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Unicast-Based Inference of Network Link Delay
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Abstract—Providers of high quality-of-service over telecom-
munication networks require accurate methods for remote
measurement of link-level performance. Recent research in net-
work tomography has demonstrated that it is possible to estimate
internal link characteristics, e.g., link delays and packet losses,
using unicast probing schemes in which probes are exchanged
between several pairs of sites in the network. In this paper, we
present a new method for estimation of internal link delay distri-
butions using the end-to-end packet pair delay statistics gathered
by back-to-back packet-pair unicast probes. Our method is based
on a variant of the penalized maximum likelihood expectation-
maximization (PML-EM) algorithm applied to an additive finite
mixture model for the link delay probability density functions.
The mixture model incorporates a combination of discrete and
continuous components, and we use a minimum message length
(MML) penalty for selection of model order. We present results
of matlab and ns 2 simulations to illustrate the promise of our
network tomography algorithm for light cross-traffic scenarios.

Index Terms—EM algorithm, mixture models, MML penalties,
network tomography, signal processing in networking.

I. INTRODUCTION

H EREIN, we address the problem of determining internal
link-delay distributions from multiple end-to-end uni-

cast packet probes that are sent across a network of sensors,
routers, or terminals from many different edge node pairs.
This is a sub-problem of network tomography [1], [2], which
is concerned with reconstruction of unobserved states of a
network from a set of indirect measurements of these states. For
example, end-to-end network tomography allows a few agents
at the edge of a network to gain important information on
global network behavior without cooperation of internal nodes.
This is especially useful when link parameters are inaccessible
or when direct measurement of data traffic statistics are not
supported by internal switches and routers [1]–[5]. The unicast
tomography methods we present in this paper are applicable
to this situation and are designed to perform well when the
network is lightly loaded. While modification of our methods
may also be applicable to wireless networks, here, we focus on
the simpler case of wired networks, such as the Internet.

The causes of delays along a packet probe’s path through the
network can be separated into the sum of two types of delays:
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constant link transmission delays and time-varying link pro-
cessing delays. Link transmission delays are due to the prop-
agation delays through the physical medium, e.g., a wire, or
optical fiber. Link processing delays are due to a combination
of router queueing, buffering and servicing delays that depend
on factors such as the amount of cross-traffic at the router, the
number of retransmits required over the link, and the integrity
of router equipment and associated software. While transmis-
sion delays usually remain constant over a probing interval,
processing delays are highly variable and are thus commonly
modeled as random variables. Thus, it is generally impossible
to recover the actual internal link delays that probes encounter
along their end-to-end path. However, the determination of the
statistical distribution of the internal link delays from multiple
end-to-end delay measurements can be formulated as a statis-
tical inverse problem whose solution yields estimates of the in-
ternal delay distribution [2], [6]. These estimates can be used by
an autonomous system (AS), e.g., an Internet service provider
(ISP), to evaluate its average quality of service (QoS) or to as-
sess link performance of other, perhaps competing, ASs. When
acquired over large portions of the network, link delay estimates
can also be used for detecting network anomalies such as immi-
nent link failures or coordinated denial of service (DoS) attacks.

The problem of empirically characterizing Internet link delay
distributions has been looked at by several researchers; see, for
example, [7]–[10]. A common observation is that when the link
is lightly loaded, such as in the early morning, link delay scatter-
plots appear stationary. Furthermore, while much of the scatter
appears spread out over a continuum of delay values, a non-neg-
ligable proportion of the delays appear to concentrate at one or
more discrete values; see, for example, [10, Fig. 4]. This implies
the existence of point masses in the time-averaged link delay
distribution. The positions of these point masses vary according
to factors such as length of packet, incoming and outgoing queue
sizes of routers on the link, router configuration, deployment of
firewalls, and the physical distance between routers [10].

In this paper, we propose to capture these empirically ob-
served features by fitting hybrid continuous/discrete finite mix-
ture models to the link delay distributions. While our algorithms
are easily generalizable to multiple discrete point masses, for
simplicity, we focus here on the case where the discrete com-
ponent is a single point mass. Unlike purely continuous models
the hybrid continuous/discrete model is identifiable and is jus-
tified under the lightly loaded scenario. In this scenario, there
is a nonzero probability that a packet will encounter an empty
queue in which case the packet delay is nonrandom due to fixed
propagation and processing delays. While this is unlikely in a
congested network, the model is valid for a number of common
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monitoring situations such as service and performance verifi-
cation and detection of onset congestion. Moreover, we would
like to point out that the delay point mass is implicit in canon-
ical delay trees, which are used in discrete delay tomography,
for which there is a nonzero probability that a packet traverses
each link without any delay (see, e.g., [6]).

Lo Presti et al. [6] were the first to propose estimating
internal delay distributions from end-to-end measurements.
These authors uniformly discretized the internal delay distribu-
tions and derived an algorithm based on empirical histogram
estimation. Their method uses multicast probes, which requires
cooperation of the network to run a multicast session such as
real-time transport protocol (RTP) during the probing interval.
To overcome this restriction, Coates and Nowak [5] developed
an internal delay histogram estimator based on an alterna-
tive unicast probing scheme in which edge sites exchange a
succession of closely spaced packet pairs. Their estimator is
based on a statistical inverse problem formulation and used an
iterative maximum likelihood via the expectation maximization
(ML-EM) approach. In related work, these authors also devel-
oped a sequential Monte Carlo method for tracking changes in
nonstationary networks [11]. The principal restriction of the
approaches [5], [6], [11] is the requirement of discrete-valued
link delays. Overly coarse discretization, or binning, of the link
delays leads to excessive model approximation error and causes
bias in derived estimates such as delay mean and variance. At
the opposite extreme, excessively fine discretization leads to
high runtime complexity of these algorithms. Furthermore, the
determination of the appropriate number and size of the bins
requires tight bounds on link delay characteristics, such as
maximum and minimum processing delays, which are usually
unknown.

Several alternatives to the fixed and uniform binning scheme
of Lo Prestiet al. [6] have been studied. Duffieldet al.consid-
ered a variable bin size model, where smaller bins are used to
describe probability mass concentrations for small delays [12].
Tsenget al.[13] proposed a nonparametric algorithm where the
number of bins for internal link delays is adapted to the number
of measurements. (See the paper by these authors in this Spe-
cial Issue [18].) They use a wavelet-based penalized maximum
likelihood estimator to smooth the estimates. A nonparameteric
method was proposed for unicast probing by Shih and Hero
[14] in which the statistical inverse problem is formulated in
the cumulant generating function (CGF) domain. By sampling
the CGFs arising from the least squares solution of the inverse
problem, a set of continuous (un-binned) link delay density es-
timates can be obtained.

Herein, we propose a different method for estimation of
internal delay distributions from unicast end-to-end mea-
surements that is based on packet pair unicast probes and
additive mixture models for the internal link delays. As the
end-to-end delay measurement is a sum of the (assumed
independent) internal link delays over the probe path, the
densities of the measurements are convolutive mixtures of
these additive mixture models. This makes our estimation
problem more challenging than the standard mixture model
estimation problem, which has received much attention in both
the statistical and engineering literature [15], [27], [29], [30].

Additional issues we address are 1) the additive mixture model
orders are unknown in practice, and 2) the internal link delay
distributions are composed of a combination of continuous
and a discrete components. We handle the convolutive mixture
complication by adopting an iterative ML-EM formulation of
the estimation problem using an enlarged complete data space.
We handle the problem of unknown model order by adapting
the unsupervised minimum-message-length (MML) approach
used in Figueiredo and Jain [15]. Specifically, we add an infor-
mation theoretic order selection penalty to the log-likelihood
to which a penalized ML-EM (PML-EM) algorithm is applied.
We handle the presence of both discrete and continuous link
delay components by the following simple additive mixture
model: The delay density is a (unknown) convex combination
of a point mass positioned at the (unknown) transmission delay
and a (unknown) number of Gaussian components with (un-
known) means and variances. We adopted Gaussian continuous
components to simplify the implementation, but heavy-tailed
densities can also be easily accommodated in our framework.

The outline of the paper is as follows. In Section II, we give
the main assumptions underlying our work. In Section III, we
review the continuous and discrete delay models for unicast
network delay tomography and discuss model identifiability. In
Section IV, we introduce the hybrid mixture models for delays
of the internal links and present the ML-EM algorithm for es-
timating the parameters of these models from end-to-end delay
measurements. In Section IV-C, we present the PML-EM algo-
rithm with MML penalty to control excessive order estimation
of the unpenalized ML-EM algorithm. In Section V, we illus-
trate the performance of the ML-EM and PML-EM algorithms
on simulated data using and [16] simulators.

II. NETWORK MODEL AND MAIN ASSUMPTIONS

As in Coates and Nowak [5], we adopt the back-to-back
packet pair probing framework and represent the network
topology as a directed logical tree , where is
the set of nodes, e.g., routers and terminals, andis the set
of links. Let there be a total of links in the network and
number them from 1 to . The logical tree representation has
a single root node, serving as a source, several internal nodes
having degree at least 2, and several leaf nodes, containing
receivers. The edge of the network is the set of leaf nodes plus
the root node. If there are a total of leaf nodes, then there
are possible paths from the root to the receivers. To collect
internal link information at the edge nodes, pairs of packets
are transmitted from the source to pairs of leaf nodes. There
are binary sub-trees of paths, called probe trees, on
which the source can send each pair of packets to two different
receivers. We define the pair of receivers at the edge of probe
tree to be . Each node in the tree has two or more child
nodes, except the root and leaf nodes. A network with three
links is shown in Fig. 1(a) showing a single root node, a single
internal node, and two leaf nodes.

In a unicast probing session, a pair of leaf nodes is (ran-
domly) selected by the source, and two time stamped packets,
called a (unicast) probe pair, are sent to them, respectively. The
two packets are transmitted in rapid succession and encounter
identical delays on the shared links of their paths. Each leaf
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(a) (b)

Fig. 1. (a) Two-leaf and (b) four-leaf networks, respectively. Receivers are the
leaf nodes while the source is the root node. Network (b) is used for simulations
in Section V.

node records the time that a packet is received. Subtracting this
number from the packet’s time stamp gives the end-to-end delay
of the packet. End-to-end delays of the probe pairs on the same
probe tree are random vectors due to the random ambient cross
traffic through links along their paths. If any packet in a probe
pair is dropped by the network, both packets are considered lost.
Unicast probing is repeated until the session is over or enough
packets are received by each leaf node to perform the next step:
network delay tomography. The aim of network delay tomog-
raphy is to identify the packet delay distribution for each indi-
vidual internal link from the end-to-end delays observed by the
receivers. Network tomography is possible since the end-to-end
delay is a sum of the internal link delays encountered along
the probe path and any two paths in a probe tree must cross at
common links.

Let be the packet delay encountered by a probe at link
, , and let be the end-to-end packet delay

along the th path . We make the following inde-
pendence and stationarity assumptions.

A1) Spatial Independence: Packet delays at different links
are statistically independent, i.e., and are inde-
pendent for .

A2) Temporal Independence and Stationarity: For a given
link, the delays encountered by packets in different
probe pairs at that link are statistically independent and
identically distributed (i.i.d.).

For each probe pair, we make an additional consis-
tency assumption.

A3) The delays encountered by both packets in a probe pair
on the shared links of their paths are the same (with
probability 1).

It is important to point out that while A1) and A2) are normally
not satisfied in practice (see, e.g., [17]), these are commonly as-
sumed in order to permit tractable analysis. An example where
spatial independence A1) is violated is when there is interaction
among different data flows along the same path. As for A2),
temporal independence fails when Internet traffic is bursty or
the network has a long latency time, which correlates different
packet pairs. Stationarity fails when the unicast probing session
has a longer duration than the stationarity time of the network.
However, experiments have shown that the performance of net-
work tomography is remarkably insensitive to violations of A1)

and A2) [4]–[6], [11], [20]. In A3), the assumption of identical
delays experienced by a probe pair on shared links does not hold
when a small discrepancy between the two is observed from
real network data (see, e.g., [18], [19]). Fortunately, this random
error has mean close to 0 and can be reduced by random ordering
of the two packets [5].

III. U NICAST NETWORK DELAY TOMOGRAPHY

A. Discrete Delay Model

In the widely adopted discrete link delay model [5], [6], [11],
a universal bin size is used to discretize link delays at
each link . The time intervals ,

are called the delay bins. Here, is a positive in-
teger, and can be used to account for lost probe packets
or large delays that are out of range. Discretization produces
the discretized delay valuewhen falls in the th bin. A
probability mass function (pmf) or histogram :

is then associated with the discretized delays over
link , where the probability is
an unknown to be estimated, and . For a probe
path containing links, the discretized end-to-end packet delay
varies over the range .

Consider the two-leaf tree network shown in Fig. 1(a), and
the associated delay pmf’s : for

. Probe pairs are sent from the source to receiver
1 and 2. With assumption A3), the identifiability of s from
end-to-end delays can be studied in a similar manner to mul-
ticast networks. More specifically, in multicast, each packet is
replicated by the network at the branching points of its paths,
and all the packets at the receivers again have common delays
on shared links. Proof of identifiability in discrete network delay
tomography with multicast probes is provided in [6], and the use
of unicast probe pairs can be considered as a special case.

The discrete delay model adopted in [5], [6], [11]–[13], and
[18] has two main drawbacks. First, the proper bin size needs
to be carefully selected. Second, a universal bin size may not
be suitable due to large variation of packet delay ranges over
different links. Although in [6] it was proposed to adopt dif-
ferent bin sizes for different links, those bin sizes still need to
be chosen in advance.

B. Continuous Delay Model

One way to avoid the pitfalls of binning is to use a flex-
ible continuous link delay model. For example, closed-form ex-
pressions for the probability density function (pdf) of queueing
delay have been derived for simple queueing models such as
M/M/1. These expressions could possibly be extended to a net-
work of queues, but the accuracy of the M/M/1 model is still in
question for Internet traffic [21]. An alternative is to approxi-
mate each link delay density by a finite mixture that, with suf-
ficiently large number of components, can describe any contin-
uous density function [22]. Let be the link delay pdf at
link . A finite mixture model for this pdf is

(1)
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where denotes the number of components, ,
denotes the mixing parameter for theth component

, , and is a density
function over the -domain parameterized by the parameter
vector . Many different choices for are possible
including Gaussian, generalized Gaussian, exponential, or uni-
form. For the case of a Gaussian mixture,
is the vector specifying the position (mean) and width
[sqrt(variance)] of the th mixture component at theth link.

However, the use of pure continuous mixture density func-
tions can cause serious identifiability problems. To illustrate,
consider again the simple two-leaf tree of Fig. 1. Assume that
all link delays are Gaussian, i.e., (single com-
ponent mixtures) .
The end-to-end delays , have the following joint pdf:

(2)

If we look at the mean parameters, they are completely de-
scribed by the three parameters , ,
and . This gives only two equations for the three un-
knowns parameters ; therefore, the simple Gaussian
model is not identifiable for any value of the mean parameters.
An example is shown in Fig. 2, where (a) and (b) are two dif-
ferent sets of internal link delay distributions for the network in
Fig. 1(a).

One can also consider the packet-stripe schemes suggested
in [19], in which a “stripe” of several closely spaced unicast
packets with distinct destinations are sent back-to-back from
the root node. Similarly to packet pair probes, these packets are
assumed to encounter virtually the same delays on shared links
along their paths. As shown in [20], packet-stripe probing allows
identification of higher order moments of internal link delays
when the branching ratio is larger than two. However, under the
Gaussian mixture link delay model, the link delay means still
cannot be uniquely identified from end-to-end delays.

IV. HYBRID FINITE MIXTURE APPROACH

A. Hybrid Finite Mixture Model

In analysis of a queueing system, the utilization factoris
an important parameter for describing system behavior. The pa-
rameter denotes the probability that the system is busy serving
customers, and for a stable system,must satisfy

[23]. A lightly loaded link satisfies , i.e., there is a
non-negligible probability that a packet encounters an empty
queue, i.e., an idle router, and passes without delay. This sug-
gests placing a point mass component with weight in the
link delay mixture model. If this point mass is included in addi-
tion to the continuous components, the link delay pdf becomes a

Fig. 2. Example of two sets (a) and (b) of Gaussian internal link delay densities
along the two probe paths in the network in Fig. 1(a). The two end-to-end delays
of each received packet pair obeys a Gaussian bivariate density shown in (c).
This bivariate density is parameterized by only two location parameters, which
is insufficient to recover the three location parameters in (a) and (b).

hybrid discrete/continuous finite mixture model. Hence, similar
to (1), we obtain

(3)

Here, , is a point mass (dirac delta function)
at zero, and is the pure (nonrandom) transmission delay
experienced by the packet. All other parameters are defined as
in (1), except now, thes must satisfy ,
. The discrete mass component not only makes the delay

distribution more precisely model the behavior of a link queue
but, as shown below, also buys us identifiability of all the link
delay distribution parameters.

For any probe pair, the distributions of the end-to-end probe
delay densities will be the convolution of the link distributions,
which are also hybrid mixtures. Now, similarly to the previous
section, let us assume that the continuous mixture component
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Fig. 3. Example of internal link delay mixture densities (a)–(c) for links 1, 2, 3,
respectively, over the two-leaf tree of Fig. 1(a). The nonrandom minimum delays
for all the links are set to 0. The end-to-end packet pair delay distribution is
a hybrid mixture whose purely continuous components are shown in (d), and
components associated with discrete masses are in (e). All link parameters can
be identified from this two-dimensional distribution. Here,B � (C �F ) denotes
a function of(y ; y ), which is the convolution of the internal link components
labeled B, C, and F in the form ofB(x)C(y � x)F (y � x) dx.

is a single Gaussian pdf. Let the point masses , and
assume that they are all concentrated at zero delay, i.e.,
. Fig. 3 shows the end-to-end joint delay distribution in the

two-leaf tree network of Fig. 1(a), whose mathematical form is

(4)

where for , and is the
joint distribution shown in (2). Due to the point mass in (3), (4)
has additional isolated Gaussian components that appear with
discrete masses at locations in the plane specified by

, and . It is obvious that iden-
tifiability can be achieved as long as . It might seem
strange to the reader that the addition of a point mass allows
one to uniquely identify the set of parameters of the internal link
components from a single probe tree. However, one still needs
multiple probe trees to assign these parameters to specific links.

Fig. 4. Gaussian mixture example.f (u) = 0:3N(u; 2; 2) +
0:5N(u; 8; 4) + 0:2N(u; 17; 10).

B. ML-EM Algorithm

Here, we present an ML-EM algorithm for approximating
the maximum likelihood estimates of the internal link mixture
model parameters from end-to-end packet pair measurements.
Let be a finite mixture random variable with compo-
nents and pdf of the form , where

. An example of a Gaussian mixture with three
components is given in Fig. 4. The solid line depicts the density
function, and the dashed line shows each component. There are
two different interpretations of finite mixture models, which
will be useful in the sequel. The first one is simply that
is a multicomponent pdf for . The second interpretation is
that is selected at random from a pool of simpler hidden
random variables with selection probabilities

, respectively. Define the binary random selection
vector , where if and only if the

th variable is selected, and assign to this event probability
. can be expressed as . Thus, if

has pdf , then this is identically the conditional pdf
. Thus, , which

is the mixture model for with which we started out. The
second interpretation is critical for development of the ML-EM
algorithm, which we address below.

Assume that we have prior knowledge of all the link mix-
ture orders . We will relax this assumption in the next
section. Let be the number of packet pairs sent from the
source to the receivers of probe tree, and let be the set
of links along that tree. Define as the delay at link
encountered by the th packet pair sent to receivers in .
Let be the selection vector for

.
With these definitions, maximum likelihood (ML) estima-

tion of the set of internal link mixture densities can be formu-
lated as a missing data problem. The expectation maximization
(EM) algorithm has been extensively applied to approximate
ML and penalized ML (PML) estimates for mixture models
[15], [29], [30]. Let and for all

. is calledmissing dataor hidden data. Define
as the pair of end-to-end delays of

the th packet pair received by two receivers in theth probe
tree. The observables are called theincom-
plete data, and the set is said to be thecomplete
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data. The EM algorithm generates a sequence of estimates of
the unknown parameters that have the property that the like-
lihood sequence is nondecreasing.

It is easily shown that the likelihood of thecomplete
data can be factorized as

, and thus, maximization of
is equivalent to maximization of the likelihood function

. For a specific link , is a mixed
random variable with density function given by (3), and
therefore, up to a constant, the complete data log-likelihood
function is

(5)

The EM algorithm updates parameter estimates by applying two
steps at each iteration. At theth iteration, the E-step computes
conditional expectation of complete data log-likelihood given
observations and current parameter estimates

(6)

The M-step maximizes the function computed in the E step
with respect to to produce

(7)

The E and M steps for the hybrid mixture model are similar to
those for a single Gaussian mixture model [30] and are illus-
trated in the Appendix.

C. PML-EM Algorithm With MML Penalty

When the number of link componentss is unknown,
the ML-EM algorithm is not guaranteed to converge. This
is due to a fundamental ambiguity of unknown model
order. To illustrate, consider the estimation of a-compo-
nent mixture having the form of (1) with parameters

. These parameters have the
same likelihood as the component mixture

for any
. One of the most effective ways to eliminate this

ambiguity is to add a penalty to the log-likelihood function that
penalizes the addition of more components to the mixture.

Many model order penalties have been proposed including
the Akaike information criterion (AIC) [24], minimum descrip-
tion length (MDL) [25], and minimum message length (MML)
[26]. Figueiredo and Jain [15] applied the MML penalty to fi-
nite mixture models by introducing a prior to the parameters and
an information-theoretic penalty, depending on quantization of
parameter space. They developed an unsupervised method to si-

multaneously select model order and estimate parameters. The
incomplete data penalized log-likelihood is expressed as

where is the Fisher information matrix associated with the
incomplete data , denotes the determinant of square ma-
trix , is the dimension of , and is the so-calledoptimal
quantizing lattice constant for .

To apply the MML algorithm [15] of Figueiredo and Jain
to our network delay tomography problem, their method has
to be extended to another layer of hidden data. More specifi-
cally, while in [15] the realizations from the mixture model were
observed directly, in our application, only sums of these real-
izations (along probe paths) are observed. In other words, the
end-to-end delays are themselves convolutive mixtures of the
additive mixtures describing the link delays.

The standard incomplete data Fisher Information matrix
is not closed form, even for a directly observed finite

mixture [27]. Therefore, similar to [15], we replace it by the
complete data Fisher information matrix, which, in the network
tomography setting, is
block-diag , where is the Fisher in-
formation matrix associated with the complete data at
link , denotes the parameter set of theth link, and

is the total number of packet pairs passing
through the th link. itself has block-diagonal structure

block-diag ,
where is the Fisher information matrix associated
with the hidden th component delay variable on link ,
and diag . If any one of the s is zero, it
is removed from , and is decreased by 1.

The prior on the parameter set was taken as
, where

, and are the noninformative Jeffreys’ priors
[28]: ,
and , for and

. In addition, as in [15], we make the approxi-
mation . This yields the MML penalized likelihood
function

(8)

where is the dimension of , e.g., for a Gaussian
component mixture.

To derive the E step of the PML-EM algorithm applied to
maximizing (8), we adopt the same complete data as in the pre-
vious section. With this, it is easy to see that the E step is a modi-
fication of (6), where now has an additional penalty
given by the second and third additive terms on the RHS of (8).
The modified M-step gives the updates for the mixing param-
eters in (9) (see the Appendix). The M-step for the remaining
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parameters depends on the specific form of the mixture density
components.

(9)

The algorithm uses the following strategy to select the
number of components at theth link. It starts by setting
all to some user-specified upper bound and
annihilates components as follows. If , component

is removed from , and its probability mass is redistributed
over the other nonzero-probability components at the next iter-
ation. Note that this procedure is myopic since it does not allow
components to come back to life, and therefore, the estimate
is not guaranteed to converge to the MML estimate. However,
we restrict our implementation to this myopic strategy due to
implementation complexity constraints.

V. EXPERIMENTAL RESULTS

A. Model Simulation: ML-EM for Known Model Order

We simulated a small network with the simple virtual tree
topology shown in Fig. 1(b). Throughout this first experiment,
the numbers of components are known to the estimator.
We specialized the EM algorithm to a Gaussian continuous com-
ponent mixture (see the Appendix). From two to four Gaussian
components were assigned to each link in addition to a point
mass. These simulations were implemented in , and we
generated 2000 i.i.d. end-to-end probe pair delays for each of
the six probe tree paths. The ML-EM algorithm was applied
to the estimation of the Gaussian components, their mixing pa-
rameters, and the weight of the point mass at zero. Convergence
was achieved after 955 iterations, or approximately 16 iterations
per parameter. Fig. 5 compares the estimated Gaussian mix-
ture components to the true Gaussian mixture components. It
also lists the number of mixture components for each link and
the true/estimated probabilities of the probe encountering
empty queue on link. The convergence curve of the log-like-
lihood is shown in the lowest-right graph of the figure. These
results illustrate high accuracy for the case where there is no
model error and the number of components is known.

B. NS Simulation: MML for Unknown Model Order

For a more realistic simulation, we used [16] to simu-
late the network shown in Fig. 1(b) with a variety of cross traffic
types and router configurations. The links were assigned band-
widths and latencies listed in Table I. The parameters for
each link were set to a Drop-Tail queue [first-in–first-out (FIFO)
queue with finite buffer]. The queue buffer sizes were 50 packets
long. Each packet in a probe pair was defined as a 40-byte user
datgram protocol (UDP) packet. Probe pairs are generated in-
dependently and sent along each of the six tree paths according
to a Poisson process with mean interarrival time 8 ms and rate

Fig. 5. True (solid curve) and estimated (dotted curve) Gaussian mixture
components along with the true (black bar) and estimated (white bar) empty
queue probabilitiesf� g for model simulation. The horizontal axes denote
link packet delays in milliseconds. Here, the EM algorithm is used to estimate
the mixed Gaussian mixture parameters for simulated measurements obeying a
true mixed Gaussian mixture with known numbers of components, which are
listed along with the link delay pdfs. Two thousand packet pairs are generated
for each of the six probe tree paths in Fig. 1(b). The lowest-right graph shows
the convergence curve of the log-likelihood function.

TABLE I
LINK BANDWIDTH AND LATENCY PARAMETERSUSED IN ns SIMULATION

70 Kb/s. Cross traffic was also generated in each link byand
consisted of 41 Pareto On–Off transfer control protocol (TCP)
flows and 25 constant-bit-rate UDP streams with random noise
introduced in the scheduled packet departure times. The design
of background traffic reflects today’s IP network environment in
which the UDP traffic is mainly video/audio data streams and
TCP comprises the major fraction of the Internet traffic [31]. A
total of packet pairs for each probe tree are collected
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Fig. 6. Normalized ns-derived histograms for nonzero link delays and
estimated Gaussian mixture density for indicated links. The horizontal axes
denote link packet delays in milliseconds. Here, the unsupervised MML
algorithm was initialized with five Gaussian components for each link. The
lowest right graph shows the convergence curve of the MML penalized
likelihood function. The vertical lines denote the iteration number where the
number of Gaussian mixture components is reduced. The links affected by this
reduction are in order {2, 4, 3, 2, 7, 6, 5}.

at the receiver nodes. We estimated each probe queueing delay
by subtracting the minimum probe delay over the total samples
for the same path.

The MML algorithm was implemented with Gaussian con-
tinuous mixtures, and the estimated number of mixture compo-
nents at each link was initialized to . To accelerate the
PML-EM algorithm, as in [15], we used thecomponent-wise
EM algorithm for mixtures(CEM2) [29]. Similarly to the SAGE
algorithm of Fessler and Hero [32], the CEM2 algorithm updates
the parameters sequentially, instead of updating all of them si-
multaneously. The monotonicity property of CEMis not af-
fected by the order of updating. We adopted a cyclic updating
procedures as follows: Update , recompute , update
and , recompute , and so on, until all the parameters for
link 1 are updated; then proceed in the same way for link 2, 3,
and so on, until all link parameters are updated.

Link delay pdf estimates are shown in Fig. 6. To obtain
ground truth, the true internal link delay distributions were
estimated empirically from the simulated data. The mass of

the atom, which is denoted as “True ” in the figure, is the
empirically estimated probability of an empty queue at link
calculated from sample averages. The continuous portion of the
true distribution is estimated by the histogram of nonzero link
delay samples and normalized to have mass True .
The estimated Gaussian mixtures are shown along with the
normalized histogram for comparison. Note that the probability
mass of the mixture is for delays at link . The con-
vergence curve of the penalized likelihood function is shown in
the lowest right graph in Fig. 6. The vertical lines indicate the
iterations when at least one component is annihilated.

As shown in Fig. 6, the Gaussian mixture components cap-
ture the profile of the empirical continuous portion of the den-
sity for most of the links. They also provide accurate estimates
to all the queueing delay ranges. Some modal mismatches occur
in the estimates at, for example, links 2 and 3. This error is
probably due to the limitation of the five Gaussian1 point
mass component model. For a better fit to the internal delay his-
tograms, it may be necessary to assign more point masses and
include other density models that are flatter or more heavy tailed
than Gaussian. Other sources of error might include violation of
the spatial or temporal independence assumptions, insufficient
number of probe samples to resolve link densities, insufficient
number of iterations of the MML algorithm, existence of local
maxima in the likelihood function, and burstiness (nonstation-
arity) of the traffic. These are topics worthy of additional inves-
tigation.

VI. CONCLUSION AND FUTURE WORK

This paper focuses on the estimation of internal link delay
distributions from end-to-end unicast packet pair delay mea-
surements when there is a positive probability of zero queueing
delay, i.e., lightly to moderately loaded networks. We proposed
a new hybrid discrete-continuous finite mixture model that cir-
cumvents the difficulties of link delay discretization. For the
case that mixture model orders are known, we derived an EM
algorithm to approximate the ML estimates. Model simulation
showed that when all model assumptions hold the EM algo-
rithm can very accurately estimate the delay distributions for
each internal link. When the model orders are unknown, we im-
plemented an MML order-selection penalty and derived an un-
supervised algorithm for estimating both the number of mixture
components and the continuous density parameters. Although
the estimates obtained at convergence of this algorithm are not
necessarily MML estimates, results of the simulation
showed that reasonably accurate estimates of internal link delay
distributions are possible.

Future work includes finding ways to accelerate convergence
of the ML-EM and PML-EM algorithms for real-time imple-
mentation. EM algorithms are quite slow, and the improvement
made by CEM is still limited. This makes it difficult to per-
form extensive comparisons. Another direction is extension of
our model to include spatial dependencies of link delays among
different links, especially the links along the same path. For
time-varying scenarios, adaptive schemes need to be developed
in order to capture possible changes in the traffic statistics and
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the network environment. It may also be viable to apply these
methods to detecting abnormal changes in link delay distribu-
tions. This may help early detection of possible network failures
and/or malicious network activities.

APPENDIX

DERIVATION OF EM ALGORITHM

Here, we only sketch the derivation of the E- and M-step
quantities required for the ML, PML, and CEM2 algorithms.
Throughout the derivation, we assume the point mass is lo-
cated at zero delay for all the links. Let denote the
end-to-end packet pair delay joint pdf from the root node to
receivers in theth probe tree. is defined simi-
larly to , except in the convolution, is replaced by its

th component, which is when or
when . This is the likelihood of the end-to-end delays
of a packet pair along theth probe tree being equal togiven
the delay at link is contributed by the th hidden component.

is also similar to , except that theth link
is excluded in the convolution.

E-step: Compute the conditional expectation of the complete
data log-likelihood in (6) of theth iteration. Let

for and . Define

for and , where
if link is shared by the two probe paths, or

if link is on one of the branches of the
probe tree, say branch 1. The conditional expectation of the log
likelihood function in (6) becomes

(A.1)

Equation (A.1) holds for any choices of density. If the mixture
components are Gaussian, has the following form:

M-step: Update the parameter estimates by maximizing
over , as shown in (7). The estimator updates are

In the case that thes are Gaussian densities, , and
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