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A Maximum Likelihood Digital
Receiver Using Coordinate Ascent
and the Discrete Wavelet Transform
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Abstract—In this paper, a maximum likelihood (ML) method nuisance parameters are estimated by nonoptimal combination
is presented for joint es_,tlmatlpn of ampllt_ude, phase, time de- of several subsystems, each specialized to estimating a par-
lay, and data symbols in a single-user direct-sequence spread-ji\,jar parameter. For example, carrier phase and time delay

spectrum communication system. Since maximization of the like- . . .
lihood function is analytically intractable, a novel coordinate ©Stimation are frequently done with a phase-locked loop (PLL)

ascent algorithm is used to obtain sequential updates of the data and a delay-locked loop (DLL), respectively [24]. The PLL
symbols and all unknown nuisance parameters. The novelty of the and DLL techniques are equivalent to the optimal maximum
algorithm is due to the use of a multiresolution expansion of the |ikelihood (ML) or maximuma posteriori probability (MAP)
received signal and the use of polynomial rooting in the complex i ators under the assumptions that the data symbols are
plane in place of a line search over the signal delay parameter. . o .
The multiresolution structure of the algorithm is exploited to KNOWn and that either the symbol timing is known (PLL)
reduce sensitivity to impulsive noise via wavelet thresholding. or the carrier phase is known (DLL). However, the overall
Computer simulations of the single-user system show that the estimator is suboptimal, and it may unnecessarily reduce the
?'gorlthbm h%S fast Cngﬁrgeﬂﬁev aﬂd colmpgﬂson Wk']t_h theoret'c"i“ system’s operational threshold. Therefore, an optimal receiver
ower bounds establishes that the algorithm achieves nearly L . .
optimal error performance. that jointly estllmates th_e nuisance pqrameters as well as the
_ o _ _ data symbols is sought in order to achieve better performance.
Index Terms—Bit synchronization, carrier phase recovery, im- A considerable amount of research has gone into improving
pulsive noise mitigation, sequence estimation, wireless communi- . .
cations. the performance of the basic PLL and DLL synchronization
techniques, e.g., by using decision feedback in a data-aided
loop (DAL) [2], [23], a decision-directed receiver [22], or
. INTRODUCTION by deriving optimal nondata-aided estimation structures [27].

HE NEW technologies of multiuser wireless communicavlore recently, digital implementations of pseudo-noise (PN)

tion systems, mobile radio, and personal communicati®@®de tracking algorithms using the extended Kalman filter
networks require advanced signal processing methods F@ve been proposed [21]. The problem of maximum likelihood
improved efficiency and reliability. The growing computinggequence estimation for the intersymbol interference (ISI)
power and shrinking cost of digital signal processing (DSRhannel has been treated in [15] using a whitened matched
technology makes sophisticated signal processing algorithfiteer followed by a Viterbi decoding algorithm. Most of
both practical and affordable. Wireless communication systeitiese estimation techniques critically depend on the Gaussian
must frequently operate in harsh environmental conditiomeise assumption; therefore, they become ineffective when the
that adversely effect the transmitted signal through such phieterference contains a dominant impulsive noise component.
nomena as time-varying channel response, multipath fadifde joint parameter estimation and data demodulation problem
multiaccess and cochannel interference, non-Gaussian noisgomes even more difficult in a multiuser communication
and loss of synchronization. A parametric model of the resystem such as the code division multiple access (CDMA)
ceived signal typically includes unknown amplitude, phassystem, which provided the motivation for the work reported
and time delay, which should be accurately estimated to ensurethis paper.
near optimal decoding of the data symbols. Traditionally, theseThis paper presents a novel joint ML estimator of the un-
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have not yet been fully explored, it is probably straightforwartihe orthogonal representation is exploited by re-expressing
to apply the approach of this paper to the case of fading atieb likelihood function as a polynomial in a complex variable,
ISI channels. which is then used to solve for the unknown delay by fast root-
It is well known that direct maximization of the joint like- finding methods. Next, this is specialized to the Daubechies
lihood function is analytically intractable due to the unknowmwavelet basis [7], [41] to obtain a multiresolution data recur-
delay parameter. Several suboptimal schemes for approxingte implementation of the coordinate ascent ML algorithm.
ing the joint maximum likelihood sequence and synchroniz&Vavelets have the advantage of time and scale localization,
tion parameters have been recently proposed [5], [33], [34fhich make them well suited for recursive parameter update
Another approach is iterative ML estimation using steepeaigorithms for which each parameter affects the signal at
descent, Newton—Raphson, or the expectation-maximizatidifferent times and scales. In the present application, the
(EM) algorithm, which have been used in similar problemamplitude and phase parameters are coarse scale parameters
involving superposition of signals [3], [4], [11], [12], [16]. in the sense that changes in these parameters affects the signal
These algorithms are limited to block processing. All thby a global scale factor over time. On the other hand, the
unknown parameters and, in particular, all the data symbalata symbols are finer scale parameters since they only affect
within a block must be updated simultaneously. Furthermore signal locally in time. The multiresolution property is
many of these algorithms are known to suffer from divergen@mportant for the implementation of the coordinate ascent
or very slow convergence. This results in a large processialgjorithm as it separately encodes coarse scale parameters,
delay that can only be compensated by increasing procesy., signal amplitude and phase, and finer scale parameters,
sor speed and receiver power consumption. For the caseed., data symbols and timing, into different sets of wavelet
known signal delay (synchronous case), the Viterbi algorithooefficients.
performs maximum likelihood sequential decoding in a single Wavelet-based signal processing techniques have recently
pass over the symbols sequence [15]. However, the single-psssn very rapid growth in related areas. They have demon-
Viterbi algorithm cannot be implemented as an ML decoder fatrated their usefulness in seismology, image processing, and
the asynchronous case. The iterative ML algorithm proposddta compression as well as in many other applications.
in this paper uses coordinate ascent maximization to jointavelet bases enjoy a very strong optimality property for
estimate amplitude, phase, time delay, and data symbols igemeral inverse problems in that their use can achieve ac-
sequential manner. Furthermore, by performing the parameterate and parsimonious representation of the input signal
updates on the coefficients of a multiresolution decompositiamd simultaneously diagonalize the channel [10]. In addition,
of the received signal, a single pass algorithm is obtained. wavelet and other orthogonal modulation schemes have been
Coordinate ascent is an iterative maximization techniqeeiggested as a means of attaining reliable communication over
that cycles over groups (or coordinates) of parameters amdltiple access, fading, and ISI channels [43]-[45]. While
guarantees that the likelihood is increased at each iteration. Isisch modulation schemes are not required for implementation
related to a class of EM algorithms known as space-alternatiofythe ML receiver presented here, the receiver is naturally
generalized EM (SAGE) algorithms introduced in [13] anddapted to them.
applied to the synchronous multiuser synchronous CDMA Wavelet domain signal processing can also be very effective
detection problem in [30]. Standard EM algorithms have beém suppression of impulsive noise that exists in wireless and
applied to synchronous sequence estimation in the presencemtfcal communications as well as wireline communications
fading [17] and unknown carrier phase [32]. The algorithm isuch as digital subscriber lines and cable TV plants. This
this paper handles both unknown carrier phase and unknotype of temporally localized noise contaminates a significant
bit synchronization and is equivalent to a SAGE algorithiportion of the usable transmission spectrum. The optimum
for a special choice of hidden data sets (complete data) theteiver for impulsive noise is hard to derive, whereras nar-
are defined as one-to-one transformations of the observatioowband noise rejection techniques are not effective. Although
(incomplete data). As a result, it can be shown that thise influence of impulsive noise can be reduced by the use
coordinate ascent algorithm is a SAGE algorithm that haf additional coding [29], this comes at a cost of reduced
the fastest possible asymptotic convergence for our particutkata rate and/or increased delay. The temporal localization of
parameter cycling strategy. Since, for signal superposititime wavelet basis can be used to detect and reject impulsive
problems such as the communications application in this papevents using a simple thresholding algorithm [1], [10]. The
the asymptotic convergence speed of SAGE is significantigasoning is that only the largest wavelet coefficients are
faster than standard EM [13], this coordinate ascent algoritHikely to be significantly corrupted by the noise impulses. It
does not suffer from the slow convergence inherent in EMill be shown how this thresholding technique can be easily
algorithms. incorporated within the general framework of iterative ML
As in [19] and [28], a well-adapted orthogonal signasequence estimation.
representation of the measurements is used as a way tdhe paper is organized as follows. In Section Il, the single
concentrate parameter and symbol information into a lowser observation model is defined. In Section Ill, the form
number of coefficients. These representations cover the cofithe likelihood function is given, and simplifications of the
ventional cardinal series basis, the time-limited sinusoidithe search step are discussed, which result in a coordinate
basis functions [20], the Walsh basis, the exponential basiscent algorithm with increasing complexity as a function of
[19], the Karhunen—Loeve basis, and the Slepian basis [38]e block size. In Section 1V, a fixed complexity algorithm is
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obtained by using wavelet representations. In Section V, tfh@erefore, the coefficient$Y,} are sufficient statistics for
fixed complexity algorithm is robustified against impulsivéhe original continuous time observatios Given that the
noise interference via wavelet thresholding. In Section Vbbservation noise:(t) is a white complex Gaussian process
simulation results are presented, and Section VIl concludegh spectral levelNy/2, it follows from (1) and (2) that

the paper. {Y,.} is a set of independent jointly Gaussian complex random
variables with mean
II. OBSERVATION MODEL N-1
Consider the single-user complex baseband model for the E{Yy} =a Z bpwi(n; d), k=1,2,--
received signal n=0
Y(#) = s(t) + ult) 0<t<T @ and varianceVy /2, wherewy(n; d) are the projection coeffi-

cients of the time functiodp(t — n1;, — d)}+co, 77
where s(¢) is an attenuated and delayed version of the data

modulated signal transmitted by the user wi(n; d) = / p(t — nTy, — d)yu(t) dt. 4)
N—1 —oo
s(t)y=a Z bop(t — nTy — d). 2 In the sequel, the unknown parameters are collectively
n=0 referred to as theV + 2 element parameter vectdt =
Note thats(¢) is a superposition of delayed and scaled versiof® @ bo, =+, bx—1]*. Thus, up to known additive constants,

of the signaling wavefornp(t), which is assumed to be athe log-likelihood function can be expressed as
known PN code. For simplicity, it is assumed that the period Ne1
of the PN code is equal to the data symbol time intefial log p(Y; ) = 2 a* ZY’“ Z biwi(n; d)
Note that it is not necessary to assume that the support of No %

n=0

p(t) is the same as the symbol interval—this property would N_1
be critical for extension of the algorithm to ISI channels. The + GZYJ Z bwn(n; d)
noiseu(t) will be assumed to be a complex white Gaussian k S
process with power spectral density /2. N1 2
The unknown parameters in the model (2) are the complex a2 .
gain a € {Rexp(i¢): R > 0,0 > ¢ < =}, the data o zk: ;_:Ob"wk(n’ 4 ®)
symbolsb, € {1} for n = 0,---, N — 1, and the time -
delay d. It is assumed that/ is contained in the interval A necessary and sufficient condition f&t = [a, d,
[=74/2, Tu/2] for some positively < T Then index set §, ... py_;]7 to jointly maximize the log likelihood (5)
notationIN = {0, ey, N—].} will be used. For Slmp|ICIty, the is that three equations be satisfied.
data symbol$,, in (2) are assumed to be in BPSK modulation . .
format, but with minor modifications, the casesifary PSK, ~d=arg  wmax = log p(Ys [a, d, bo, -+, by—1])
PAM, and QAM can be treated. The restriction thaties ’ ©6)
in the upper half of the complex plane is required in order e R
to remove the 180 phase ambiguity and to enable coherenfr = arg | max 1o p(Y5 [a, d, bo, -+, bn, -+, b))
demodulation of the transmitted symbols. There are several n=0,---.N—1 @)
techniques for resolving phase ambiguity at the expense of a
small decrease in spectral efficiency [24, ch. 2]. AIternativte'?‘,nd N1
DPSK modulation can be used to encode the source into phase fe o wg G
changes rather than absolute phase of the transmitted signal. %:Yk nz::o bwi(n: d) @)
a = N1 5
I1l. JOINT MAXIMUM LIKELIHOOD ESTIMATION gnwk(n; c?)

A. Direct Maximization of Likelihood . . -
- _ Note that only one of these equations (8) is explicit. The
Let {4x}7Z, be a real orthonormal basis for the space Qfo|ytion of (7) requires searching ovel possible symbol
square integrable functiof{. Relative to this basis, the CON-yalues{b, € {—1, 11}"=1 and the solution of (6) requires

n=0"

tinuous time observatiolr can be converted to the eq“ivale”berforming a line search ovet € [~13/2, T,/2]. The high
discrete time observation complexity of these latter solutions makes direct maximization
Yy = (Y, ) k=1,2, - impractical and provides the primary motivation for this work.

) The first step is to simplify the line search.
where (f, g) denotes the inner produdf f(t)g*(¢) dt. The

original observation can be recovered from the discrete tige | ine Search via Polynomial Rooting

observation through the reconstruction formula ) o ) )
First, it will be necessary to transform (5) into a polynomial

Y(t) = Z Yipr(t)- (3) equation in the complex variabte= ¢’“°¢ by representing the
k projection coefficientsv,(n; d) in Fourier series in the delay
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variable d. The benefits of this transformation will becomeDefine the ordeD ; polynomial F'(z) = Zf/:l Im2"™ +qo/2.
clear: A computationally intensive line search for the maxiFhen
mum overd of (5) is eliminated, and the numerical solution

can be found by standard polynomial rooting algorithms that
are fast and reliable. Suppose that we are interested in the . N I .
. IS a polynomial approximation to the log likelihood in the
inner productwy(n; d) = (p(- — nT} — d, ¢5) on some mean square sense

interval d € [-Ty/2, Tp/2] that contains the priori time

delay uncertainty interval-1;/2, T;/2]. Define the Fourier
coefficients

ck,m(n) = \/1?0/;00 UT, (t)wk(n; t)e—j"lwot dt (9)

Qz) = F(2) + F*(z 1)

% Elllog p(Y; 8) — Q)] < e.

Note that the degreB ; of F(z) is finite since the observations
have finite power.D; will principally depend on the band-

where width of the signaling waveform(¢), which for PN sequences,
1Ty |t < To/2 ?s proportional t_o the_number of chips_ per sy_m_bol interval,

vr, (t) = {0 It| > To/2 i.e., the processing gain, since the Fourier coefficients ()
decay rapidly asnwy increases beyond the bandwidthydt).
andwy = 27 /T,. By the convolution property of the Fourier |n the sequel, the notatio = Q.. Will be used to
transform clarify the fact that@ is a function of the amplitude. and
T the symbolsb = [bg, ---, bx—1]. Note that since?, , is a
ck,m(n) = QW’“(”? w) # Vi () wmmen (10)  smooth function, the maximumd = d,,,, of Qa&((gjwod)

overd € [-Tu/2, Tp/2] will occur within O(¢) of the ML
estimated, and there is a stationary point at this maximum, i.e.,
(0/0d)Qq, (70| 4=q,,., = 0. The idea is to add a penalty
function that will forceQ,, () to have a stationary point near
= ¢#*0dmax and such that the stationary points can be found
y rooting a polynomial. To this aim, define the penalized

where Vr, (w) = sin(wTy/2)/(wTp/2) is the Fourier trans-
form of vy, (t), and Wi(n; w) = [7°_wi(n; 7)e 7“7 dr is
the Fourier transform ofux(n; d) with respect tod.

The Fourier series expansion af(n; d) over d €
[-T0/2, To/2] can be written as a function of the comple{

variable z .
polynomial
wy(n; d) = Z Cp, m(n)2™ (11)
mcZ Pa,0(2) = Qa,u(2) +log I1(z) (13)
with z = e/v¢. Sincewy(n; d) is a real function ofd, the wherell(z) is a rational function of the form
Fourier coefficients:, ,.(n) are conjugate symmetric im
GG (Y
ckym(n) =cf _,(n) mez 1(z) = H)H (71 (14)

and ¢ o(n) is real. hereG dH I ials of degreP, and D
With the series representation (11), the log-likelihood (%Ii}szfmi\(/?lyano\,e ré:/’:) are polynomials of degre®, and Dy,

can be approximated to arbitrary accuracy by a polynomial in
the complex variable. To see this, use conjugate symmetry
of the Fourier coefficients to rewrite (5) as the double-sided
infinite power series

log p(Y; 0) = > g™ = F(2) + F*(#*)

mcCZ

Dy,

H(z) = Z hp2".
n=0

Now, assume thall(z) is a function that satisfies the
following. 1) II(z) is positive and reasonably flat on the semi-
circle {z = ¢*: |w| < woTy/2}. 2) Magnitude ofII(z)
decays quickly to zero as deviates from the semi-circle.
Then, any stationary points af,, ,(z) that are on the unit

Dg

G(z) = g™ (15)
n=0

(12)

whereF(z) = 3> °_1 ¢mz™ +qo/2, andg,, is the coefficient
of e/™«od in the log likelihood expansion, that is

9 N-1 circle will be close to the stationary points ¢f,, ,(e’“o¢)
G =5 | ol S arp(n)er, mop(n)+ overd € [~Ty/2, T,/2]. It follows that the line search step
0 n=0 k pcZ (6) of the joint ML estimator can be approximated by the
N-1 N-1 following steps:

1) Differentiate the functionp(z) = ¢, 5(2) (13) with
respect toz. This gives a rational function

_ A (A(z) +T'(z)

N I1(=)

@D b D Vienmn)+at bt Y Yic (n).
n=0 k n=0 k

Note that F'(z) depends on the parameter valuesand
b07 ) bN—l-

Now, lete > 0 be arbitrary, and defing@; as the smallest
positive integer such that

(16)

¢'(2) = A(2)/B(2)

where A(z) is a polynomial of degred) = 2(D; +
Dg + Dh).

+ 3 EllanPl< /2.

m>Dy

2) Find the roots of the numerator polynomidl(z) that
lie on the unit circle.
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3) Evaluate the objective(z) at each of these roots, andN. Given initial conditionsa(®, d©, béo), . bgf?ll, the
select the root that maximizes the penalized objectiyellowing is an algorithm that updates in the ordéf) —
(13). A+ B0 bg’fllf a® — ql+D Here, the notation

4) The phase of the maximizing root specifies the estimettle_ 1]y den%tes(i — 1)Nmod N.
of d. 1) Increasing Complexity Single-User Algorithrffor ¢ =

Since the numerator polynomial of (16) has fixed degiee 0, 1, ---, updateith cycle.

there is a fixed computational complexity per iteration of the 1) Find dG+D by rooting the polynomiakp ., yo(z) as
delay estimation step. The penalty functidifz) can be im- explained in previous section. e

plemented by applying standard filter design methods [31] toz) Update the biby; i
the transfer functior7(z)/H(z) in (14). The degree®, and
Dy, of the penalty polynomials depend on the desired precision

by hard decision

N+2

of the time delay estimate that determines the passband ripple bf;:h)N = sign(Re{ a "y, (['i — 1 n+2; d(z))
and transition bandwidth ofl(z). Typically, they are much k
smaller thanD,. The choice of penalty function is analogous . )
to the choice of penalty in the penalized maximum likelihood : [Yk — a(i)xL ([0~ 1]N+2)} - (18)
algorithm.
where

C. lterative Penalized Maximum Likelihood (PML) N_1

The penalized ML estimate ofa= [a, d, bo, - -, by—1]" 19 (n) = > b (n’; d“)). (19)
is defined as n'=0,n'#n

6 = arg max{log p(Y; 8) — P(6)}. (17)  3) Update the amplitude. as follows. Define temporary
60 variable

Here, P(9) is a user-specified penalty function. Penalties have N-1
frequently been introduced to regularize the estimator [40], ZYk Z bﬁf)*w,’; (n; d9)
to promote faster convergence [14], or to take advantage of PR n=0 . (20)
prior information [39]. It will be convenient to express the N-1 2
penalty function as the functio®(z) = —log II(z) of the SIS 6w (n; d®)
complex variable: = e/*0¢ defined in (13). In this way, it can k | n=0
be seen that incorporation of the aforementioned polynomial X ‘ X (i41) @
rooting estimation procedure for estimationdfs equivalent If 0 < arg(a) < m, set a(.“rl) =aandb, ' = by
to implementing a PML solution to the joint estimation é&f fc()fr+S" n G(i)IN; otherwise, seta(*!) = -4, and

In cases where direct maximization of the objective (17) bn' = = —bn’, foralln € Iy.

is not possible, iterative optimization is often useful. The Note that since, at each iteration, the objective function

iterative algorithm developed in this paper is a coordinate maximized over the associated coordinate, the algorithm
ascent-type algorithm that is related to Gauss—Seidel iterati@msures a monotone increase in likelihood as it progresses.
[18] for minimizing quadratic objectives. Fix a coordingte Use of the temporary variablke is necessary to ensure that

to be updated, and define the parameter vegtgrasé with has non-negative phase. A deficiency of the algorithm is the

the coordinated; left out: _; = [#1, ---, #;—1, iy1, ---, problem of growing memory and computation. It must cycle
On12]*. Define j; as a mapping from the natural numbersver an increasingly large set of symbols as the nunbef
1,2, --- to the parameter index sdtl, ---, N + 2} that these increases.

satisfies the property that the sequenge =1, 2, --- cycles
through all parameter indices an infinite number of times. |/ compLEXITY REDUCTION VIA WAVELET BASIS
For: = 1, 2, ---, the coordinate ascent algorithm produces

a sequencqe(i)}g’il by the following iteration: The growing memory and growing complexity problem will

be solved by prescribing a single-pass acyclic version of the
9](7_1) — arg max {bg p(Y; 0., 9(771;1)) _ P(gj” 981—1))} PML algorithm that updates only those symbols falling within
! b5, ! ! a sliding time window of fixed length. In this scheme, the
g _pli-D time localized parameters, i.e., symbbls are only updated a
o o finite number of times, whereas the global parameters,d.e.,
Note that in theith iteration, only the parameté;, of ¢ is andd, are updated an infinite number of times. Recall that in
updated while the other parametés;, are held fixed. Section Il, a general orthogonal representation for the received
For the present application, the penalized log likelihoodaveform {Y'(t)}.cjo,77 was used, whereby projecting it
function is of the formlog p(Y; 6) + log II(e’“°¢), where on an orthogonal basig(#)}r>0, an equivalent set of
log p(Y; 6) is given by (5). The convergence rate of coormeasurements, = (Y (), ¥&(-)}, k =1, 2, - - - was obtained.
dinate ascent depends on the order of parameter updates Emdchieve decoupling between the localized and nonlocalized
the number of consecutive updates of a given parameter. parameter updates, it will be convenient to specialize the basis
positive integerst, N, denote by[k]n the integerk modulo {3} to one that has the multiresolution property [25]. This
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Fig. 1. Tiling of the time frequency plane. (a) Dirac basis, (b) Fourier basis. (c) Wavelet basis.

will produce coefficients’, that contain only information spe- signaling waveform projections;x(n; d) = (p(- — nT} — d),

cific to a particular time and scale componen{ ®(t)},cj0, 77-  *#;x()), and a triple indexed set of Fourier coefficients ,,

In this way, a kind of parsimony of the data representation @ the projections, as defined in the previous section.

achieved. Information needed for a particular local or nonlocal As only certain subsets of the wavelet coefficients will be

parameter update is concentrated in only a few coefficignts used for each parameter update, it is convenient to define an

Fig. 1 shows time scale tiling diagrams of three orthonormaicreasing sequence of subsets of wavelet indid&s”}s2,

bases: the Dirac basis, the Fourier basis, and the wavelet basish that

While the Dirac and.Fouri(_ar bases are localized only in thg O EICE P> 0

time and frequency dimensions, respectively, the wavelet basis =

has the multiresolution property. Each basis is localized in both Uw® =2z

dimensions, with a timing resolution that gets finer at smaller i

scales. The time-localized Dirac basis is not parsimonious t?ﬁ

updating parameters that are localized in frequency. On the

other hand, the Fourier basis is not parsimonious for updating

time localized parameters such as the symbol sequence. The &€ supported of—1,/2, T, /2] and [T /2, T,,/2],

same deficiencies would hold for other bases that do not have  féspectively, for somé, and T, whereT}, > T;.

the multiresolution property, e.g., the cardinal series basis, thell) A finité number of scales is used in the W?.V8|§t decom-

Slepian (prolate spheroid) basis, and the Walsh basis. position so that the scale indgxsatisfiesq’ < j < ¢

Note that there exist nonorthonormal expansions that alsg_ [OF Someq’, ¢ € Z. 4 _ ,

have the time—frequency resolution property. For example, Galll) The wavelet index set$V’") used in the algorithm are

bor frames [7] offer more regular tiling of the time—frequency ~ cNosen sequentially in such a way that
lane. However, nonorthogonality causes leakage across scales . P i i

gnd complicates the maxigr]nizatign of the Iikelihgood function. mm{?k; (. k) € Wi —wt )}

Among the many wavelet bases th_at can be used, e.g., the > InaX{ij: (j, k) € W(i)}

Daubechies wavelets, Battle—Lemarie wavelets, wavelet pack-

ets [8], [42], local cosine bases, and biorthogonal wavelets [7],  tor al 4 € IN.

in this paper, the Daubechies wavelet basis [6] is adopted. A

advantage of this basis is that the coefficients can be comput

';: rgﬁlr:ﬁe[su;]mg the discrete time wavelet fransform (DTW ate all but a small neighborhood of overlapping symHb}s}
gon ' appearing in the likelihood function. The second assumption is

The discrete wavelet basis is defined by time scaling an quired so that the Fourier coefficierts. . (n) can be stored

translation of the single function, which is called the bas.'ﬁ] a table of finite size and that the algorithm have a finite

\(Iavli\rﬁtlaenttzj(t) [8], producing the double indexed set of baSI%Ielay. The smallest scalg can be determined from the band-
width of the signaling waveform(¢), and the largest scate
P(t) =279/ 2p(277¢ — k) (4, k) € 72 can be determined by the maximum tolerable processing delay,
e.g.,7. The third condition means that the wavelet coefficients
Use of the wavelet basis produces a double indexed setaoé processed over all scales simultaneously and sequentially
equivalent measurement§, = (Y(+), ¥;x(-)), (4, k) € Z2, intime according to increasing temporal localization variable

e following conditions will be necessary
i) The signaling waveformp(¢) and the basic wavelef(t)

he purpose of these assumptions, which are not restrictive,
ill now be explained. The first assumption is needed to elimi-
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Fig. 2. Wavelet index sets.

27 k. A graphical illustration of the actual sequence of waveldt addltlon for a wavelet index sé¥V (", define the indices
indices used in the algorithm is given in Fig. 2. n® and n

It is useful to remark that iff; = r2¢ for some rational )
numberr = 71 /7o, then it is possible to store all the Fourier, () _ ;) {n n> ﬁ for all (j, k) € W&, n € Z}
coefficientsc;z, .. (n) in a finite table because they can all be T
mapped to those with symbol indicés---, rq — 1 ( ) — o {n n< 2;—]6 for some(j, k) € WO, m e Z}.

cjk,m(n) = cjk—nor12‘7’j,m(nl)7 0<ni <rg b (23)
wheren; = n(modry).

Next, define the following intermediate variables, which will Proposition 1 of the Appendix shows th&tis a timewidth

be updated at each iteration of the algorithm: parameter for,, in the sense thati(ny, n2) = 0 for
all m for |n; — na| > 2B. Proposition 2 of the Appendix
pRn)= > Yiach m(n) me Z,nely  shows thatvi)(ni, ns) = 0 whenevern, or n, exceed
Jkew® 2 + B and uﬁf}(n) = 0 whenevern exceedsn” + B
D (ny, ng) Z dig m(n1, 1) for all m € Z. The combination of these two propositions
JeWw specifies a small region of wavelet indices for which the

summands ofuﬁf,,) and Y are nonzero. Proposition 3 of the

Appendix shows that ifr; < ngf) —Borny, < ngf) - B,

thenv ) (n1, n2) = v$9(n1, n2) for all p > i and allm € Z

dige. m(n1, 12) = Z Cit, p(1)Cik, pom(n2).  (21) and similarly forug,,). Thus, this specifies a set of indices for
pc 2 which these intermediate variables need not be updated.

o ) o Once the following update index sets are defined, a concrete
Similar to the Fourier coefﬂmentsjk m(n), the constants specification of the algorithm can be given.

d;x, m(n1, n2) can be stored in a finite table. It is easy to

me Z,ny,ny €ln

where

verify that Vm)(nl, no) satisfies the symmetry properties T = {n: ngf_l) —B<n<n®+ B}
Vi (n1, na) = v (na, ny) U@ = {77,: ngf_l) —B<n< ngf) — B}. (24)

v (n, n2) =v5)" (na, n2). D
‘ Notice that the se"® is not empty because™” > nﬁi_l) and
Notice that {(n) is the resultant matched filtering of B > 1, whereas the sdf) may be empty. Corresponding to
{Yjx} to the Fourier coefficients of the correlatianx(n; d), the above sets, define the two-dimensional (2-D) index sets
Whereas/,(,i)(nl, n2) is a deterministic quantity. ) )
To reduce the computational complexity of updating theR(Z) = {(711, n2)ini € TW ny — 2B <ny < 711}
intermediate variableg andv, it is useful to exploit the finite
support property of the basic wavelet. To this aim, define the

quantity v = {(nl, na)ing € UD ny — 2B < ny < 711}
T, + T 4
B— K% + 2%%)/7;,} (22) U a1, m2)ima € UD, my = 2B < my < o} (25)

where[z] indicates the smallest integer that is greater than orWith the above, a fourth condition can be specified on the
equal toz. Recall thatZ},, T;,, andT; are the signaling pulse Sliding symbol-update window.

width, the width of the basic wavelet, and the Fourier analysisiv) During theith iteration, the algorithm only updates the
window length defining the coefficients, .., respectively. symbols {b,: n € T®}.

U {(nl, ng)ing € T(i’), ng — 2B < n; < 712}
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Note that for symbols not i), the intermediate variables

do not change as a result of the most recent multiresolutioh®_—"__|
samples having indices il ) — W=, Hence, the only

change in the objective of these symbols is a result of
updating other parameters, which should have a secondary

effect. Consequently, the algorithm no longer will have the

cyclic update structure that it had before in Section Ill. The * Maximize the penalized objective using polynomial root-
set7@ can therefore be referred to as the “current symbols” N9

index set, whereas the g8t” corresponds to “past symbols,”
that is, symbols whose estimates will not be further updated.
The 2-D setsR® andV'(® that define pairs of symbol indices _ 4
can be interpreted in a similar manner. 5) Update symbol estimatds;, n € 7+

The fixed memory wavelet version of the coordinate ascent® Update the local variable

{Yjx} ML 4,b,.d

{¥n}
A/D Algorithm

DTWT

Fig. 3. Block diagram of the ML receiver.

D = argmax{d)(i*l)(z)}.

z=etw

algorithm presented in Section Il is given below. To simplify G+ /oy (8 ()%, (1)
the notation, the Fourier index will be omitted, and the °© (n) =€)+ Z(_) by v (n, ). (30)
corresponding variables will be typed in boldface, ecg.(n) |n"_252D|’<72 B
instead ofc;g, (7). )
1) Fixed Complexity Single User AlgorithnEor i = Next, include the most recent data samples
0,1,---
1) Choose the wavelet index sBt(+1). ‘ ‘ ‘ ‘ ‘
2) Update the local variables? andv(® as e (n)=a® " |t (n) — oD [ iF(n)
] ] lm|<D;
pU ) =uP )+ Y7 ypdin)
jhEDGTD)
| | n e T+ LS W, o) | [0
V(Z-l—l) (nl, 712) :y(l)(nl’ 712) —+ Z djk(TL1, 712) g i+ D)
JECDUG+D nz#n
ni, No € T(H—l), |7’L1 — 7’LQ| < 2B (31)
(26) The objective for{b } is (need not compute)
where D(HD = WD _ @), QUtV(b,) = — b, (n) + 01TV (n)|.  (32)
3) Update the state variableg? and g as No [ " }
‘ ‘ « Maximize (hard decision)
ol — o 4 Z bgfl)bgfz)* D (ny, ns) L _ "
() €V bt = 5|gn[Re(s(“r )(n))}. (33)
Bty =g 4 Z oD (). (27) 6) Update the amplitude estimaie
nev® « Compute the temporary variables
4) Update the delay estimatk D — Z SOm
e Compute the temporary variables <D,
,1(714-1) _ |a("’)|2 ity 4 Z [3(74—1) + Z b(z)* (7+)1) (n)
(n1,n2)ERGTL) nCcTG+1)
DN W (| ) Pl = Z ali+l) 4 Z
|rn|§Df (n17n2)€R(7'+1>
80D — a7 | gD L ™ Oyt ()| (28) DB (0 ng) | 2O, (34)
neT(G+1)
Set up the penalized objective for= 0. The objective fora is (need not compute)
2 QU (a) = (Y 4o — Y. (35)
(i+1) 7)) = — 6(Z+1) 6(Z+1)* _ A i41) oM
¢ (2) No| |§<:D m Tt Om T )7 » Maximize the objective. Let
mis Ly
+ log TI(z). (29) o = ¢ /), (36)
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Estimator

|

Yt Y, Y; Y/ ML bn,
L/__, A/D () DTWT {]k}->Threshold i), Algorithm|

>

>
>

Fig. 4. Block diagram of the wavelet thresholding receiver.

If 0 < arg(a) < 7, seta+D) = g andbi ™ = (" forall Section IV. The additional blocks in the diagram perform the

n € Iy: otherwise, set(+D) = —a, b8 — _p{ for threshold estimation algorithm proposed in [1] and the wavelet
alln e Iy, and multiplyﬂ(“’l), {* D (n): n € T¢HD}  thresholding operation. In the threshold estimation algorithm,
by —1. the coefficient sequence in each wavelet band is divided into

Notice that inversion of the signs of all the symbols, as impliesf9ments, whose length is determined by the length of the
by the last step, can be most easily done by keeping track of tige mter\_/al where the signal is assumed_lo_cally statlon_ary.
inversions and performing it just once after the final iteratioff? €ach signal segment, the standard deviation of the signal
In this way, multiple writes to memory are avoided. is estimated by the_square root_ of the sample variance. The
An implementation of the PML receiver is shown by thdhréshold at scale indey, Th; is set to a fixed multiple
block diagram in Fig. 3. The incoming complex basebarff the stam_jard d(_awa'uon es'umqte in thaF band. At the finer
signal y() is oversampled and digitized. The oversamplinacalesv the |mpuIS|ve_events are |solated_, i.e., no two impulses
should be sufficiently high so that the discrete wavelet trar@® captured by a single wavelet coefficient. In the coarser
form in continuous time is well approximated by a discretéc@/es, the impulses are no longer isolated; therefore, the
time wavelet transform. The sampled sequefgg is wavelet threshold should bg .decrease.d in order to effectlvely dgtect
transformed using the DTWT algorithm '[35'], which carhe corrupted cqefﬁuents. This can b.e done py multiplying
be efficiently implemented with an octave-band filter banff® threshold with a slowly decreasing function of scale.
structure. The fully digital algorithm described above perform&€ wavelet thresholding operator generates a new wavelet
ML estimation of the parameters in a time recursive manngpefficient sequenceY’, } as follows:
and passes the estimated symbol sequémcen to further

decoding stages. Y, = {Y”‘ il < Th; (37)

J 0 [Yig| = Th;.

V. IMPULSIVE NOISE ROBUSTIFICATION The rest of the algorithm remains as before.
In this section, a robustification of the algorithm is given
for impulsive noise channels. The wavelet shrinkage method
of [10] uses a soft wavelet shrinkage algorithm to optimally
reconstruct a signal from samples contaminated by additiveThe algorithm of Section IV has been evaluated by means

white Gaussian noise. In this method, small wavelet coeffif a simulation program written in MATLAB. Several system
cients are set to zero since they are likely to contain littiearameters can be varied in order to examine their effect on the
signal energy, and, to compensate, larger wavelet coefficiergseiver’s performance, e.g., choice of wavelet family, number
are scaled down since they are likely to contain greatef scales, step size, extent of ISI, choice of PN codes, and
signal energy. This method, similarly to [1], eliminates noispumber of data symbols. The performance criteria of interest
wavelet coefficients by comparison to a predetermined higlere the symbol error probability and root mean squared
threshold. Wavelet coefficients larger than the threshold gfRMS) error of the time delay and phase estimates.
rejected because they have most likely been corrupted by thén this paper, only a small subset of all possible variations of
impulsive events. In the method of [1], the rejected wavelsystem parameters will be presented. We have restricted our
coefficients are reconstructed via an FFT-based interpolatiattention to an uncoded single-user system at the low SNR
algorithm. Assuming that the noise is dominated by the impuiange of —1 to 8 dB. The bit error probability results were
sive component while the Gaussian noise is very weak, thedstained from simulation runs on contiguous data blocks of
is practically no loss of performance if the noisy coefficient8048 or 4096 bits each. The gain and time delay estimates
are rejected along with the signal component. This is becawmmverged within the first 90 bits of each data block. After-
the residual signal power is still very large compared with theards, no further updates of these parameters were necessary.
Gaussian noise power. While such an extension is not pursdgue phase and synchronization error performance results were
in this paper, we could also simultaneously implement safbtained from 100 Monte Carlo simulations on 32 bit long
thresholding to reduce the effect of high power Gaussian noiskiata blocks. The signal parameters were chosen randomly and
A general block diagram of the wavelet-based impulsivedependently of each other. The data Hits } were selected
noise receiver is shown in Fig. 4. This receiver is very similars either+1 or —1, and the time delayl was uniformly
to the optimum receiver for the AWGN channel described idistributed in[—1}/2, 7 /2].

VI. SIMULATIONS
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A seven-chip PN code was used for the spreading sequencey
The transmitted signal was passed through a band-limited
AWGN channel|f| < 1/2T,, whereT, is the chip time.

The Daubechies wavelets [6] of length 4, which are the
shortest continuous compactly supported wavelets, were used *
in the wavelet decomposition of the received signal. Theg
decomposition was done on six scales in order to capturefa
large percentage of the signal energy, close to 90% on thse0
average. The number of new wavelet coefficients added pﬁr
cycle, i.e., the size ofv(+) — W (), was 11, and the number £
of wavelet samples per bit interval was approximately 63]E
The time-delay penaltyI(z) was designed using a sixth-order
Chebychev equiripple filter. The simulations focus on aided
acquisition or tracking performance as opposed to general
acquisition performance to reduce the additional complications

I ¢ i ! I

of local maxima in the likelihood function. Hence, the time 1, o > 4 s s 1o
delay estimate was initialized close to the true parameter by Eb/NO(dB)

adjusting the delay penalty function so that the maximum withg. 5. Bit error probability versus SNR for Gaussian noise channel. Stars:
respect tod is sought within 70% off’, from the true time simulation results. Solid: DLL performance, Dotted: PSK error bound.

delay. Similar procedure was adopted to ensure proper phase
initialization during the first four symbols of each transmission. ;-
The issue of global phase and synchronization acquisition
should be addressed in a future study.

Fig. 5 shows the bit error probability for the AWGN chan- _
nel. The results were obtained from approximately 800§
simulated bits at the highest SNR value to 2000 bits at chg
lowest SNR. We observe that the simulation results closely
match the theoretical lower bound on probability of error fos
a BPSK decoder [24]. The performance of a phase-coherei’ﬁ0 i STk ’ ]
DLL with comparable response time is also shown. Thé el
paramete$ = 2/W T is the normalized response time of thez Tl
DLL, where W7, is the two-sided loop bandwidth, afidis the
signaling period; therefore, a value 6f= 31 was used. The
loop damping of the equivalent PLL was takendas 0.707,
and zero detuning was assumed. The DLL error probability
was found by numerical integration of the conditional PSK bit 107 5 5 y e 3 10
error probability with respect to the solution of a stochastic Eb/NO(dB)

PDE of the steady-state synchronization error [24]. Notice tha}. 6. Normalized RMS synchronization error versus SNR. Stars: simula-
the DLL performance has degraded by more than 1 dB withn result. Solid: DLL performance. Dashed: CR bound.

respect to the ideal PSK error bound, whereas the performance

of the coordinate ascent algorithm is essentially optimalverage inter-arrival time of approximately T,5The impulse
Fig. 6 shows the normalized synchronization performance afplitudes were generated according to an i.i.d. complex
the coordinate ascent algorithrf;( = 1). The coordinate Gaussian process, and the width of each impulsive event was
ascent algorithm achieves an RMS synchronization error tlejual to the chip timd., thus effectively covering the signal

is much smaller than the chip time &f, =~ 0.14, which spectrum. In addition, a weak background AWGN process
explains its nearly optimal symbol estimation performancechose power was 18 dB below signal power was present. The
The synchronization error of the DLL is seen to be muciinresholds were computed by the following simple iterative
larger. The Crarar—Rao (CR) bound on time delay estimatiomlgorithm. First, the standard deviatienof each scale is es-

is also shown for reference. Fig. 7 compares the RMS phasgaated, and then, coefficients whose magnitude is larger than
error of the coordinate ascent algorithm with that of a daB are removed, and the process is repeated using the remain-
aided loop (DAL). The CR bound on phase error is shown fing coefficients until convergence. The thresholds were scaled
reference [36]. The DAL performance was calculated with they dividing by /7, where the scale indexranged between 1
same value ob as above for the case of a suppressed carrier6. The simulations compared bit error probability estimates
with NRZ data (n = 0, see [23]). The two systems have af the conventional receiver with those of the wavelet thresh-
similar performance, but it should be noted that the DAL reliegdding receiver over a range of signal-to-impulse ratio (SIR).
on a perfectly synchronized reference. The figure shows that a marked improvement in bit error prob-

Finally, impulse noise channel results are shown in Fig. 8bility has been achieved by using the wavelet thresholding
The impulses arrived according to a Poisson process with t@ehnique coupled with the coordinate ascent algorithm.

Norma\
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10° : : : : : such as best basis [42, ch. 8] or matching pursuit [26],
which could be implemented for this purpose. Finally, space
limitations prevented presentation of asynchronous multiuser
4 detection results. Similarly to the benefits of using the SAGE
algorithm for synchronous multiuser detection reported in
[30], the grouped coordinate ascent algorithm can be used
4 to accelerate convergence and to simplify implementation of
iterative ML multiuser detection by decoupling the updates of
the parameters of each user. Refer to [36] and [37] for details

= of this extension.

APPENDIX

The following proposition follows from the definition a8
in (22) and assumption i) in that section.

Proposition 1: If |n; — na| > 2B, thenu,(,i)(nl, na) =0
for all m € 7 and index set$¥ ) C {(j, k): j < ¢, k € Z}.

Proof: The claim will be proved by showing that

Cﬁ;kml(nl, ny) are identically zero. In view of (21), it suffices
to show that eithete . ,,,(n1) Or c;i m(n2) are identically
zero.

Suppose thats > n; and the pair(j, k) is chosen such
that the lower end of the supporting intervakof, (t) overlaps
with that of then;th symbol, i.e.,

107 I I I I I
-2 0 2 4 6 8 10

Eb/NO(dB)

Fig. 7. RMS phase error. Stars: simulation results. Solid: DAL performan
Dashed: CR bound.

T, + Tp
5

This implies thatw,z(n1; t) is possibly nonzero; therefore, its

i Fourier coefficients:;z, (n1) are not identically zero. Now,

consider the right endpoint of the supporting interval:gf (t)

T,+1To
2

2k — 2971, <y Ty, +

2k 4+ 21T, < T + +2-2i7,

<mTy + + 297,

T, + To
2

Ty, + T
2

-3 1 ! | | I 1 S TLQE - 2Bﬂ + + 2(1Tw
! 0—1 0 -9 -8 -7 -6 -5 -4 -3

SIR(dB)

Fig. 8. Bit error probability versus SIR for impulsive noise channel. Solid.
Conventional receiver. Dashed: Wavelet thresholding receiver. Confidence

T, + 1
<noTp — 2<% + Qq—lTw)

L L+ T

intervals are marked with “+” ando;” respectively. + 277,
T, +Tp
P
VIl. CONCLUSIONS snely — ——5— (38)

This paper introduces a new grouped coordinate ascetife third inequality above follows from the assumption<
method for joint timing and phase synchronization and optimal, — 2B, and the fourth one follows from (22). This im-
ML detection of transmitted symbols in a single user receivglies thatw;(n»; d) is identically zero becausg;(t) and
Wavelet thresholding can also be incorporated to adapt tp@ — nyT, — d) have nonoverlapping supporting intervals.
receiver to impulsive noise interference channels. FOUfiﬁ?herefore,%m(nQ) are identically zero, and it follows that
series and polynomial rooting were used to simplify thg;, . (n;, n,) are also zero as claimed. A similar proof
delay parameter line search, and a multiresolution Wave@p“es to the case Whem > no.
representation of the received signal was used to efficientlynext, we show that/\ (711, ns) is zero if the most recent
match parameter updates to data coefficients. The erX|b|I|ty5gtamp|e in the wavelet index s&® is localized at thenth
choosing several system parameters such as the wavelet bagiibol, andn is sufficiently smaller than either; or n,. For

the step size of the algorithm, and the penalty functions, makesqt of wavelet indice® ), recall the definitions oh and
the algorithm suitable for a variety of applications, depending:) in (23).

on technological feasibility and cost considerations. It should" ) )
be pointed out that the problem of selecting an optimal wavele Proposmon 2:lf ny 2 +Borny 2 n_ + B, then
basis has not been considered in this work but that several (n1, ns) = 0 for all m € Z. If n > 2! + B, then
optimal selection algorithms have been proposed elsewheﬁé? =0foral m € 7.
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Proof: To show the first part, assume, > n@ + B;
then, for all (j, k) €¢ W
2k + 2070, <2k 42971,
<, 4+ 20711,
<(ny— B)T, +277'T,
T, + T
2 [11]
where the second inequality follows from the definition of
7" and the third from the assumption en. It follows that 12
Cit.m(n1) = 0 for all m e Z, which impliess (ny, ny) =
0. The rest of the claim follows similarly.

The next proposition states conditions under whiéﬁ(n)
andu,(,?(nl, n2) do not change for an increasing sequence &4
wavelet index setdv .

Proposition 3: If n; < ngf) —Borns < ngf) — B for some [15]
index setv @, then, &) (ny, ng) = 9 (n1, no) forallp >,
andm € Z. lfn < nSf) — B for some wavelet index sét (¥, [16]
then u& (n) = p$(n) for all p > i andm € Z.

Proof: From (21), we have
>

JkCW @) W)

(7]

(8]
El

[10]

<n Ty —

[13]

[17]

1‘/7(7]1,))(711? TLQ) = 1’7(73)(711, 712) + djk,rn,(nla 712).

(18]

‘ 19
Considerd; ,.(n1, n2) for all (j, k) € W® — W, and 1]
assume thap > ¢ and that the difference set is not empty(20]
Then, the left endpoint of the supporting interval ©fy.(t)
satisfies [21]
2k — 2071, > 29 — 2971,

> 7’L$)Tb — 2(1_1T¢

>m Ty + BT, — 27717,
Ty, + 1o

9 [24]

where the second inequality follows from the definition of25]
ngf) and assumption iii) and the third from the assumption
on n;. The last inequality shows that the right endpoint ofbs]
p(t — n1 Ty — d) is smaller than or equal to the left endpoint
of 4,1 (t) whenever|d| < T, /2. Consequentlyg;i ,.(n1) is 27]
zero for allm € Z, which implies thatd;; n.(n1, n2) is zero
for (j, k) € W® — W@, This proves the claim. The proofs 28
for the other cases are similar. [

[22]

[23]
>n Ty +

REFERENCES [29]

[1] P. L. Ainsleigh and C. K. Chui, “A B-wavelet-based noise-reduction
algorithm,” IEEE Trans. Signal Processingol. 44, pp. 1279-1284, [30]
May 1996.

[2] J. W. M. Bergmans and H. W. Wong-Lam, “A class of data-aided

timing-recovery schemes|EEE Trans. Communyol. 43, nos. 2/4, [31]

pp. 1819-1827, Feb./Apr. 1995.

C. Bouman and K. Sauer, “A local update strategy for iterative rel32]

construction from projections,JEEE Trans. Acoust., Speech, Signal

Processingyol. 41, pp. 534-548, Feb. 1993.

, “A unified approach to statistical tomography using coordinaté33]

descent optimization,lEEE Trans. Med. Imagto be published.

K.-H. Chang and C. N. Georghiades, “Joint maximum-likelihood timing

and data estimation for MSK signals from matched-filter samples,” i34]

Proc. IEEE ICC,1994, vol. 3.

|. Daubechies, “Orthonormal bases of compactly supported wavelets,”

Commun. Pure Appl. Mathvol. 41, no. 7, pp. 909-996, 1988.

(3]

(4]
(5]

(6]

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 3, MARCH 1999

, “The wavelet transform, time-frequency localization and signal
analysis,”|IEEE Trans. Infrm Theorwol. 36, pp. 961-1005, Sept. 1990.

, Ten Lectures on WaveletsPhiladelphia, PA: SIAM, 1992.

A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm]: Roy. Stat. Soc. Biol.

39, no. 1, pp. 1-38, 1977.

D. L. Donoho, “Nonlinear wavelet methods for recovery of signals,
densities, and spectra from indirect and noisy data,Different Per-
spectives on Wavelets Daubechies, Ed. Providence, RI: Amer. Math.
Soc., 1993.

M. Feder and J. A. Catipovic, “Algorithms for joint channel estimation
and data recovery-application to equalization in underwater communi-
cations,”|EEE J. Oceanic Engyol. 16, pp. 42-55, Jan. 1991.

M. Feder and E. Weinstein, “Parameter estimation of superimposed
signals using the EM algorithm[EEE Trans. Acoust., Speech, Signal
Processingyol. 36, pp. 477-489, Apr. 1988.

J. A. Fessler and A. O. Hero, “Space-alternating generalized expectation-
maximization algorithm,1EEE Trans. Acoust., Speech, Signal Process-
ing, vol. 42, pp. 2664—-2677, Oct. 1994.

, “Penalized maximum-likelihood image reconstruction using
space-alternating generalized EM algorithm&EE Trans. Image Pro-
cessing,vol. 4, pp. 1417-1429, Oct. 1995.

G. D. Forney, “Maximum-likelihood sequence estimation of digital
sequences in the presence of intersymbol interferen&EE Trans.
Inform. Theoryvol. IT-18, pp. 363-378, May 1972.

C. N. Georghiades and D. L. Snyder, “The expectation-maximization
algorithm for symbol unsynchronized sequence detectil#EE Trans.
Commun,vol. 39, pp. 54-61, Jan. 1991.

C. N. Georghiades and J. C. Han, “Sequence estimation in the presence
of random parameters via the EM algorithmZEE Trans. Commun.,
vol. 45, pp. 300-308, Mar. 1997.

G. H. Golub and C. F. Van LoarMatrix Computations. Baltimore,
MD: Johns Hopkins Univ. Press, 1983.

J. Huber and W. Liu, “Data-aided synchronization of coherent CPM-
receivers,”IEEE Trans. Communyol. 40, pp. 178-189, Jan. 1992.

, “Data-aided synchronization of M greater than equivalent to 2-
ary coherent CPM receivers,” iRroc. IEEE GLOBECOM1990, vol.

2, pp. 709-713.

R. A. lltis, “An EKF-based joint estimator for interference, multi-
path, and code delay in a DS spread-spectrum receiEEE Trans.
Communyol. 42, pp. 1288-1299, Feb./Apr. 1994.

H. Kobayashi, “Simultaneous adaptive estimation and decision algo-
rithm for carrier modulated data transmission systenlEEE Trans.
Commun.yvol. COMM-19, pp. 268-280, June 1971.

W. C. Lindsey and M. K. Simon, “Data-aided carrier tracking loops,”
IEEE Trans. Communyol. COMM-19, pp. 157-168, Apr. 1971.

__, Telecommunication Systems EngineerinBnglewood Cliffs,
NJ: Prentice-Hall, 1973.

S. G. Mallat, “Multiresolution approximations and wavelet orthonormal
bases ofL?(IR),” Trans. Amer. Math. Socvol. 315, no. 1, pp. 69-87,
1989.

S. G. Mallat and Z. Zhang, “Matching pursuits with time-frequency
dictionaries,”IEEE Trans. Signal Processingpl. 41, pp. 3397-3415,
Dec. 1993.

M. H. Meyers and L. E. Franks, “Joint carrier phase and symbol timing
recovery for PAM systems,JEEE Trans. Communyol. COMM-28,

pp. 1121-1129, Aug. 1980.

] H. Meyr, M. Oerder, and A. Polydoros, “On sampling rate, analog

prefiltering, and sufficient statistics for digital receiverdfEE Trans.
Commun,. vol. 42, pp. 3208-3214, Dec. 1994.

J. W. Modestino, D. Sargrad, and R. E. Bollen, “Use of coding to combat
impulse noise on digital subscriber loop$£EE Trans. Communyol.

36, pp. 529-537, May 1988.

L. B. Nelson and H. V. Poor, “Iterative multiuser receivers for CDMA
channels: An EM-based approachEE Trans. Communyol. 44, pp.
1700-1710, Dec. 1996.

A. V. Oppenheim and R. W. Schafdbjscrete-Time Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, 1989.

J. Qin, “Demodulation of binary PSK signals without explicit carrier
synchronization,” inProc. 1993 IEEE Int. Conf. Communl993, pp.
498-501.

S.-C. Rezeanu, R. E. Ziemer, and M. A. Wickert, “Joint maximum-
likelihood parameter estimation for burst DS spread-spectrum transmis-
sion,” IEEE Trans. Communvol. 45, pp. 227-238, Feb. 1997.

S.-C. Rezeanu and R. E. Ziemer, “Joint maximum-likelihood data
and bit synchronization epoch estimation for burst direct sequence
spread-spectrum transmissio®foc. IEEE MILCOM,1996, vol. 3, pp.
801-805.

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 6, 2009 at 15:23 from IEEE Xplore. Restrictions apply.



SHARFER AND HERO: MAXIMUM LIKELIHOOD DIGITAL RECEIVER USING COORDINATE ASCENT AND THE DISCRETE WAVELET TRANSFORM 825

(35]

(36]

[37]

(38]

[39]

O. Rioul and P. Duhamel, “Fast algorithms for discrete and continuor~
wavelet transforms,/EEE Trans. Inform. Theorwol. 38, pp. 569-586,
Mar. 1992.

I. Sharfer, “Recursive algorithms for digital communication using th
discrete wavelet transform,” Ph.D. dissertation, Univ. Michigan, An
Arbor, 1996.

I. Sharfer and A. O. Hero, “lterative maximum likelihood sequenc
estimation for CDMA systems using grouped ascent and the DWT
in Proc. 1997 IEEE Workshop Signal Process. Adv. Commiaris,
France, Apr. 1997, pp. 137-140. University of Michigan, Ann Arbor, where he is

D. Slepian, “On bandwidth,Proc. IEEE, vol. 64, pp. 292-300, Mar. currently Professor and Director of the Communica-
1976. o tions and Signal Processing Laboratory. He has held the positions of Visiting
M. A. Tanner, Tools for Statistical Inference: Methods for the Explo-ggientist at the Massachusetts Institute of Technology Lincoln Laboratory,
ration of Posterior Distributions and Likelihood FunctionsNew York: Lexington, from 1987 to 1989: Visiting Professor at I'Ecole Nationale de

Alfred O. Hero, Il (S'79-M'84-SM’'96—F'97) was
born in Boston, MA, in 1955. He received the B.S.
degree (summa cum laude) from Boston University
in 1980, and the Ph.D. degree from Princeton Uni-
versity, Princeton, NJ, in 1984, both in electrical
engineering. He held the honorary G. V. N. Lothrop
Fellowship in Engineering at Princeton University.
Since 1984, he has been with the Department
of Electrical Engineering and Computer Science,

20 ?Pgngr%f've”ag, 1933'.? A Taoiy ric Function Estimati Techniques Avancees (ENSTA), Paris, France, in 1991; and Wiliam Clay
[40] Modeli ompsdog_anl o 'th'ilpld 'CI’”E,"’“"";T_ ré‘iA'\‘j”‘iE'g(‘) stmation. Ford Fellow at the Ford Motor Company, Dearborn, MI, in 1993. He has
[41] MOVeetItr(]-:‘ng’i grr‘]d Jm?(té)sa{gg\'/icV\ll;veeleQSlghd Sub-Band CodingEngIe— served as consultant for U.S. government agencies and private industry.

[42]

[43]

[44]

[45]

d Cliffs. NJ Prentice-Hall. 1995 His present research interests are in the areas of detection and estimation
wood Clifts, NJ: Prentice-Hall, ' theory, statistical signal and image processing, statistical pattern recognition,

M. V. WickerhauserAdapted Wavelet Analysis from Theory to Software, . : - o .
Wellesley, MA: Peters, 1994. Signal processing for communications, channel equalization and interference

G. W. Wornell, “Emerging applications of multirate signal processin itigation, spatio-temporal sonar and radar processing, and biomedical signal

L . nd image analysis.
and wavelets in digital communicationsProc. IEEE, vol. 84, pp. . . . . L
586-603, Apr. 1996. Dr. Hero is a member of Tau Beta Pi, the American Statistical Association,

: - he New York Academy of Science, and Commission C of the International

K. M. Wong, J. Wu, T. N. Davidson, and Q. Jin, “Wavelet packef ™~ ) . . ) .

division mu?tiplexing and wavelet packet derign under timing erro_t‘m'on of Radio Science (URSI). He was Associate Editor for Signal Process-

effects,” [EEE Trans. Signal Processing be published. ing at the IEEE RANSACTIONS .ON.|NFOR.MATION THEORY from 1994_to 1997; _

J. Wu, Q. Jin, and K. M. Wong, “Multiplexing based on waveletChair pf the IEEE SPS Statistical S|g_nal and Array Processing Technical

packets,” inWavelet Applications IIH. H. Szu, Ed.,Proc. SPIE,pp. Committee from 1996 to 1998; and, since 1997, has been Treasurer of the

315-326 1995. IEEE SPS Conference Board. He is Cochair for the 1999 IEEE Information
Theory Workshop and the 1999 IEEE Workshop on Higher Order Statistics.
He served as Publicity Chair for the 1986 IEEE International Symposium on
Information Theory and was General Chair of the 1995 IEEE International

. . Conference on Acoustics, Speech, and Signal Processing.
llan Sharfer (M'96) was born in Tel-Aviv, Israel,

on October 24, 1955. He received the B.Sc. degree
(with honors) in electronic and computer engineer-
ing from the Technion—Israel Institue of Tecnology,
Haifa, in 1977, the M.Sc. degree (with honors) from
Tel-Aviv University in 1991, and the Ph.D. degree
from the University of Michigan, Ann Arbor, in
1996, both in electrical engineering.

From 1981 to 1982, he studied for the Master’s
degree in electronic engineering at the Philips Inter-
national Institute (PIl), Eindhoven, The Netherlands.

From 1983 to 1992, he worked at National Semiconductor, Herzlia, Israel, as a
VLSI design engineer. Since 1998, he has been with Orckit Communications,
Tel-Aviv, developing DSP algorithms in the area of digital communications.
He is also a Lecturer on signal processing in the Communications Systems
Engineering Department, Ben-Gurion University, Beer-Sheva, Israel. His
research activities include the areas of signal processing and statistical com-
munications theory, specifically higher order spectra, applications of wavelet
theory in digital communications, channel estimation, and synchronization
algorithms.

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 6, 2009 at 15:23 from IEEE Xplore. Restrictions apply.



