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Abstract 
This paper treats automated detection of road and 

lane boundaries by fusing information from forward- 
looking optical and active W-band radar imaging sen- 
sors mounted on a motor vehicle. A deformable tem- 
plate model is used to globally describe the bound- 
ary shapes. The optical and mdar imaging processes 
are characterized with random field likelihoods. The 
multisensor fusion edge detection problem is posed 
in a Bayesian framework and a joint MAP esti- 
mate is employed to locate the road and lane bound- 
aries. Three optimization approaches, multi-resolution 
pseudo-exhaustive search, Metropolis algorithm, and 
Metropolis algorithm with pre-tuned curvature, are pro- 
posed to implement the joint MAT estimate. Experi- 
mental results are shown to demonstrate that the joint 
MAP algorithm operates robustly and eficiently in a 
variety of road scenarios. 

1 Introduction 
Intelligent vehicle-highway systems(1VHS) promise 

to improve the safety, efficiency, and environmental 
friendliness of the transportation network through the 
application of emerging technology. Among the var- 
ious IVHS technologies, a number of driver assisting 
applications, such as lane excursion warning, intelligent 
cruise control and ultimately autonomous driving, de- 
pend on reliable detection of road and lane boundaries 
without prior geometric information. In this paper we 
address the problem of automated detection of road and 
lane boundaries using forward-looking optical and radar 
imaging sensors mounted on a motor vehicle. 

In early development of road and lane detection sys- 
tems, edge-based detection algorithms dominate [l], [2], 
[3]. Since these algorithms require thresholding the im- 
age gradient magnitude to detect edges, they are not 
applicable to images containing extraneous edges or im- 
ages with very low signal-to-noise ratio(SNR). Unfortu- 
nately, for the application studied here, the acquired 
radar images fall into the low SNR category while the 
corresponding optical images have edges other than the 
ones that we aim to locate. 

In recent study of road and lane edge detection, some 

researchers sought to overcome the deficiency and lim- 
itation of edge-based algorithms by applying a global 
model of boundary shape, represented by a deformable 
template. In [4], Kluge and Lakshmanan proposed a 
vision-based algorithm for locating lane boundaries via 
deformable templates without thresholding the inten- 
sity gradient information. In [5], Ma, Lakshmanan 
and Hero investigated detection of road edges in radar 
images via deformable templates. In both cases, the 
globally deformable template models were shown to be 
suitable and robust for the edge detection application. 
Aware of these accomplishments, we take advantage of 
the deformable template approach in our edge detection 
problem. 

In previous work, road edge detection in radar im- 
ages [5] and lane edge detection in optical images [4] are 
studied separately. However, a single sensor, either o p  
tical or radar sensor, limits itself in the ability to sense 
and identify all the meaningful features in varying en- 
vironments. In a well-illuminated environment, the o p  
tical sensor provides sufficient information to locate the 
lane boundaries. However, it is not able to operate in 
an ill-illuminated environment. On the other hand, al- 
though the radar sensor can successfully gather road 
boundary information both in well- and ill-illuminated 
environments, it fails to provide necessary information 
for distinguishing the lane markers on the road. In our 
image data acquiring setting, the optical and radar sen- 
sors are properly placed on an imaging platform so that 
they sense the same road scene if operated simultane- 
ously. As we know, for a certain road, the road and 
lane boundaries are highly correlated, e.g., the bound- 
aries are parallel, and the lanes are restricted inside the 
road region. Thus the optical and radar image pair pro- 
vide complementary and correlated information about 
the road scene ahead of the vehicle. To take advantage 
of the strengths of both sensors, it is natural to think 
of combining the two different types of sensed data to- 
gether to achieve better location of the road and lane 
boundaries. 

In this paper the road and lane boundary detection 
problem is formulated in a Bayesian framework to im- 
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plement the multisensor fusion method. The boundary 
shapes are represented by deformable templates, which 
define a set of deformation parameters. The deforma- 
tion parameters, together with their statistical distribu- 
tion, constitute the prior information for the Bayesian 
setting. The likelihood functions provide a relative mea- 
sure of how well a given set of shape parameters match 
the data in a particular optical and radar image pair of 
a road scene. Then the fusion algorithm is implemented 
with a joint maximum a posteizorz(MAP) estimator, 
which combines multisensor information efficiently and 
coherently. 

2 Shape Model for Both Road and Lane 
boundaries 

In most cases, we assume that road and lane bound- 
aries can be approximated by parallel concentric arcs on 
a flat ground plane. Within a reasonable field of view, 
such arcs with small-to-moderate curvatures, are well 
approximated by parabolic curves in the ground plane, 

(1) 
1 
2 

x =  - k y 2 + m y + b  

The road and lane boundaries share the same param- 
eters k and m, and they are distinguished by different 
offsets (b's). 

The radar image is composed of reflections from the 
ground, so the shape model (Eqn.(l)) can be directly 
applied to the radar image. However, the optical image 
is a perspective projection of the ground plane, and a 
few more derivations are needed to represent the lane 
boundaries in the optical image [3]. Assuming a tilted 
pinhole camera perspective projection model, parabolic 
curves in the ground plane (Eqn. (1)) transform into 
hyperbolic curves in the image plane: 

c =  - k t  + b'(r - h z )  +up' 
r - hz 

where 

kt = q k  k ,  
up' = qm m + v m , k  k + v ,  and 

b' = 776 b + v b , m  m + V b , k  k .  (3) 

The constants q k ,  rlm, q m , k j  9 , 1 7 6 ,  Vb,rnr and V b , k  depend 
on the camera geometry (resolution, focal length, height 
of the camera from the ground plane, and camera tilt). 

Let 6" = { k ' , w p ' , b i , b k }  and 6' = { k , m , b L , b R }  de- 
note the unknown lane and road boundaries' parame- 
ters, respectively. Let 6 = { O r ,  6 " )  and by changing the 
values of 6, various lane and road boundary shapes can 
be realized. Hence the problem of lane and road bound- 
ary detection becomes the problem of estimating 6. In 
this paper, the constraints and the a priori beliefs of 0 

where I A ( ~ ,  y )  is an indicator function, 

1, if (2, y) satisfies relation A 
I A ( z ,  Y )  = { 0 ,  otherwise 

and b ( z )  is the Kronecker delta function, 

1, if x = 0 
otherwise 

The terms on the first two lines of Eqn. (4)'s RHS corre- 
spond to the constraints that the elements of 6 have to 
satisfy. The indicator terms impose the constraint that 
the lane markers be contained within the road region, 
while the Kronecker delta terms impose the constraint 
that the lane boundaries' curvature and tangential ori- 
entation be precisely related to the road boundaries' 
curvature and tangential orientation via Eqn. (3). The 
terms on the last two lines of Eqn. (4)'s RHS express 
the a priori beliefs that lanes and roads can be neither 
too narrow nor too wide. 

3 Imaging Likelihoods 
In the radar image, the road boundaries separate the 

image into three relatively homogeneous regions which 
are associated with the road surface, the left side of the 
road, and the right side of the road. For the radar image 
Z' , the radar imaging likelihood is described using the 
conditional probability that the random field 2' takes 
on a realization Z' (corresponding to the radar obser- 
vation), given that the road edge information is known, 

where pzy,u& denote the mean and variance of the 
region where the pixel (z,y) lies. 

The optical imaging likelihood is based on an energy 
function, which encodes the knowledge that the edges 
of the lane should be near intensity gradients whose ori- 
entation is perpendicular to the lane edge. More specif- 
ically, given a hypothetical parameter set of underlying 
edges B o ,  the likelihood of observing the optical image 
Z" is given by 
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Notations used to describe the energy function 
E(z" ,  eo) are defined as 

A 
0 The Cauchy density function f ( c r ,  z) = 

0 grn(r, c) = the gradient magnitude at  pixel (T, c), A 

A gd(r, c) = the gradient direction at pixel (T ,  c). 

0 The edges of the lane in the image by the curves: 
k' 

g L ( R )  (T ,  c ,  0") = -k bL(R) (T  - hz )  + VP' 
Then, the energy function of observing an image gradi- 
ent field given a set of lane shape parameters Bo is 

E ( t o ,  eo) = E(gm, gd, e") 
= - bm(r ,  c) x f(arnr c - EL(r, c, eo)) 

( r d  
d 

X f ( a d ,  cos(gd(r, C )  - a t a ( ; i ~ E ~ ( r V  .,eo)))) 
+ p ( r ,  c )  x f(arn,c - &(rr c, 6")) 

d 
dr Xf (Qd,  cos(gd(r, C )  - atan( -ER(', C,  eo))))] 

4 Multisensor Fusion Method 
- Joint MAP Estimate 

Since the prior distributions of the deformation pa- 
rameters and the imaging likelihood functions are avail- 
able, we shall pose the road and lane edge detection 
problem in a Bayesian framework. The optical and 
radar fusion detection problem can be solved by es- 
timating the deformation parameters 0 with the joint 
MAP estimate 

8 = argmaxP(B(zr, zo) 
6 

Utilizing the Bayes' rule and the fact that P(z', z")  
is fixed by the observation, we have 

ê  = argmaxP(zr ,zO,e)  6 (7) 

By the chain rule of conditional probability, 

q Z r ,  to, e )  = P ( ~ ~ ) P ( ~ ~ I ~ ~ ) P ( B O I ~ ~ ,  tr)P(Zopo, tr,  er) (8) 

Since the radar and optical imaging processes are in- 
dependent, the optical parameters 8" are conditionally 
independent of the radar observation 2' given the radar 
parameters O r ,  and the optical observation Z" is con- 
ditionally independent of the radar observation Z' and 
radar parameters 8' given the optical parameters B o ,  
that is, 

q e " l  er,  zp) = q e o l  e r )  

P( ,o~  eo,  zr, er) = qZ0l eo) (9) 

(io) 

Combining Eqns.(8) and (9) yields 

p ( Z r ,  zo,e)  = qer ,so)  q Z r l e r )  q Z o p o )  

5 Optimization Approaches 
The optimal location of the road and lane boundaries 

is obtained by maximizing the joint density P(z" ,  z " ,  e )  
as formulated in Eqn. (10). The edge detection prob- 
lem is equivalent to finding the mode of a density sur- 
face. The surface is non-concave with many local max- 
ima, hence we can not just apply the greedy search 
algorithms such as conjugate gradient methods. In 
.this paper, we propose three maximization methods to 
search for the optimal, if possible, otherwise the close- 
to-optimal, deformation parameters. 

5.1 Multi-resolution Pseudo-Exhaustive 

Exhaustive search can find the optimal solutions at 
the cost of unacceptable computation resources in some 
optimization problems. For the problem addressed in 
this paper, exhaustive search is not feasible due to 
the large searching space. Instead, a multi-resolution 
pseudo-exhaustive search method is studied. The basic 
idea is as following: 

Search 

1. Constrain the parameters in appropriate ranges. 

2. Assign coarse step sizes for the parameters and do 
the pseudo-exhaustive search to find the maximum 
of the joint MAP objective function (Eqn. (10)). 

3. Once this coarse maximum is found, take the cor- 
responding estimated parameters as the center of 
a finer search procedure with finer step sizes of the 
parameters. 

4. Repeat the last step for a couple of times and con- 
clude the search procedure. The final estimated 
result is taken as the solution to the joint MAP 
estimate. 

The detection results are satisfactory(see Figure 1).  

(a) lane detection in the 
optical image radar image 

(b) road detection in the 

Figure 1: Edge detection with multi-resolution pseudo- 
exhaustive search 
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5.2 Metropolis Algorithm with Geometric 

Although the multi-resolution pseudo-exhaustive 
search gives us relatively accurate solution, the search 
procedure is still time consuming. To accelerate the 
maximizing procedure, we employ a suboptimal a p  
proach, the Metropolis algorithm [4] with a geometric 
annealing schedule [S] , to perform this maximization, 

Annealing 

1. 

2. 

3. 

4. 

5 .  

6. 

7. 

5.3 

Set i = 0, and initialize 

Calculate P(z', 20, ~ ( ~ 1 ) .  

Pick e" at random among all the possible parameter 
values in the neighborhood of e(').  
Calculate P(Z' , z o ,  i). 

1, Calculate p( i )  = exp (log PLzr,zo,&-lqn p ( z v , z o , d t ) ~  
T(1) 

,+l Tjtnal rnoz-ster 
where T(') = '&it ( T,,,r ) 
Update the deformation parameters 

ifp(') 2 1 
w.p. p(i) if p(i) < 1 

e(') otherwise 
6 

Set i = i+l and go to step 2. 

Metropolis Algorithm with Pre-tuned 
Curvature 

Metropolis algorithm performs fairly well in estimat- 
ing the deformation parameters at a much faster conver- 
gence rate to the fixed point than the pseudo-exhaustive 
search approach does, however, it fails sometimes to es- 
cape the local maximum of the searching surface and 
gives the wrong detection result. For example, the re- 
sults shown in Figure 2 indicate that the curvature of 
the road boundaries has been overestimated. A poten- 
tial reason for this failure is that the ranges of road scene 
in the optical and radar images are different. The op- 
tical image has a much larger range(over 1,000 meters) 
than the radar image does(128 meters). Since our de- 
formable template model only applies to road and lane 
edges in a road scenario with a relatively short range, 
the curvature of the road edges might differs noticeably 
at the near range and the far range in the optical image. 
But with our template model we use the same curvature 
to represent the road edges in the entire optical image, 
which causes the Metropolis algorithm to converge to 
a local maximum and result in the wrong estimation of 
the curvature. 

In the radar image, due to the relatively short range 
the deformable template model fits the road and lane 
boundaries very well and the Metropolis algorithm per- 
forms robustly in estimating the curvature of the road 

(a) Lane detection in the 
optical image radar image 

(b) Road detection in the 

Figure 2: Wrong edge detection by Metropolis algo- 
rithm 

edges [5]. To take advantage of such property, we pro- 
pose the pre-tuned Metropolis algorithm. The estima- 
tion is implemented with two steps: 

1. Estimate parameters 8" in the radar image alone 
with the MAP method (details are referred to 151). 
The curvature estimate & is kept for the joint esti- 
mation step. 

2. Jointly estimate the parameters 8 = {Or,Or}. In 
this step, the curvature parameter k varies in a 
much smaller range with a smaller stepsize around 
k. 

Significant improvement has been shown with this 
method(Figure 3) over the previous one. The overesti- 
mate of the curvature has been corrected and the esti- 
mated results match the sensed data reasonably. 
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(a) lane detection in the 
optical image radar image 

(b) road detection in the 

Figure 3: Correct edge detection with the Metropolis 
algorithm with pre-tuned curvature 

6 Experimental Results 
We have applied the proposed multisensor fusion 

method to jointly detect the road and lane boundaries 
in registered radar and optical images. Since multiple 
(radar and optical) sensors provide more information 
and hence a more precise interpretation of the sensed 
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environment, the performance of road and lane bound- 
ary detection is robust and accurate. For a particular 
road scene, the results obtained via independent optical 
and radar edge detection algorithms are illustrated in 
Figures 4(a) and (b), and the results with the fusion 
method are shown in Figures 4(c) and (d). We can see 
that the fusion method proposed in this paper outper- 
forms the edge detection based on single sensors. 

( 4  ( 4  

Figure 4: Comparison of the fusion method and sigle 
sensor .based method 

In order to compare the performance of the three 
optimization techniques, we plot the detection errors 
based on the hand-picked ground truth in Figure 5. 
The multi-resolution pseudo-exhaustive search method 
outperformed the other two methods in obtaining the 
optimal parameter set, but it has the largest computa- 
tional complexity. The Metropolis algorithm with geo- 
metric annealing works fairly well in most cases, but oc- 
casionally it may get trapped into a local maximum and 
produce wrong results. The Metropolis algorithm with 
pre-tuned curvature has a good trade-off between the 
detection performance and computational complexity. 
Its detection performance is always very close to that of 
the pseudo-exhaustive search method but it converges 
at  a much faster rate. 

7 Conclusion Remarks 
We employ a novel multisensor fusion technique to 

locate the road and lane edges in registered optical 
and radar images. The fusional edge detection prob- 
lem is posed in a Bayesian framework, and a joint 

(a) Errors for road edge (b) Errors for lane edge 
detection detection 

Figure 5: Performance comparison of the three opti- 
mization techniques 

MAP estimate is employed to find the optimal defor- 
mation parameters, i.e., the optimal location of the 
boundaries. Three optimization techniques, multi- 
resolution pseudo-exhaustive search method, Metropo- 
lis algorithm with geometric annealing and Metropo- 
lis algorithm with pre-tuned curvature, are proposed 
and implemented to solve the joint MAP estimate. Ex- 
perimental results have demonstrated that the three 
optimization techniques operate robustly in detecting 
the road and lane boundaries. The pseudo-exhaustive 
search outperforms the Metropolis algorithms, however, 
the pre-tuned Metropolis method has a good perfor- 
mance and complexity tradeoff. 
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