, pUX,U
M£21 MXQQU
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where ﬁH = [61 ﬁf} . Then the invariant property follows directly:

a(9(X) = 2 BB X, UUTXT )T ey
= o (XoXi) ey
= (X)),

2(g(X) = 2l M7 (MX,, UUPXE MY )~ M,
= 2 (XaXE) ey,

Now to show the maximal property, let z1/(X) = z1,(Y) or

2 (XoX5) ey = gl (YY) 7'y,

Then by the Vinograd’s theorem [3],
(YoY§) %y, = H(XoXY) 2z,
for some m x m orthogonal matrix H, and we have
y, = Fay (42)
where F = (Ysz)%H(XQXf)_%. Also from this result,

y (Yo Y5 )y, = 2P (Y,YE) ' Fay,

1

thus (Y2 Y1)~ = (FX,XIFH)~L or
Y, = FX,U (43)

for some (n — 1) x (n — 1) orthogonal matrix U. Therefore, from (42) and (43), we have

1 of
Y = FX . (44)
0 U
Next by using zs, i.e. zif (XooX) 1z, = g;(Yzngg)_lgzl, and the Vinograd’s theorem again, we
have
0T

(1) Yao| = M) [z, X] (1) . (15)

where M = (Yzszg)%J(Xng)_% for some (m — 1) x (m — 1) orthogonal matrix J. Then from (44)
and (45), it is verified that Y = g(X). Therefore, {z1/, z2} satisfies both the invariant and the maximal

properties, and hence uniquely indexes the orbits of X under the group action.
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Now we can easily verify that z1+ = 21 + z2 by using the relations for the inverse of a partitioned matrix

[24]. Define

Hy—1 zoath oz, X5 Vit Vio
(XzXZ) = H H = )
Xooxiy Xo2X5, Va1 Vas
then again from that relations:
Vit = {zyy [T— X35 (XooX8h) ™ Xoo] 215} 77,
Vie = —Viiz, X5 (XanXH) ™t
Vor = —Vi1(XooX5) 1 X oozl
Voo = (XX 4 V1 (Xoo XE) T X oz, X (X0 XE)

Therefore, plugging these values into the equation
zpo= afy Vinzny + 28 Varens + et Viszy, + 2f Vaszsy,
we have
20 = Vinlenn — &12X§2(X22X§2)_1£21|2 + 23 (X2 X3h) " gy
= 21+ 2

and hence {21, 22} can also serve as the maximal invariant.

II. PROOF OF PROPOSITION 2

From Proposition 1, we can see clearly that {z41, 242} is the maximal invariant corresponding to the

group of transformations

/Bl 10"
ga(Xa) = —4 | X4 (46)
0 My 0 Uga
and {zpg1, zg2} to the group of transformations
B By 0"
gB(XB) = =B XB (47)
0 Mg 0 Ug

where we can only use arbitrary 81 and 3, separately for each group. So it suffices to show that zap is

in the maximal invariant set which gives g1 = 8> = 5.

Since the group action (24) can be partitioned as

Branr+ B was (Brars+ B Xaz)Ua
Maz 40 M4Xa22Ug
Brpin+Bpzps  (Brpis+ By Xpes)Up
Mpzpgy, MpXp2Up

9(X) =
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with the partition in (14), the following results are first calculated for convenience:

ua(9(X)) = Pua(X)

Da(9(X)) = [BPDa(X),
and

up(9(X)) = Pup(X)

Dp(9(X)) = [8*Dp(X).

Then, it is easily verified that z4p is invariant under g(X) since

zap(9(X)) = Z— = zan(X).

Now for the maximal property we need to show that

z2aB(X) = za5(Y) = 6 =0
where

v — Y4 _ 94(Xa) (48)

Yg 98(X3B)
with g4 in (46) and gp in (47). Then it is also straightforward since, from z4p(X) = z4p(Y), we have

ua _ Prua
up  Paup

Thus 3; = (2 and we have proved that

Y = ¢(X).

Next, zap' and zap» can be shown to be the alternative terms for z4p by expressing them as functions

of the maximal invariant previously verified. First, we can write

UA/SA
lup/spl* - -
UB/SB
ZAB' =
Dg/|sg|? DA/|SA|2+
B SB . —_—
DB/SB|2

Thus, z4p/ 1s a function of the maximal invariant of form

s
zap - ——1
SA
ZAB' = ZB1 -
2
DA |SB|

Dp Jsal?



KIM AND HERO: COMPARISON OF GLR AND INVARIANCE METHODS 35

where s4 and sg is known, and D4/ Dpg is just a supplementary term to z4g. Also z4 g can be represented
similarly with the additional terms ¢4 and ¢g which are already functions of the maximal invariant, and

this completes the proof.

I1I. PROOF OF PROPOSITION 3

We know from Proposition 2 that {z41, 242} is the maximal invariant to the group of transformations

on X4

CC o B
A

0 My 0 Uy

9a(Xa) = (49)

where 1 # 0 is an arbitrary scalar. Therefore, we need to show that zg is the maximal invariant to the

group action on Xp
1 07
B(Xg) = /Xp (50)
0 Usg

where (32 # 0 is also an arbitrary scalar, and finally 81 = f; with zap.

First, write zp as

p = |96‘B11|2
P {(XEX )
Then the invariant property is easily followed:
|596‘B11|2
z X)) = =zp(X
T MILIE ) S

since
tr{A} =tr{P7 AP}

for any n x n matrix A and orthogonal matrix P, [24]. Next, for the maximal property, let zp(Xp) =

B(YB), then

|96‘B11|2 _ |yBll|2
tT{XgXB} t?“{YgYB}

or
-1 -1
l’gn [tr{XgXB}] Tp11 = ygn [tr{YgYB}] yB11-
Thus, from the Vinograd’s theorem, we have

yp11 = Pap11 (51)
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where 3 = [tr{YH Yp}] g [tr{XEXp}] M2 for some orthogonal matrix H. Then, we can also write

|5296‘Bl1|2 . |96‘B11|2
t?“{YgYB} tT{XgXB}

and from this, we have
tr{YE Y5} = tr{(8:Xp)" (6:X5)}
or
Yp = $XpU (52)

for some unitary matrix U. From (51) and (52), we can say Yp = gp(Xp) as in (50) and zp is the

maximal invariant under gg on Xpg. In addition, since zg can be written as

_ lep11|? _ 1
leB1112 4 [2p15|% + |2poy 12+ [XB22l: 14 1/28:°

ZB
zp' 18 also a maximal invariant which can be substituted for zp.

Now it is quite simple to prove z4p as in the proof of Proposition 2. As before, the invariant property

is easily verified since

zap(9(X)) = = zap(X),

and for the maximal property, we have

UA(XA) o UA(YA)
TB11 YB11

(53)

from z4p(X) = zap(Y). Since we have already proved that Y4 = g4(Xa) with g4 in (49) and Yp =
¢p(Xp) with gp in (50), we can write

ua(Ya) = Brua(Xa),
ypi1 = Parpir.
Thus, from (53), f1 = 2 and zap implies the common scaling term g in (30).

Finally, the proof for the alternative terms, zap' and zspg., are easily followed from the proof of
Proposition 2 since both terms are equivalent to z4 g~ in Proposition 2 except for g1, instead of ug, and

the invariant terms p, v; and vs.

IV. PrRooF oF PROPOSITION 4

Since the group action ¢(X) in (38) can be partitioned as

Az + Bry,  (AXip + BX;2)U
9(X) = :
M£21 MXQQU
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the following results are first calculated for convenience:

u(g(X)) = (Azy; +Bzy) — (AXp2 + BXzz)X22(X22X§2)_1£21
= Az — X12X0n(X22X55) " 2}
= Au(X),

D(g(X)) = (AXyz+BXys) [ X5 (X0 X55) ™ Xoo] (X547 + XIEBY)
= A{Xio [T - X (X0 XE) 71 Xa0 ] XEJAH

= AD(X)A".

Then with the partitioned structure of X and the above results, we can easily verify the invariant property

as follows:
z21(9(X)) = gHAH(ADAH)_lAg
= 4Dy
= Zl(X),
2(9(X) = oM (MXo,UUTXEM?)~ Ma,,
= ilqu(Xngz)_liu
= ZQ(X),
and
s(9(X) = wfAf(ADAM) e [(ADAT) e, ]! ] (ADAT) " A

= u D7 (A7) [(A7) DI (A1g)] T (A7) D

_ Hpny-1 T -1 -1.7T -1
= uw' D7 g(gD ) gD u

= Z3k (X)

Next, for the maximal property, it is easily followed from Proposition 1 that z;(X) = z1(Y) and
z2(X) = z2(Y) gives
A B 1 0"
Y = X
0O M 0 U
where we have a p x p non-zero matrix A instead of 3, in (12) and others are defined in (38). Note that
this is a general case of Proposition 1 (p = 1) and the proof directly follows that of Proposition 1 except

for the dimension.
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Now we only need to show that A is a p x p diagonal matrix with z3,. Let A™! = hl’ . ’1pi|’ then

w(Y) = uff AT(ADAT) ¢, [ (ADAT)"'¢,]”  (ADAT)"!Au

= W'D (A7) [(A7¢) DA

(A7'¢) DM
= «'D7, (3D Ty, D

Then from z34(X) = 23 (Y),

T H
WHD! T§k§k1 D!y =y D! Hlkl_kl D-lu.
D e o D Yk
Thus we have
ad  ua
&D7'e 7Dy,
, which gives Y, = 6;;19!@ for some scalar d; £ 0 and & = 1,...  p. This means that

A = diag(J)

where § = [d1,...,8,].

V. PROOF OF PROPOSITION 5

From the proof of Proposition 4, we know that {241, 242, 243k } and {zg1, 282, 2B3k } are associated with

the groups
| Ag By ] 1 o
ga(Xa) = X4 :
0 M, 0 U
| Ap Bp ] 1 o#
9B(Xp) = Xp :
0 My 0 U

respectively. So it suffices to show that Ay = Ap = A with 248k

First, the invariant property of z4py directly follows from the properties of 4 and D on g(X) in the

proof of Proposition 4. Next, for the maximal property of zaps, let zapi(X) = zapr(Y) with

where Ay = diag([0a1,...,04p)) and Ap = diag([dB1,...,dBp]), then

TH-1, \=1,71y—1 TH-1, \—1,71y-1
(x Dy &) 6. Dy uy _ Sar(6 Dy ) e Dy ug
TH-1 -1, T-1 - T-1 -1, T1—1 :
(x Dp &) te, Dpug opk(e, Dy €)1, Dy up

Therefore, d 4, = dpg for k= 1,...,p and we have proved that Ay = Ap.
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Finally, we can substitute z4 gy for z4pk since z4pgs is a function of the previously obtained maximal

invariant of form

|zapx — 17

ZABK' = ZB3k P
- -1
(ék D, &)

_7_1_1
(ggDBlﬁk)_l

where (ggD;‘lgk)_l/(ggDélgk)_l is just a supplementary term for zapg. Similarly, z4pgr can also be
shown to be a substitute for the coupling term with the additional functions of the maximal invariant ¢4

and ¢p.

VI. PrRoOOF OoF LEMMA 1

We can write the equation as

(uiD3' +ug D3 ) (D' + D) (D uy + Dplug)
= uf DN (DL + D) ' Dy, +uf DN (DL + DY) T D5 up

+ upDE (D' + D) "'D  u, +up Dy (Dy' + DY) Dy lup
and from the Woodbury identity, we have either

(D;'+D3")™" = D4 —D4(Dp+D4) 'Dy,

oo (D3'+D3Y)"' = Dp-Dg(Ds+Dp) 'Ds.
Thus, applying this identity, the equation becomes

(uiD3' +ug D3 ) (D' + D) (D uy + Dplug)

= uiD'u, +uliDR ug — (uy —up)? (Da+Dp) " uy —up)+ L1 + Lo
where

Ly = uff [D3'—=(Da+Dp)™' = (Da+Dp) 'DaD3'| up,

Ly = uj D' —(Da+Dp)" —(Da+Dp) 'DpD;'| uy.
Now we can remove the extra terms L; and L since

Ly = uf(Da+Dp) ' [(Ds+Dg)—-Dp—Da]Dgluy =0,

Ly = ull(Da+Dp) '[(Da+Dp)-Das—DglD'u, =0

and this completes the proof.
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Fig. 1. Sufficiency orbit is a circle in R?
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Fig. 2. Invariance orbit is a cone in R?

41



42

0.8

Fig. 3. ROC curves for Case 1 with (a) SNR = 14 dB, (b) SNR = 22 dB (m 4 = 50,mp = 50,n = 51).

Fig. 4. ROC curves for Case 2 with (a) SNR = 4 dB, (b) SNR = 10 dB (m 4 = 40,mp = 60,n = 61).

Fig. 5. ROC curves for Case 3 with (a) SNR = 4 dB, (b) SNR = 10 dB (m 4 = 40,mp = 60,n = 61).
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Fig. 6. ROC curves for Case 1 with different ratios of m 4 /mp, and SNR = 19 dB (n = 61).
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Fig. 7. ROC curves for Case 2 with different ratios of m 4 /mp, and SNR = 10 dB (n = 61).



KIM AND HERO: COMPARISON OF GLR AND INVARIANCE METHODS 45

— Mitest1
GLR 1

0.6 08
(a) SNR = 7 dB
1 —— 1 —
[19.13 - _
//l / // _— /
0.8 /3B // 1 0.8 7dB/// Ve

0.6 / 1 0.6 / / // 1
o / 7dB a® / ;B 7~
[
0.4 1 04t p yd K 1
/7

0.2 1 0.2 / J/ / 1

— Mitest1 |~ — Mitest1
GLR1 GLR1
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
FA |:‘FA

\\
N

\\

(b) n =61 (c) n=281

Fig. 8. Comparison of GLR and MI tests for Case 1 by (a) varying n with fixed SNR, (b) increasing SNR with small n,
and (c) decreasing SNR with large n (m 4 = 60, mp = 40).
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Fig. 10. SAR clutter image with target in Fig. 11 (e) straddling the boundary at column 305.

(a) az = 142° (b) az = 147° (c) az = 152°

(d) az = 157° (e) az = 163° (f) az = 169°

(g) az = 175° (h) az = 187° (i) az = 193°

Fig. 11. SLICY canonical target images at elevation 39° and different azimuth angles (az). Image in (e) is inserted in Fig.

10.
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Fig. 12. Image realigned along the extracted boundary. SLICY target is located at column 305 with |a| = 0.015. This
target is just above the minimal detectable threshold for the three tests investigated in Fig. 13.

0.3

0.25 1

0.2 -

oas) i i : i

* ;___e___e———AsA___é\;

0-0;’ -
o b < a e t a h i

(a) Structured Kelly’s test values
0.3

(b) MI test values

(c) GLR test values

Fig. 13. Peak values obtained by (a) structured Kelly’s test, (b) MI test 1 and (c) GLR 1 for 9 different target images in
Fig. 11 (|a] = 0.015,n — 1 = 250).



