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Abstract

Previously we introduced the Uniform Cramér-Rao (CR) Bound as a lower bound on the variance of biased estimators,
along with the concept of the delta-sigma tradeoff curve.  For estimators whose variance lie on this curve, lower variance
can only be achieved at the price of increased estimator bias gradient norm, and vice versa.  However, for single pixel
estimation, one can specify a variety of different estimator point response functions that have identical bias-gradient norm
but with widely different resolution properties.  This has lead to some counter-intuitive results and interpretation
difficulties when using the Uniform CR Bound in performance studies of imaging systems.  In this paper, we extend this
tradeoff concept by introducing the 2nd-moment of the point response function as a measure of resolution for single-pixel
estimation tasks.  We derive an expression for the delta-gamma-sigma tradeoff surface.  This surface specifies an
"unachievable region" of estimator variance.  For estimators that lie on this surface, lower variance can only be achieved
at the price of increased bias gradient norm and/or decreased estimator resolution.  We present a method for computing this
surface for linear Gaussian and nonlinear Poisson inverse problems.  Finally, we will show bound calculations for a
Compton-SPECT imaging system.



I.  INTRODUCTION

We previously introduced a method for specifying a
lower bound on the variance of biased estimators using the
Uniform Cramér-Rao (CR) Bound, along with the concept
of the delta-sigma tradeoff curve [1].  For an estimator
whose variance lies on this curve, lower estimator variance
can only be achieved at the price of increased estimator bias
gradient norm, and vice versa.

The Uniform CR Bound has been used to calculate
fundamental limits in estimator performance in medical
imaging [2-3], comparing the performance of different
medical imaging modalities [4], among other applications.

One problem with using bias gradient norm when
comparing the variance of different estimators and/or
systems is that different estimator point response functions
can have identical bias-gradient norms but widely different
resolution properties. This has lead to interpretation
difficulties and counter-intuitive results when using the
Uniform CR Bound in imaging system performance studies.
Figure 1 shows three example point response functions with
similar FWHM and identical bias gradient length, yet with
obviously different resolution properties.

Figure 1: Three example point response functions with identical
bias gradient norms and similar FWHM.

In this paper, we will introduce a fundamental tradeoff
relationship between bias, resolution, and variance for single
pixel estimation.  Along with the estimator bias gradient
norm, we now introduce the 2nd-moment of the estimator
point response function as a resolution measure.  A Uniform
CR Bound will then be derived for the variance of single-
pixel estimators as a function of both the estimator bias
gradient norm and 2nd-moment of the point response
function.  The concept of tradeoffs in estimator variance now
include both overall bias error (as measured by the bias
gradient norm) along with resolution error (as measured by
the 2nd-moment of the estimator point response function).
This surface parameterized by bias gradient norm and 2nd-
moment specifies an “unachievable region” of estimator
variance.  For estimators that lie on this surface, lower
variance can only be achieved at the price of increased bias
gradient norm and/or decreased estimator resolution as
measured by the 2nd-moment of the estimator point
response.

II.  DEFINITIONS

A.  Statistical Model

Let θ θ θ= [ ] ∈1,..., n
T Θ  be a vector of unknown,

nonrandom parameters that parameterize the density f yY θ( )
of the measured random variable Y .  The parameter space Θ

�

is assumed to be an open subset of the n-dimensional

Euclidean space Rn .  Let ˆ ˆθ θp p Y= ( ) be an estimator of the

pth-component of θ� .  Let this estimator have mean value

m E pθ θ θ= [ ]ˆ , bias b E p pθ θ θ θ= [ ] −ˆ , and variance

σ θ θθ θ
2 2

= −( )





E p p
ˆ .  The estimator θ̂p Y( ) can be

expressed in terms of the vector parameter estimator θ̂ Y( )
via ˆ ˆθ θp p

Te= , where e p
T= [ ]0 0 1 0 0,..., , , ,...,  (the pth-unit

vector).  The bias gradient and mean response gradient of

θ̂p Y( ) are therefore related by ∇ = + ∇m e bpθ θ ,

In [1], we showed that under certain conditions for
estimating the pth-pixel for both the linear Gaussian and
nonlinear Poisson inverse problems, the norm of the bias
gradient vector ∇ bθ  is related to the difference between the

mean estimator point response function mθ  and the true

point response e p .  Similarly, the mean estimator gradient

∇ mθ  is related to the mean estimator point response

function mθ .

B. Overall Bias and Resolution Measures
We will define the bias gradient norm δ  with respect to

a positive definite matrix C , along with the point response
2nd-moment γ  as

δ θ θ
2 = ∇ ∇b C bT (1)
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For a 1-D imaging system, Mp  is a positive semi-

definite diagonal matrix with diagonal elements proportional
to the square of the distance of each pixel from the pth-pixel

M p i i jp ij[ ] = −( ) −( )2δ (3)

where δ i j−( ) is (for this expression only) the discrete

delta function.

C. CR Bound for Biased Estimators

For a biased estimator θ̂p  of the pth-pixel value, the

biased CR bound of estimator variance is given by



σθ θ θ
2 ≥ + ∇[ ] + ∇[ ]+e b F e bp

T

Y p (4)

where the n x n Fisher Information matrixFY  is

F E f y f yY Y Y

T
= ∇ ( )( )[ ] ∇ ( )( )[ ]
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θ θ θθ θln ln (5)

and FY
+ is the Moore-Penrose pseudo-inverse matrix of

the (possibly singular) Fisher Information Matrix.

III.  UNIFORM CR BOUND

Here we present a Uniform CR Bound for non-singular
Fisher Information matrixFY , the proof of which will be

given in the appendix section.  Let θ̂p  be an estimator of

the pth-component of the parameter vectorθ� .  For a fixed
δ γ, ≥ 0, let the bias gradient satisfy the constraints

∇ ∇ ≤b C bT
θ θ δ2  and 
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variance σθ
2  of θ̂p  satisfies

σ θ δ γθ
2 ≥ ( )B , , (6)

where the value of B θ δ γ, ,( )  is given by the following

three cases:

I) If δ θ θ
2 ≥ ∇ ∇b C bT , then

B θ δ γ, ,( ) = 0 (7)

II) If δ θ θ
2 < ∇ ∇b C bT  and γ γ≥ * , then
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III) If δ θ θ
2 < ∇ ∇b C bT  and γ γ< * , then

B e d F e dp Y pθ δ γ, , min min( ) = +[ ] +[ ]−1 (12)
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and λ
�

λ1 2 0, ≥  are given by the equality constraints
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d CdT
min min − =γ 2 0 (15)

IV.  RESULTS

A. Linear Gaussian Model
We generated a delta-gamma-sigma surface for the linear

Gaussian inverse problem Y A= +θ ε . The additive noise is
distributed N 0, Σ( )  with covariance Σ = I .  A  is a 128x128

matrix with elements a wij
i j

w
= ⋅ −





−( / ) exp ( )1 2
2

22
π and

w = 0 5. . The estimation task is for the 67th pixel (i.e.
ˆ ˆθ θp Y Y( ) = ( )67 ). We also overlay on the surface the

variance of the Quadratically Penalized Maximum

Likelihood estimator θ̂ β= +[ ]− −F P A YY
T1 1Σ  where β ≥ 0

is a regularization parameter and  β ≥ 0.  The penalty
matrix P is the 1st-order neighborhood difference (Laplacian)
matrix,, and the choice of norm matrix is C P= −1.

Figure 2 shows a contour plot of this surface, along with
the trace of the QPML estimator for values of the penalty
10 103 4− ≤ ≤β .  Although not shown from this perspective,
the variance of the QPML estimator meets the bound at all
points.
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Figure 2: delta-gamma-sigma surface for linear Gaussian inverse
problem.  The QPML estimator is overlaid on top.
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