
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 3, MARCH 1999 813

A Maximum Likelihood Digital
Receiver Using Coordinate Ascent

and the Discrete Wavelet Transform
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Abstract—In this paper, a maximum likelihood (ML) method
is presented for joint estimation of amplitude, phase, time de-
lay, and data symbols in a single-user direct-sequence spread-
spectrum communication system. Since maximization of the like-
lihood function is analytically intractable, a novel coordinate
ascent algorithm is used to obtain sequential updates of the data
symbols and all unknown nuisance parameters. The novelty of the
algorithm is due to the use of a multiresolution expansion of the
received signal and the use of polynomial rooting in the complex
plane in place of a line search over the signal delay parameter.
The multiresolution structure of the algorithm is exploited to
reduce sensitivity to impulsive noise via wavelet thresholding.
Computer simulations of the single-user system show that the
algorithm has fast convergence, and comparison with theoretical
lower bounds establishes that the algorithm achieves nearly
optimal error performance.

Index Terms—Bit synchronization, carrier phase recovery, im-
pulsive noise mitigation, sequence estimation, wireless communi-
cations.

I. INTRODUCTION

T HE NEW technologies of multiuser wireless communica-
tion systems, mobile radio, and personal communication

networks require advanced signal processing methods for
improved efficiency and reliability. The growing computing
power and shrinking cost of digital signal processing (DSP)
technology makes sophisticated signal processing algorithms
both practical and affordable. Wireless communication systems
must frequently operate in harsh environmental conditions
that adversely effect the transmitted signal through such phe-
nomena as time-varying channel response, multipath fading,
multiaccess and cochannel interference, non-Gaussian noise,
and loss of synchronization. A parametric model of the re-
ceived signal typically includes unknown amplitude, phase,
and time delay, which should be accurately estimated to ensure
near optimal decoding of the data symbols. Traditionally, these
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nuisance parameters are estimated by nonoptimal combination
of several subsystems, each specialized to estimating a par-
ticular parameter. For example, carrier phase and time delay
estimation are frequently done with a phase-locked loop (PLL)
and a delay-locked loop (DLL), respectively [24]. The PLL
and DLL techniques are equivalent to the optimal maximum
likelihood (ML) or maximuma posterioriprobability (MAP)
estimators under the assumptions that the data symbols are
known and that either the symbol timing is known (PLL)
or the carrier phase is known (DLL). However, the overall
estimator is suboptimal, and it may unnecessarily reduce the
system’s operational threshold. Therefore, an optimal receiver
that jointly estimates the nuisance parameters as well as the
data symbols is sought in order to achieve better performance.

A considerable amount of research has gone into improving
the performance of the basic PLL and DLL synchronization
techniques, e.g., by using decision feedback in a data-aided
loop (DAL) [2], [23], a decision-directed receiver [22], or
by deriving optimal nondata-aided estimation structures [27].
More recently, digital implementations of pseudo-noise (PN)
code tracking algorithms using the extended Kalman filter
have been proposed [21]. The problem of maximum likelihood
sequence estimation for the intersymbol interference (ISI)
channel has been treated in [15] using a whitened matched
filter followed by a Viterbi decoding algorithm. Most of
these estimation techniques critically depend on the Gaussian
noise assumption; therefore, they become ineffective when the
interference contains a dominant impulsive noise component.
The joint parameter estimation and data demodulation problem
becomes even more difficult in a multiuser communication
system such as the code division multiple access (CDMA)
system, which provided the motivation for the work reported
in this paper.

This paper presents a novel joint ML estimator of the un-
known parameters in the context of a single user receiver. First
an ML estimation algorithm for the additive white Gaussian
noise (AWGN) channel is developed, which is subsequently
robustified for the non-Gaussian impulsive noise channel.
The ML estimator yields an optimal receiver that generates
estimates of the nuisance parameters that are asymptotically
uniform minimum variance unbiased (UMVUE) in the sense
of achieving the CR bound in the limit of large number of
observations. The single-user ML algorithm has been adapted
to multiuser channels, but due to space limitations, this is
treated elsewhere [36], [37]. In addition, while such extensions
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have not yet been fully explored, it is probably straightforward
to apply the approach of this paper to the case of fading and
ISI channels.

It is well known that direct maximization of the joint like-
lihood function is analytically intractable due to the unknown
delay parameter. Several suboptimal schemes for approximat-
ing the joint maximum likelihood sequence and synchroniza-
tion parameters have been recently proposed [5], [33], [34].
Another approach is iterative ML estimation using steepest
descent, Newton–Raphson, or the expectation-maximization
(EM) algorithm, which have been used in similar problems
involving superposition of signals [3], [4], [11], [12], [16].
These algorithms are limited to block processing. All the
unknown parameters and, in particular, all the data symbols
within a block must be updated simultaneously. Furthermore,
many of these algorithms are known to suffer from divergence
or very slow convergence. This results in a large processing
delay that can only be compensated by increasing proces-
sor speed and receiver power consumption. For the case of
known signal delay (synchronous case), the Viterbi algorithm
performs maximum likelihood sequential decoding in a single
pass over the symbols sequence [15]. However, the single-pass
Viterbi algorithm cannot be implemented as an ML decoder for
the asynchronous case. The iterative ML algorithm proposed
in this paper uses coordinate ascent maximization to jointly
estimate amplitude, phase, time delay, and data symbols in a
sequential manner. Furthermore, by performing the parameter
updates on the coefficients of a multiresolution decomposition
of the received signal, a single pass algorithm is obtained.

Coordinate ascent is an iterative maximization technique
that cycles over groups (or coordinates) of parameters and
guarantees that the likelihood is increased at each iteration. It is
related to a class of EM algorithms known as space-alternating
generalized EM (SAGE) algorithms introduced in [13] and
applied to the synchronous multiuser synchronous CDMA
detection problem in [30]. Standard EM algorithms have been
applied to synchronous sequence estimation in the presence of
fading [17] and unknown carrier phase [32]. The algorithm in
this paper handles both unknown carrier phase and unknown
bit synchronization and is equivalent to a SAGE algorithm
for a special choice of hidden data sets (complete data) that
are defined as one-to-one transformations of the observations
(incomplete data). As a result, it can be shown that this
coordinate ascent algorithm is a SAGE algorithm that has
the fastest possible asymptotic convergence for our particular
parameter cycling strategy. Since, for signal superposition
problems such as the communications application in this paper,
the asymptotic convergence speed of SAGE is significantly
faster than standard EM [13], this coordinate ascent algorithm
does not suffer from the slow convergence inherent in EM
algorithms.

As in [19] and [28], a well-adapted orthogonal signal
representation of the measurements is used as a way to
concentrate parameter and symbol information into a low
number of coefficients. These representations cover the con-
ventional cardinal series basis, the time-limited sinusoidal
basis functions [20], the Walsh basis, the exponential basis
[19], the Karhunen–Loeve basis, and the Slepian basis [38].

The orthogonal representation is exploited by re-expressing
the likelihood function as a polynomial in a complex variable,
which is then used to solve for the unknown delay by fast root-
finding methods. Next, this is specialized to the Daubechies
wavelet basis [7], [41] to obtain a multiresolution data recur-
sive implementation of the coordinate ascent ML algorithm.
Wavelets have the advantage of time and scale localization,
which make them well suited for recursive parameter update
algorithms for which each parameter affects the signal at
different times and scales. In the present application, the
amplitude and phase parameters are coarse scale parameters
in the sense that changes in these parameters affects the signal
by a global scale factor over time. On the other hand, the
data symbols are finer scale parameters since they only affect
the signal locally in time. The multiresolution property is
important for the implementation of the coordinate ascent
algorithm as it separately encodes coarse scale parameters,
e.g., signal amplitude and phase, and finer scale parameters,
e.g., data symbols and timing, into different sets of wavelet
coefficients.

Wavelet-based signal processing techniques have recently
seen very rapid growth in related areas. They have demon-
strated their usefulness in seismology, image processing, and
data compression as well as in many other applications.
Wavelet bases enjoy a very strong optimality property for
general inverse problems in that their use can achieve ac-
curate and parsimonious representation of the input signal
and simultaneously diagonalize the channel [10]. In addition,
wavelet and other orthogonal modulation schemes have been
suggested as a means of attaining reliable communication over
multiple access, fading, and ISI channels [43]–[45]. While
such modulation schemes are not required for implementation
of the ML receiver presented here, the receiver is naturally
adapted to them.

Wavelet domain signal processing can also be very effective
in suppression of impulsive noise that exists in wireless and
optical communications as well as wireline communications
such as digital subscriber lines and cable TV plants. This
type of temporally localized noise contaminates a significant
portion of the usable transmission spectrum. The optimum
receiver for impulsive noise is hard to derive, whereras nar-
rowband noise rejection techniques are not effective. Although
the influence of impulsive noise can be reduced by the use
of additional coding [29], this comes at a cost of reduced
data rate and/or increased delay. The temporal localization of
the wavelet basis can be used to detect and reject impulsive
events using a simple thresholding algorithm [1], [10]. The
reasoning is that only the largest wavelet coefficients are
likely to be significantly corrupted by the noise impulses. It
will be shown how this thresholding technique can be easily
incorporated within the general framework of iterative ML
sequence estimation.

The paper is organized as follows. In Section II, the single
user observation model is defined. In Section III, the form
of the likelihood function is given, and simplifications of the
line search step are discussed, which result in a coordinate
ascent algorithm with increasing complexity as a function of
the block size. In Section IV, a fixed complexity algorithm is
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obtained by using wavelet representations. In Section V, the
fixed complexity algorithm is robustified against impulsive
noise interference via wavelet thresholding. In Section VI,
simulation results are presented, and Section VII concludes
the paper.

II. OBSERVATION MODEL

Consider the single-user complex baseband model for the
received signal

(1)

where is an attenuated and delayed version of the data
modulated signal transmitted by the user

(2)

Note that is a superposition of delayed and scaled versions
of the signaling waveform , which is assumed to be a
known PN code. For simplicity, it is assumed that the period
of the PN code is equal to the data symbol time interval.
Note that it is not necessary to assume that the support of

is the same as the symbol interval—this property would
be critical for extension of the algorithm to ISI channels. The
noise will be assumed to be a complex white Gaussian
process with power spectral density .

The unknown parameters in the model (2) are the complex
gain : , , the data
symbols for , and the time
delay . It is assumed that is contained in the interval

for some positive . The index set
notation will be used. For simplicity, the
data symbols in (2) are assumed to be in BPSK modulation
format, but with minor modifications, the cases of-ary PSK,
PAM, and QAM can be treated. The restriction thatlies
in the upper half of the complex plane is required in order
to remove the 180 phase ambiguity and to enable coherent
demodulation of the transmitted symbols. There are several
techniques for resolving phase ambiguity at the expense of a
small decrease in spectral efficiency [24, ch. 2]. Alternatively,
DPSK modulation can be used to encode the source into phase
changes rather than absolute phase of the transmitted signal.

III. JOINT MAXIMUM LIKELIHOOD ESTIMATION

A. Direct Maximization of Likelihood

Let be a real orthonormal basis for the space of
square integrable function . Relative to this basis, the con-
tinuous time observation can be converted to the equivalent
discrete time observation

where denotes the inner product . The
original observation can be recovered from the discrete time
observation through the reconstruction formula

(3)

Therefore, the coefficients are sufficient statistics for
the original continuous time observations. Given that the
observation noise is a white complex Gaussian process
with spectral level , it follows from (1) and (2) that

is a set of independent jointly Gaussian complex random
variables with mean

and variance , where are the projection coeffi-
cients of the time function ,

(4)

In the sequel, the unknown parameters are collectively
referred to as the element parameter vector

. Thus, up to known additive constants,
the log-likelihood function can be expressed as

(5)

A necessary and sufficient condition for , ,
to jointly maximize the log likelihood (5)

is that three equations be satisfied.

(6)

(7)

and

(8)

Note that only one of these equations (8) is explicit. The
solution of (7) requires searching over possible symbol
values , and the solution of (6) requires
performing a line search over . The high
complexity of these latter solutions makes direct maximization
impractical and provides the primary motivation for this work.
The first step is to simplify the line search.

B. Line Search via Polynomial Rooting

First, it will be necessary to transform (5) into a polynomial
equation in the complex variable by representing the
projection coefficients in Fourier series in the delay
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variable . The benefits of this transformation will become
clear: A computationally intensive line search for the maxi-
mum over of (5) is eliminated, and the numerical solution
can be found by standard polynomial rooting algorithms that
are fast and reliable. Suppose that we are interested in the
inner product on some
interval that contains thea priori time
delay uncertainty interval . Define the Fourier
coefficients

(9)

where

and . By the convolution property of the Fourier
transform

(10)

where is the Fourier trans-
form of , and is
the Fourier transform of with respect to .

The Fourier series expansion of over
can be written as a function of the complex

variable

(11)

with . Since is a real function of , the
Fourier coefficients are conjugate symmetric in

and is real.
With the series representation (11), the log-likelihood (5)

can be approximated to arbitrary accuracy by a polynomial in
the complex variable . To see this, use conjugate symmetry
of the Fourier coefficients to rewrite (5) as the double-sided
infinite power series

(12)

where , and is the coefficient
of in the log likelihood expansion, that is

Note that depends on the parameter valuesand
.

Now, let be arbitrary, and define as the smallest
positive integer such that

Define the order polynomial .
Then

is a polynomial approximation to the log likelihood in the
mean square sense

Note that the degree of is finite since the observations
have finite power. will principally depend on the band-
width of the signaling waveform , which for PN sequences,
is proportional to the number of chips per symbol interval,
i.e., the processing gain, since the Fourier coefficients
decay rapidly as increases beyond the bandwidth of .

In the sequel, the notation will be used to
clarify the fact that is a function of the amplitude and
the symbols . Note that since is a
smooth function, the maximum of
over will occur within of the ML
estimate , and there is a stationary point at this maximum, i.e.,

. The idea is to add a penalty
function that will force to have a stationary point near

and such that the stationary points can be found
by rooting a polynomial. To this aim, define the penalized
polynomial

(13)

where is a rational function of the form

(14)

where and are polynomials of degree and ,
respectively, overC

(15)

Now, assume that is a function that satisfies the
following. 1) is positive and reasonably flat on the semi-
circle : . 2) Magnitude of
decays quickly to zero as deviates from the semi-circle.
Then, any stationary points of that are on the unit
circle will be close to the stationary points of
over . It follows that the line search step
(6) of the joint ML estimator can be approximated by the
following steps:

1) Differentiate the function (13) with
respect to . This gives a rational function

(16)

where is a polynomial of degree
.

2) Find the roots of the numerator polynomial that
lie on the unit circle.
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3) Evaluate the objective at each of these roots, and
select the root that maximizes the penalized objective
(13).

4) The phase of the maximizing root specifies the estimate
of .

Since the numerator polynomial of (16) has fixed degree,
there is a fixed computational complexity per iteration of the
delay estimation step. The penalty function can be im-
plemented by applying standard filter design methods [31] to
the transfer function in (14). The degrees and

of the penalty polynomials depend on the desired precision
of the time delay estimate that determines the passband ripple
and transition bandwidth of . Typically, they are much
smaller than . The choice of penalty function is analogous
to the choice of penalty in the penalized maximum likelihood
algorithm.

C. Iterative Penalized Maximum Likelihood (PML)

The penalized ML estimate of a , ,
is defined as

(17)

Here, is a user-specified penalty function. Penalties have
frequently been introduced to regularize the estimator [40],
to promote faster convergence [14], or to take advantage of
prior information [39]. It will be convenient to express the
penalty function as the function of the
complex variable defined in (13). In this way, it can
be seen that incorporation of the aforementioned polynomial
rooting estimation procedure for estimation ofis equivalent
to implementing a PML solution to the joint estimation of.

In cases where direct maximization of the objective (17)
is not possible, iterative optimization is often useful. The
iterative algorithm developed in this paper is a coordinate
ascent-type algorithm that is related to Gauss–Seidel iterations
[18] for minimizing quadratic objectives. Fix a coordinate
to be updated, and define the parameter vectoras with
the coordinate left out: , , , , ,

. Define as a mapping from the natural numbers
to the parameter index set that

satisfies the property that the sequence, cycles
through all parameter indices an infinite number of times.
For , the coordinate ascent algorithm produces
a sequence by the following iteration:

Note that in the th iteration, only the parameter of is
updated while the other parameters are held fixed.

For the present application, the penalized log likelihood
function is of the form , where

is given by (5). The convergence rate of coor-
dinate ascent depends on the order of parameter updates and
the number of consecutive updates of a given parameter. For
positive integers , denote by the integer modulo

. Given initial conditions , , , the
following is an algorithm that updates in the order

, . Here, the notation
denotes mod .

1) Increasing Complexity Single-User Algorithm:For
, update th cycle.

1) Find by rooting the polynomial as
explained in previous section.

2) Update the bit by hard decision

sign Re

(18)

where

(19)

3) Update the amplitude as follows. Define temporary
variable

(20)

If , set and
for all ; otherwise, set , and

, for all .

Note that since, at each iteration, the objective function
is maximized over the associated coordinate, the algorithm
ensures a monotone increase in likelihood as it progresses.
Use of the temporary variable is necessary to ensure that
has non-negative phase. A deficiency of the algorithm is the
problem of growing memory and computation. It must cycle
over an increasingly large set of symbols as the numberof
these increases.

IV. COMPLEXITY REDUCTION VIA WAVELET BASIS

The growing memory and growing complexity problem will
be solved by prescribing a single-pass acyclic version of the
PML algorithm that updates only those symbols falling within
a sliding time window of fixed length. In this scheme, the
time localized parameters, i.e., symbols, are only updated a
finite number of times, whereas the global parameters, i.e.,
and , are updated an infinite number of times. Recall that in
Section II, a general orthogonal representation for the received
waveform was used, whereby projecting it
on an orthogonal basis , an equivalent set of
measurements , , was obtained.
To achieve decoupling between the localized and nonlocalized
parameter updates, it will be convenient to specialize the basis

to one that has the multiresolution property [25]. This
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(a) (b) (c)

Fig. 1. Tiling of the time frequency plane. (a) Dirac basis, (b) Fourier basis. (c) Wavelet basis.

will produce coefficients that contain only information spe-
cific to a particular time and scale component of .
In this way, a kind of parsimony of the data representation is
achieved. Information needed for a particular local or nonlocal
parameter update is concentrated in only a few coefficients.

Fig. 1 shows time scale tiling diagrams of three orthonormal
bases: the Dirac basis, the Fourier basis, and the wavelet basis.
While the Dirac and Fourier bases are localized only in the
time and frequency dimensions, respectively, the wavelet basis
has the multiresolution property. Each basis is localized in both
dimensions, with a timing resolution that gets finer at smaller
scales. The time-localized Dirac basis is not parsimonious for
updating parameters that are localized in frequency. On the
other hand, the Fourier basis is not parsimonious for updating
time localized parameters such as the symbol sequence. The
same deficiencies would hold for other bases that do not have
the multiresolution property, e.g., the cardinal series basis, the
Slepian (prolate spheroid) basis, and the Walsh basis.

Note that there exist nonorthonormal expansions that also
have the time–frequency resolution property. For example, Ga-
bor frames [7] offer more regular tiling of the time–frequency
plane. However, nonorthogonality causes leakage across scales
and complicates the maximization of the likelihood function.
Among the many wavelet bases that can be used, e.g., the
Daubechies wavelets, Battle–Lemarie wavelets, wavelet pack-
ets [8], [42], local cosine bases, and biorthogonal wavelets [7],
in this paper, the Daubechies wavelet basis [6] is adopted. An
advantage of this basis is that the coefficients can be computed
in real time using the discrete time wavelet transform (DTWT)
algorithm [35].

The discrete wavelet basis is defined by time scaling and
translation of the single function, which is called the basic
wavelet [8], producing the double indexed set of basis
elements

Use of the wavelet basis produces a double indexed set of
equivalent measurements , , ,

signaling waveform projections ,
, and a triple indexed set of Fourier coefficients

of the projections, as defined in the previous section.
As only certain subsets of the wavelet coefficients will be

used for each parameter update, it is convenient to define an
increasing sequence of subsets of wavelet indices
such that

The following conditions will be necessary

i) The signaling waveform and the basic wavelet
are supported on and ,
respectively, for some and , where .

ii) A finite number of scales is used in the wavelet decom-
position so that the scale indexsatisfies
for some .

iii) The wavelet index sets used in the algorithm are
chosen sequentially in such a way that

for all IN.

The purpose of these assumptions, which are not restrictive,
will now be explained. The first assumption is needed to elimi-
nate all but a small neighborhood of overlapping symbols
appearing in the likelihood function. The second assumption is
required so that the Fourier coefficients can be stored
in a table of finite size and that the algorithm have a finite
delay. The smallest scale can be determined from the band-
width of the signaling waveform , and the largest scale
can be determined by the maximum tolerable processing delay,
e.g., . The third condition means that the wavelet coefficients
are processed over all scales simultaneously and sequentially
in time according to increasing temporal localization variable
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Fig. 2. Wavelet index sets.

. A graphical illustration of the actual sequence of wavelet
indices used in the algorithm is given in Fig. 2.

It is useful to remark that if for some rational
number , then it is possible to store all the Fourier
coefficients in a finite table because they can all be
mapped to those with symbol indices

where mod .
Next, define the following intermediate variables, which will

be updated at each iteration of the algorithm:

where

(21)

Similar to the Fourier coefficients , the constants
can be stored in a finite table. It is easy to

verify that satisfies the symmetry properties

Notice that is the resultant matched filtering of
to the Fourier coefficients of the correlation ,

whereas is a deterministic quantity.
To reduce the computational complexity of updating the

intermediate variables and , it is useful to exploit the finite
support property of the basic wavelet. To this aim, define the
quantity

(22)

where indicates the smallest integer that is greater than or
equal to . Recall that , , and are the signaling pulse
width, the width of the basic wavelet, and the Fourier analysis
window length defining the coefficients , respectively.

In addition, for a wavelet index set , define the indices
and

for all

for some

(23)

Proposition 1 of the Appendix shows thatis a timewidth
parameter for in the sense that for
all for . Proposition 2 of the Appendix
shows that whenever or exceed

and whenever exceeds
for all . The combination of these two propositions
specifies a small region of wavelet indices for which the
summands of and are nonzero. Proposition 3 of the
Appendix shows that if or ,

then for all and all
and similarly for . Thus, this specifies a set of indices for
which these intermediate variables need not be updated.

Once the following update index sets are defined, a concrete
specification of the algorithm can be given.

(24)

Notice that the set is not empty because and
, whereas the set may be empty. Corresponding to

the above sets, define the two-dimensional (2-D) index sets

(25)

With the above, a fourth condition can be specified on the
sliding symbol-update window.

iv) During the th iteration, the algorithm only updates the
symbols : .
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Note that for symbols not in , the intermediate variables
do not change as a result of the most recent multiresolution
samples having indices in . Hence, the only
change in the objective of these symbols is a result of
updating other parameters, which should have a secondary
effect. Consequently, the algorithm no longer will have the
cyclic update structure that it had before in Section III. The
set can therefore be referred to as the “current symbols”
index set, whereas the set corresponds to “past symbols,”
that is, symbols whose estimates will not be further updated.
The 2-D sets and that define pairs of symbol indices
can be interpreted in a similar manner.

The fixed memory wavelet version of the coordinate ascent
algorithm presented in Section III is given below. To simplify
the notation, the Fourier index will be omitted, and the
corresponding variables will be typed in boldface, e.g.,
instead of .

1) Fixed Complexity Single User Algorithm:For

1) Choose the wavelet index set .
2) Update the local variables and as

(26)

where .
3) Update the state variables and as

(27)

4) Update the delay estimate.

• Compute the temporary variables

(28)

Set up the penalized objective for .

(29)

Fig. 3. Block diagram of the ML receiver.

• Maximize the penalized objective using polynomial root-
ing

argmax

5) Update symbol estimates , .

• Update the local variable

(30)

Next, include the most recent data samples

(31)

The objective for is (need not compute)

(32)

• Maximize (hard decision)

sign Re (33)

6) Update the amplitude estimate.

• Compute the temporary variables

(34)

The objective for is (need not compute)

(35)

• Maximize the objective. Let

(36)
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Fig. 4. Block diagram of the wavelet thresholding receiver.

If , set and for all
; otherwise, set , for

all , and multiply , :
by .

Notice that inversion of the signs of all the symbols, as implied
by the last step, can be most easily done by keeping track of the
inversions and performing it just once after the final iteration.
In this way, multiple writes to memory are avoided.

An implementation of the PML receiver is shown by the
block diagram in Fig. 3. The incoming complex baseband
signal is oversampled and digitized. The oversampling
should be sufficiently high so that the discrete wavelet trans-
form in continuous time is well approximated by a discrete
time wavelet transform. The sampled sequence is wavelet
transformed using the DTWT algorithm [35], which can
be efficiently implemented with an octave-band filter bank
structure. The fully digital algorithm described above performs
ML estimation of the parameters in a time recursive manner
and passes the estimated symbol sequenceon to further
decoding stages.

V. IMPULSIVE NOISE ROBUSTIFICATION

In this section, a robustification of the algorithm is given
for impulsive noise channels. The wavelet shrinkage method
of [10] uses a soft wavelet shrinkage algorithm to optimally
reconstruct a signal from samples contaminated by additive
white Gaussian noise. In this method, small wavelet coeffi-
cients are set to zero since they are likely to contain little
signal energy, and, to compensate, larger wavelet coefficients
are scaled down since they are likely to contain greater
signal energy. This method, similarly to [1], eliminates noisy
wavelet coefficients by comparison to a predetermined high
threshold. Wavelet coefficients larger than the threshold are
rejected because they have most likely been corrupted by the
impulsive events. In the method of [1], the rejected wavelet
coefficients are reconstructed via an FFT-based interpolation
algorithm. Assuming that the noise is dominated by the impul-
sive component while the Gaussian noise is very weak, there
is practically no loss of performance if the noisy coefficients
are rejected along with the signal component. This is because
the residual signal power is still very large compared with the
Gaussian noise power. While such an extension is not pursued
in this paper, we could also simultaneously implement soft
thresholding to reduce the effect of high power Gaussian noise.

A general block diagram of the wavelet-based impulsive
noise receiver is shown in Fig. 4. This receiver is very similar
to the optimum receiver for the AWGN channel described in

Section IV. The additional blocks in the diagram perform the
threshold estimation algorithm proposed in [1] and the wavelet
thresholding operation. In the threshold estimation algorithm,
the coefficient sequence in each wavelet band is divided into
segments, whose length is determined by the length of the
time interval where the signal is assumed locally stationary.
In each signal segment, the standard deviation of the signal
is estimated by the square root of the sample variance. The
threshold at scale index, is set to a fixed multiple
of the standard deviation estimate in that band. At the finer
scales, the impulsive events are isolated, i.e., no two impulses
are captured by a single wavelet coefficient. In the coarser
scales, the impulses are no longer isolated; therefore, the
threshold should be decreased in order to effectively detect
the corrupted coefficients. This can be done by multiplying
the threshold with a slowly decreasing function of scale.
The wavelet thresholding operator generates a new wavelet
coefficient sequence as follows:

.
(37)

The rest of the algorithm remains as before.

VI. SIMULATIONS

The algorithm of Section IV has been evaluated by means
of a simulation program written in MATLAB. Several system
parameters can be varied in order to examine their effect on the
receiver’s performance, e.g., choice of wavelet family, number
of scales, step size, extent of ISI, choice of PN codes, and
number of data symbols. The performance criteria of interest
were the symbol error probability and root mean squared
(RMS) error of the time delay and phase estimates.

In this paper, only a small subset of all possible variations of
system parameters will be presented. We have restricted our
attention to an uncoded single-user system at the low SNR
range of 1 to 8 dB. The bit error probability results were
obtained from simulation runs on contiguous data blocks of
2048 or 4096 bits each. The gain and time delay estimates
converged within the first 90 bits of each data block. After-
wards, no further updates of these parameters were necessary.
The phase and synchronization error performance results were
obtained from 100 Monte Carlo simulations on 32 bit long
data blocks. The signal parameters were chosen randomly and
independently of each other. The data bits were selected
as either 1 or 1, and the time delay was uniformly
distributed in .
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A seven-chip PN code was used for the spreading sequence.
The transmitted signal was passed through a band-limited
AWGN channel , where is the chip time.
The Daubechies wavelets [6] of length 4, which are the
shortest continuous compactly supported wavelets, were used
in the wavelet decomposition of the received signal. The
decomposition was done on six scales in order to capture a
large percentage of the signal energy, close to 90% on the
average. The number of new wavelet coefficients added per
cycle, i.e., the size of , was 11, and the number
of wavelet samples per bit interval was approximately 63.
The time-delay penalty was designed using a sixth-order
Chebychev equiripple filter. The simulations focus on aided
acquisition or tracking performance as opposed to general
acquisition performance to reduce the additional complications
of local maxima in the likelihood function. Hence, the time
delay estimate was initialized close to the true parameter by
adjusting the delay penalty function so that the maximum with
respect to is sought within 70% of from the true time
delay. Similar procedure was adopted to ensure proper phase
initialization during the first four symbols of each transmission.
The issue of global phase and synchronization acquisition
should be addressed in a future study.

Fig. 5 shows the bit error probability for the AWGN chan-
nel. The results were obtained from approximately 8000
simulated bits at the highest SNR value to 2000 bits at the
lowest SNR. We observe that the simulation results closely
match the theoretical lower bound on probability of error for
a BPSK decoder [24]. The performance of a phase-coherent
DLL with comparable response time is also shown. The
parameter is the normalized response time of the
DLL, where is the two-sided loop bandwidth, andis the
signaling period; therefore, a value of was used. The
loop damping of the equivalent PLL was taken as ,
and zero detuning was assumed. The DLL error probability
was found by numerical integration of the conditional PSK bit
error probability with respect to the solution of a stochastic
PDE of the steady-state synchronization error [24]. Notice that
the DLL performance has degraded by more than 1 dB with
respect to the ideal PSK error bound, whereas the performance
of the coordinate ascent algorithm is essentially optimal.
Fig. 6 shows the normalized synchronization performance of
the coordinate ascent algorithm ( ). The coordinate
ascent algorithm achieves an RMS synchronization error that
is much smaller than the chip time of , which
explains its nearly optimal symbol estimation performance.
The synchronization error of the DLL is seen to be much
larger. The Craḿer–Rao (CR) bound on time delay estimation
is also shown for reference. Fig. 7 compares the RMS phase
error of the coordinate ascent algorithm with that of a data
aided loop (DAL). The CR bound on phase error is shown for
reference [36]. The DAL performance was calculated with the
same value of as above for the case of a suppressed carrier
with NRZ data ( , see [23]). The two systems have a
similar performance, but it should be noted that the DAL relies
on a perfectly synchronized reference.

Finally, impulse noise channel results are shown in Fig. 8.
The impulses arrived according to a Poisson process with an

Fig. 5. Bit error probability versus SNR for Gaussian noise channel. Stars:
simulation results. Solid: DLL performance, Dotted: PSK error bound.

Fig. 6. Normalized RMS synchronization error versus SNR. Stars: simula-
tion result. Solid: DLL performance. Dashed: CR bound.

average inter-arrival time of approximately 1.5. The impulse
amplitudes were generated according to an i.i.d. complex
Gaussian process, and the width of each impulsive event was
equal to the chip time , thus effectively covering the signal
spectrum. In addition, a weak background AWGN process
whose power was 18 dB below signal power was present. The
thresholds were computed by the following simple iterative
algorithm. First, the standard deviationof each scale is es-
timated, and then, coefficients whose magnitude is larger than
3 are removed, and the process is repeated using the remain-
ing coefficients until convergence. The thresholds were scaled
by dividing by , where the scale indexranged between 1
to 6. The simulations compared bit error probability estimates
of the conventional receiver with those of the wavelet thresh-
olding receiver over a range of signal-to-impulse ratio (SIR).
The figure shows that a marked improvement in bit error prob-
ability has been achieved by using the wavelet thresholding
technique coupled with the coordinate ascent algorithm.
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Fig. 7. RMS phase error. Stars: simulation results. Solid: DAL performance.
Dashed: CR bound.

Fig. 8. Bit error probability versus SIR for impulsive noise channel. Solid.
Conventional receiver. Dashed: Wavelet thresholding receiver. Confidence
intervals are marked with “+” and “o,” respectively.

VII. CONCLUSIONS

This paper introduces a new grouped coordinate ascent
method for joint timing and phase synchronization and optimal
ML detection of transmitted symbols in a single user receiver.
Wavelet thresholding can also be incorporated to adapt the
receiver to impulsive noise interference channels. Fourier
series and polynomial rooting were used to simplify the
delay parameter line search, and a multiresolution wavelet
representation of the received signal was used to efficiently
match parameter updates to data coefficients. The flexibility in
choosing several system parameters such as the wavelet basis,
the step size of the algorithm, and the penalty functions, makes
the algorithm suitable for a variety of applications, depending
on technological feasibility and cost considerations. It should
be pointed out that the problem of selecting an optimal wavelet
basis has not been considered in this work but that several
optimal selection algorithms have been proposed elsewhere

such as best basis [42, ch. 8] or matching pursuit [26],
which could be implemented for this purpose. Finally, space
limitations prevented presentation of asynchronous multiuser
detection results. Similarly to the benefits of using the SAGE
algorithm for synchronous multiuser detection reported in
[30], the grouped coordinate ascent algorithm can be used
to accelerate convergence and to simplify implementation of
iterative ML multiuser detection by decoupling the updates of
the parameters of each user. Refer to [36] and [37] for details
of this extension.

APPENDIX

The following proposition follows from the definition of
in (22) and assumption i) in that section.

Proposition 1: If , then
for all and index sets : , .

Proof: The claim will be proved by showing that
are identically zero. In view of (21), it suffices

to show that either or are identically
zero.

Suppose that and the pair is chosen such
that the lower end of the supporting interval of overlaps
with that of the th symbol, i.e.,

This implies that is possibly nonzero; therefore, its
Fourier coefficients are not identically zero. Now,
consider the right endpoint of the supporting interval of

(38)

The third inequality above follows from the assumption
, and the fourth one follows from (22). This im-

plies that is identically zero because and
have nonoverlapping supporting intervals.

Therefore, are identically zero, and it follows that
are also zero as claimed. A similar proof

applies to the case where .
Next, we show that is zero if the most recent

sample in the wavelet index set is localized at the th
symbol, and is sufficiently smaller than either or . For
a set of wavelet indices , recall the definitions of and

in (23).

Proposition 2: If or , then

for all . If , then

for all .
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Proof: To show the first part, assume ;
then, for all

where the second inequality follows from the definition of
and the third from the assumption on. It follows that

for all , which implies
. The rest of the claim follows similarly.
The next proposition states conditions under which

and do not change for an increasing sequence of
wavelet index sets .

Proposition 3: If or for some

index set , then for all ,
and . If for some wavelet index set ,

then for all and .
Proof: From (21), we have

Consider for all , and
assume that and that the difference set is not empty.
Then, the left endpoint of the supporting interval of
satisfies

where the second inequality follows from the definition of
and assumption iii) and the third from the assumption

on . The last inequality shows that the right endpoint of
is smaller than or equal to the left endpoint

of whenever . Consequently, is
zero for all , which implies that is zero
for . This proves the claim. The proofs
for the other cases are similar.
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