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Abstract

Previously we introduced the Uniform Cramér-Rao (CR) Bound as a lower boundarigimeeof biasedestimators,
along with the concept of the delta-sigma tradeoff curve. For estinvelbmsevariancelie on this curve,lower variance
canonly be achievedat the price of increasedestimatorbias gradientnorm, andvice versa. However, for single pixel
estimation, one can specify a variety of different estimator point response furthbhaveidentical bias-gradienhorm
but with widely different resolution properties. This has lead to some counter-intuitive results and interpretation
difficulties when using the Uniform CR Bound in performance studies of imaging systerttss paper,we extendthis
tradeoff concept by introducing the 2nd-moment of the point response functionessareof resolutionfor single-pixel
estimationtasks. We derive an expressionfor the delta-gamma-sigmaradeoff surface. This surface specifies an
"unachievable region" of estimator variance. For estimatordi¢hah this surface,lower variancecanonly be achieved
at the price of increased bias gradient norm and/or decreased estimator resolution. We present a pethmdifagthis
surfacefor linear Gaussiarand nonlinearPoissoninverse problems. Finally, we will show bound calculationsfor a
Compton-SPECT imaging system.
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|. INTRODUCTION

We previously introduceda method for specifying a
lower boundon the varianceof biasedestimatorsusing the
Uniform Cramér-RaqCR) Bound, along with the concept
of the ddta-sgma tradeoff curve [1]. For an estimator
whosevariancelies on this curve,lower estimatorvariance
can only be achievealt the price of increasedestimatorbias
gradient norm, and vice versa.

The Uniform CR Bound has been used to calculate
fundamentallimits in estimator performancein medical
imaging [2-3], comparing the performance of different

medical imaging modalities [4], among other applications. My =

One problem with using bias gradient norm when
comparing the variance of different estimators and/or
systemsis that different estimatorpoint responsefunctions
can have identical bias-gradienthorms but widely different
resolution properties. This has lead to interpretation
difficulties and counter-intuitive results when using the
Uniform CR Bound in imagingystemperformancestudies.
Figure 1 shows three example point respdosetionswith
similar FWHM andidentical bias gradientlength, yet with
obviously different resolution properties.

Figure 1: Three example point response functions vad#ntical
bias gradient norms and similar FWHM.

In this paper,we will introducea fundamentaltradeoff
relationship between bias, resolution, and varidocesingle
pixel estimation. Along with the estimatorbias gradient
norm, we now introducethe 2"-momentof the estimator
point response function as a resolution measurélnform
CR Boundwill thenbe derivedfor the varianceof single-
pixel estimatorsas a function of both the estimator bias
gradient norm and 2"-moment of the point response
function. The concept of tradeoffs in estimator variamoe
include both overall bias error (as measuredby the bias
gradientnorm) along with resolutionerror (as measuredby
the 2"“moment of the estimatorpoint responsefunction).
This surfaceparameterizedy bias gradientnorm and 2"-
moment specifies an “unachievableregion” of estimator
variance. For estimatorsthat lie on this surface, lower
variancecanonly be achievedat the price of increasedbias
gradient norm and/or decreasedestimator resolution as
measuredby the 2"-moment of the estimator point
response.

[I. DEFINITIONS

A. Satistical Model

Let Q:[Bl,...,en]T 0O be a vector of unknown,
nonrandom parametetisat parameterizeéhe density fY(y|Q)

of the measured random variade The parametespace®
is assumedto be an open subset of the n-dimensional

Euclidean spac®". Let ép = ép(Y) be anestimatorof the
-componentbf 8. Let this estimatorhave meanvalue

Eg[ép] bias bg = Eg[ép] - Qp, and variance
o5 =E gé -0 )2[ The estimator 6,(Y) can be
6~ -9H"Yp Pl E p

expressedn termsof the vector parameterestimator Q(Y)
via ép :g;é, where e, =[0,..,0,1,0,...,0]" (the p"-unit
vector). The bias gradientand meanresponsegradient of

8,(Y) are therefore related kym, = e, + Oby,

In [1], we showed that under certain conditions for
estimatingthe p"-pixel for both the linear Gaussianand
nonlinearPoissoninverse problems,the norm of the bias
gradientvector (b, is relatedto the difference betweenthe

mean estimatorpoint responsefunction m, and the true
point responsee,,. Similarly, the meanes}imatorgradient
Omy is related to the mean estimator point response
function my.

B. Overall Bias and Resolution Measures

We will define thebias gradientnorm & with respecto
a positive definite matrixC, alongwith the point response
2"“momenty as

&% = Obg Clb, 1)
(p-iy2(0my)”
y2 - Iz ( 2 7)|
> (o)
;
o

(?p + Db@)T Mp(gp + Db@)
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For a 1-D imaging system, M, is a positive semi-
definite diagonal matrix witlliagonalelementsproportional
to the square of the distance of each pixel from thgixel

[M,], =(p-i)a(i- ) @®)

where &(i - j) is (for this expressiononly) the discrete
delta function.

C. CR Bound for Biased Estimators

For a biasedestimator ép of the p"-pixel value, the
biased CR bound of estimator variance is given by



e [gp + DbQ]T F;[gp + Dbg] )
where the n x n Fisher Information matfix is
R = EQHDQ In(fY(y|Q))][DQ In(fY()dQ))]TH 5)

and R, is the Moore-Penrosgseudo-inversenatrix of
the (possibly singular) Fisher Information Matrix.

[1. UNIFORM CR BOUND

Herewe presenta Uniform CR Bound for non-singular
Fisher Information matrixF,, the proof of which will be
givenin the appendixsection. Let ép be an estimatorof
the p"™-componentof the parametevectord. For a fixed
d,y=0, let the bias gradient satisfy the constraints

T
ObCOby <67 and 27 Meleot™) 2.
- - (§p+DbQ) (§p+DbQ)

variancea; of 6, satisfies

Then the

(6)

wherethe valueof B(6,8,y) is given by the following
three cases:

1) If 6% = Oy COby, then
B(6.6,y)=0 )
Il) If &% <Oy COb, andy 2 y”, then

052 B(6,3.y)

_11-1 _11-1
B(6.5,y) = e[ MR +CY R[MR +C7 e, (®)
where A; >0 is given by the unique solution to

5% =g(r) = e[ MR +C "CY AR +C e, (@)

and
. ) +d-
R ™
and diy,=-CYCct+AR]Te, (1)
lll) If 6% <ObgClb, andy <y’, then
B(6.5.) = [, + din]F Y[ * Ao 12)

min

=Rt A A, -y R -Aile, @3

and Ay, A, =0 are given by the equality constraints

(gmin +gp)T[Mp _yzll(gmin +gp):0 (14)
gminTCgmin - yz =0 (15)
IV. RESULTS

A. Linear Gaussian Model

We generatedh delta-gamma-sigmaurfacefor the linear
Gaussian inverse problem= A8 + £. The additive noiseis

distributed N(0, £) with covarianceZ =1. A is a128x128

matrix with elements a; = (1/~/2rtw) Edepo—%Eand

w=0.5. The estimationtask is for the 67" pixel (i.e.
ép(Y) = 65,(Y)). We also overlay on the surface the
variance of the Quadratically Penalized Maximum
Likelihood estimator 8 = [+ ﬁP]_lATZ"l\_( where 820
is a regularizationparameterand =0. The penalty
matrix P is the #-order neighborhoodlifference(Laplacian)
matrix,, and the choice of norm matrix@= P

Figure 2 shows a contour plot of this surface, alotit
the traceof the QPML estimatorfor valuesof the penalty
102 < B<10* Although not shown from thiperspective,

the varianceof the QPML estimatormeetsthe boundat all
points.
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Figure 2: delta-gamma-sigma surface lioear Gaussiannverse
problem. The QPML estimator is overlaid on top.
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