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ABSTRACT

In the manifold learning problem one seeks to discover a smooth
low dimensional surface, i.e., a manifold embedded in a higher di-
mensional linear vector space, based on a set of � measured sample
points on the surface. In this paper we consider the closely related
problem of estimating the manifold’s intrinsic dimension and the
intrinsic entropy of the sample points. Specifically, we view the
sample points as realizations of an unknown multivariate density
supported on an unknown smooth manifold. In previous work we
introduced a geometric probability method called Geodesic Min-
imal Spanning Tree (GMST) to obtain asymptotically consistent
estimates of manifold dimension and entropy. In this paper we
present a simpler method based on the � -nearest neighbor ( � -NN)
graph that does not require estimation of geodesic distances on the
manifold. The algorithm is applied to standard synthetic manifolds
as well as real data sets consisting of images of faces.

1. INTRODUCTION

Consider a class of natural occurring signals, e.g., recorded speech,
audio, images, or videos. Such signals typically have high extrin-
sic dimension, e.g., as characterized by the number of pixels in an
image or the number of time samples in an audio waveform. How-
ever, most natural signals have smooth and regular structure, e.g.
piecewise smoothness, that permits substantial dimension reduc-
tion with little or no loss of content information.

A useful representation of a regular signal class is to model it
as a set of vectors which are constrained to a smooth low dimen-
sional manifold embedded in a high dimensional vector space. A
problem of substantial recent interest in machine learning, com-
puter vision, signal processing and statistics [1–5] is the determi-
nation of the so-called intrinsic dimension of the manifold and the
reconstruction of the manifold from a set of samples from the sig-
nal class. This problem falls in the area of manifold learning which
is concerned with discovering low dimensional structure in high
dimensional data. The closely related problem of estimating the
manifold’s intrinsic entropy arises if the data samples are drawn
from a multivariate distribution supported on the manifold.

The goal of this paper is to introduce an algorithm that jointly
estimates both the intrinsic dimension and intrinsic entropy given
just a set of random sample points on the manifold. We construct
the Euclidean � -NN graph over all the sample points and use its
growth rate to estimate the intrinsic dimension and entropy by sim-
ple linear least squares and method of moments procedure. This
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method is similar to the GMST method introduced by us in previ-
ous work [6], in that it does not require reconstructing the manifold
or estimating the multivariate density of the samples. However, the� -NN method has the main advantage of reducing complexity by
one order of magnitude and is applicable to a wider class of mani-
folds.

2. THE EUCLIDEAN � -NN GRAPH ON A MANIFOLD

Let � � � 
 � � � � � � � � � � be � independent and identically dis-
tributed (i.i.d.) random vectors with values in a compact subset of� �

. The ( � -)nearest neighbor of � � in � � is given by
�  ! " � $% ' ) + - / % 2 4 6 � 8 � � 6 �

where 6 � 8 � � 6 is the usual Euclidean ( < > ) distance in
� �

be-
tween vector � and � � . For general integer � @ � , the � -nearest
neighbor of a point is defined in a similar way. The � -NN graph
puts an edge between each point in � � and its � -nearest neighbors.
Let B C D � � B C D � F � � I be the set of � -nearest neighbors of � � in� � . The total edge length of the � -NN graph is defined as:

< K D C F � � I � �M
� O �

M
% ' Q R S 2 6 � 8 � � 6 K � (1)

where V W Y is a power weighting constant.

2.1. Convergence to Extrinsic Z -Entropy

The � -NN edge length lies in the large class of functionals called
continuous quasi-additive Euclidean functionals [7]. Other graphs
in this class include the minimal spanning tree, the minimal match-
ing graph or the traveling salesman tour among others. These func-
tionals have remarkable asymptotic behavior as � increases:

Theorem 1 ([7, Theorem 8.3]) Let � � � � � � � � � be i.i.d. random
vectors with values in a compact subset of

� �
and Lebesgue den-

sity \ . Let ] @ ` , � a V c ] and define Z � F ] 8 V I f ] . Then,
with probability � (w.p. � )

g i "� j l < K D C F � � I� n � o � D K D C q \ n F s I t s � (2)

where o � D K D C is a constant independent of \ . Furthermore, the
mean length u v < K D C F � � I x f � n converges to the same limit.

The quantity that determines the limit (2) in Theorem 1 is the ex-
trinsic Rényi Z -entropy of the multivariate Lebesgue density \ :

y z {n F \ I � �� 8 Z g � ! q z { \ n F s I t s � (3)
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In the limit, when � � � the usual Shannon entropy,
� � � � � � � 	 
 �  � � � 	 � � , is obtained.

Consider now a set of i.i.d. random vectors � � � � � � � � � � � � � �
that are constrained to lie on a compact smooth � -dimensional
submanifold of

 "
( � # % ). In this case, the distribution of � ' is

singular with respect to Lebesgue measure, resulting in a zero limit
for the right hand side of (2). However, this does not imply that the
limit is zero when using a different power of ( as a normalization
factor. This key observation is the basis for the use of the ) -NN
graph for dimension and entropy estimation on manifolds.

2.2. Convergence to Intrinsic � -Entropy

Given a smooth manifold � , a Riemann metric � is a mapping
which associates to each point 	 � � an inner product � � � � � � 	
between vectors tangent to � at 	 [8]. A Riemann manifold

� � � � 	 is just a smooth manifold � with a given Riemann met-
ric � . As an example, when � is a submanifold of the Euclidean
space

 "
, the naturally induced Riemann metric on � is just the

usual dot product between vectors. The Riemann metric � also
induces a measure � � on � via the differential volume element.

We can now state a similar result to Theorem 1 for compact
Riemann manifolds with intrinsic dimension � # % (see [9] for a
proof).

Theorem 2 Let � � � � 	 be a compact Riemann � -dimensional
submanifold of

 "
. Suppose � � � � � � � � � are i.i.d. random vec-

tors of � with bounded density � relative to � � . Assume � + - ,
� . 0 # � and define � � � � � 0 	 5 � . Then, w.p. � ,


 6 7� 9 ;
< > ? @ � � � 	

( � " � � > � � " � � (4) ! " $ � % & # �
B ( ? > ? @ � * � C � 	 	 � � � � 	 	 � % & � �
F � % & H � �

where B ( ? > ? @ is a constant independent of � and � � � � 	 . Further-
more, the mean length I K < > ? @ � � � 	 M 5 ( C converges to the same
limit.

Theorem 2 shows that the asymptotic behavior of < > ? @ � � � 	 is
no longer determined by the density of � ' relative to the Lebesgue
measure of

 "
, but depends instead on the the density of � ' rela-

tive to � � . The quantity that determines the non-zero finite limit
in (4) is the intrinsic Rényi � -entropy of the multivariate density �
on � :

O � * ? � �C � � 	 � �
� � �


 �  S * � C � 	 	 � � � � 	 	 � (5)

3. ESTIMATING INTRINSIC DIMENSION AND
ENTROPY

Theorem 2 is the theoretical basis for developing a consistent esti-
mator of both intrinsic dimension and entropy. The key is to notice
that the growth rate of the length functional is strongly dependent
on � while the constant in the convergent limit is equal to the in-
trinsic � -entropy. In particular, the only way to obtain a non-zero
finite limit in (4) is by normalizing the length functional by the
right power � of ( , i.e., � � � � � 0 	 5 � when % & � � . We use
this strong growth dependence as a motivation for a simple esti-
mator of � . Define 0 � � 
 �  < > ? @ � � � 	 . According to (4), 0 � has

the following approximation0 � � 1 
 �  ( 3 5 3 7 � � (6)

where 1 � � � � 0 	 5 � �5 � 
 �  B ( ? > ? @ 3 0 5 � O � * ? � �C � � 	 � (7)

and 7 � is an error residual that goes to zero w.p. � as ( � $ .
Using the additive model (6), we propose a simple nonpara-

metric least squares strategy based on resampling from the po-
pulation � � of points in � . Specifically, let : � � � � � � : < , � .: � # � � � � # : < . ( , be > integers and let ? be an inte-
ger that satisfies ? 5 ( � A for some fixed A � � F � � M . For each
value of : � � : � � � � � � : < � randomly draw ? bootstrap datasets� FG , H � � � � � � � ? , with replacement, where the : data points
within each � FG are chosen from the entire data set � � indepen-
dently. From these samples compute the empirical mean of the ) -
NN length functionals J< G � ? � � L NF \ � < > ? @ � � FG 	 . Defining J O �

K 
 �  J< G P � � � � � 
 �  J< G P M R we write down the linear vector model

J O � T V 1 5 W 3 7 (8)

where T � V 
 �  : � � � � 
 �  : <
� � � � � W R �

We now take a method-of-moments (MOM) approach in which we
use (8) to solve for the linear least squares (LLS) estimates Y1 � Y5 of1 � 5 followed by determination of Y� and YO

by inversion of the
relations (7). After making a simple large ( approximation, this
approach yields the following estimates:Y� � round � 0 5 � � � Y1 	 �YO � * ? � �ZC � Y�

0 \ Y5 � 
 �  B Z( ? > ? @ ] � (9)

We now discuss the role of the constants B ( ? > ? @ in the above
estimators. First of all, due to the slow growth of � B ( ? > ? @ � ( ^ _
in the large ( regime for which the above estimates were derived,
B ( ? > ? @ is not required for the dimension estimator. On the other
hand, the value of B ( ? > ? @ is required for the entropy estimator to be
unbiased. From the proof of Theorem 2, it comes out that B ( ? > ? @
is the limit of the normalized length functional of the Euclidean

) -NN graph for a uniform distribution on the unit cube K F � � M ( .
As closed form expressions are not available, this constant must
be determined by Monte Carlo simulations of the ) -NN length on
the corresponding unit cube for uniform random samples.

Finally, the complexity of the algorithm is dominated by de-
termining nearest neighbors, which can be done in ` � ( 
 �  ( 	
time for ( sample points. This contrasts with both the GMST and
ISOMAP [1] that require a costly ` � ( a 
 �  ( 	 implementation of
a geodesic pairwise distance estimation step.

4. APPLICATIONS

We applied the proposed algorithm to manifolds of known struc-
ture as well as a real data set consisting of faces images. In all
the simulations we used : � � ( � > � � � � � : < � ( � � . With re-
gards to intrinsic dimension estimation, we compare our algorithm
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Table 1. Number of correct dimension estimates over 30 trials as
a function of the number of samples, for � � � neighbors, � � � .

Sphere � 600 800 1000 1200
� �

� � � � 30 30 30 30
� �

� � � � 27 27 28 28� �
� � 	 � 29 30 30 30

� �
� � � � 23 26 26 26� �
� � 	 � 28 30 30 30

(a)

(b)

Fig. 1. Samples from : (a) ISOMAP face database; (b) Yale face
database B.

to ISOMAP. In ISOMAP, similarly to PCA, intrinsic dimension is
usually estimated by looking at the residual errors as a function of
subspace dimension.

We have validated the algorithm on standard synthetic man-
ifolds in the literature: linear planes in several dimensions, the
2-dimensional swiss roll [1] and S-shaped surface [2] embedded
in


 �
. Due to space limitations we will not present these results

here.
Of greater interest is the case of the � -dimensional sphere

� �

(embedded in

 � � � ). This is a more challenging problem, as the

sphere does not satisfy any of the usual isometric or conformal em-
bedding constraints required by ISOMAP or several other methods
like C-ISOMAP [10] or Hessian eigenmap [3]. We ran the algo-
rithm over 30 generations of uniform random samples over

� � ,
for � � 	  
  � and different sample sizes � , and counted the num-
ber of times that the intrinsic dimension was correctly estimated.
We note that in all the simulations ISOMAP always overestimated
the intrinsic dimension as � � � . The results for � -NN are shown
in Table 1 for different values of the parameter � . As it can be
seen, the � -NN method succeeds in finding the correct intrinsic
dimension. However, Table 1 also shows that the number of sam-
ples required to achieve the same level of accuracy increases with
the manifold dimension. This is the usual curse of dimensional-
ity phenomenon: as the dimension increases, more samples are
needed for the asymptotic regime in (4) to settle in and validate
the estimator.

Next, we applied our method to a high dimensional synthetic
image data set. For this purpose we used the ISOMAP face database
[1]. This set consists of  � � images of the same face generated by
varying three different parameters: vertical and horizontal pose,
and lighting direction. Each image has  � �  � pixels with 	 � 
gray levels, normalized between � and � (Figure 1.a). For process-
ing, we embedded each image in the � � �  -dimensional Euclidean
space using the common lexicographic order. We applied the al-
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Fig. 2. Real valued intrinsic dimension estimates and histogram
for the ISOMAP face database. � � � , � � � � , � � � � .

gorithm 
 � times over the data set with results displayed in Figure
2. The first column shows the real valued estimates of the intrinsic
dimension, i.e., estimates obtained before the rounding operation
in (9). Any value that falls in between the dashed lines will then
be rounded to the middle point. The second column of Figure 2
shows the histogram for these rounded estimates over the 30 simu-
lations trial. The estimated intrinsic dimension oscillates between


 and � , which, as in [5], deviates from the “informal” intrinsic
dimension of 
 estimated by ISOMAP.

Finally, we applied the � -NN method to a real data set, and,
consequently, of unknown manifold structure and intrinsic dimen-
sion. We chose the set of 	 �  gray levels images of several individ-
uals taken from the Yale Face Database B [11]. This is a publicly
available database1 containing face images of � � subjects with � � �
different viewing conditions for each subject (Figure 1.b). These
consist of � poses and  � illumination conditions (including am-
bient lighting). The images were taken against a fixed background
which we did not bother to segment out. We think this is justified
since any fixed structures throughout the images would not change
the intrinsic dimension or the intrinsic entropy of the dataset. We
randomly selected 4 individuals from this data base and subsam-
pled each person’s face images down to a  � �  � pixels image.
Similarly to the ISOMAP face data set, we normalized the pixel
values between � and � . Figures 3 and 4 display the results of
running 
 � simulations of the algorithm using face � and face 	 ,
respectively. The intrinsic dimension estimate is between � and 
for face � and is clearly � for face 	 . Figure 5 shows the cor-
responding residual variance plots used by ISOMAP to estimate
intrinsic dimension. From these plots it is not obvious how to de-
termine the “elbow” at which the residuals cease to decrease “sig-
nificantly” with added dimensions. This illustrates one of the ma-
jor drawbacks of ISOMAP (and other spectral based methods like
PCA) as an intrinsic dimension estimator, as it relies on a specific
eigenstructure that may not exist in real data. A simple minimum
angle threshold rule on ISOMAP produced estimates between �
and � for face � and � and � for face 	 . Table 2 summarizes the re-
sults of the � -NN method for the four faces, where the last column
shows the results of processing two faces simultaneously. As it can

1http://cvc.yale.edu/projects/yalefacesB/
yalefacesB.html
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Fig. 3. Real valued intrinsic dimension estimates and histogram
for face 1 in the Yale face database B. � � � , � � � � , � � � � .
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Fig. 4. Real valued intrinsic dimension estimates and histogram
for face 2 in the Yale face database B. � � � , � � � � , � � � � .

be seen, the joint dimensionality of the two faces is determined by
the dimension of the most complex one, while the entropy grows
roughly by one bit. This should be expected, as compressing the
augmented dataset requires only one extra bit to identify which
face is being coded.

5. CONCLUSION

We have presented a new method for intrinsic dimension and en-
tropy estimation on Riemann compact manifolds. Its key features
are its applicability to a wide class of manifolds, ability to produce
consistent estimates for both synthetic and real data, and reduced
complexity. Future work includes implementing bootstrap confi-
dence intervals for the estimators and study of the effect of additive
noise on the manifold samples.
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