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ABSTRACT 

It is; well known that direct implementation of the opti- 
mal ,multiuser receiver for an asynchronous Code Division 
Multiple Access (CDMA) communication system has an ex- 
ponential complexity in the number of users. In this paper 
we present an iterative implementation of an optimal mul- 
tiuser receiver which has at most cubic complexity per it- 
eration in the number of users. The receiver performs joint 
Maximum Likelihood (ML) estimation of the amplitudes, 
phases, time delays, and symbol sequences of all the users. 
Similarly to the single user receiver we presented in [1], the 
multiuser receiver is based on a signal decomposition with 
respect to a compactly supported orthonormal wavelet ba- 
sis. The algorithm uses grouped coordinate ascent updates 
to increase the likelihood function in each iteration. Sim- 
ulation results of a two user system are presented showing 
that the receiver is near-far resistant, and attains the single 
user bit error probability bound. 

1. INTRODUCTION 

In an asynchronous CDMA system several users transmit si- 
multaneously over the same frequency band, each modulat- 
ing a pre-assigned wideband Pseudo Noise (PN) sequence. 
Due to the unsynchronized nature of the transmissions it 
is not possible to guarantee strict orthogonality between 
the users for all relative delays and modulating symbol se- 
quences. In the absence of orthogonality the performance 
of the of the conventional receiver (matched filter) severely 
deteriorates, especially when some of the interfering users 
have energies that are much higher than the energy of a 
particular user. This problem, called the near-far problem, 
motivated the recent work on multiuser receivers that  are 
robust to this effect, provide close to optimal performance, 
and have low complexity. The optimal multiuser receiver, in 
the sense of jointly maximizing the likelihood of the trans- 
mitted symbol sequences of all the users, was studied in 
[3]. The optimal receiver has an exponential complexity in 
the number of users, requires the knowledge of user ener- 
gies and time delays, and has a large decoding delay, so it 
is generally impractical. Suboptimal receivers with a linear 
complexity in the number of users, such as the decorrelating 
receiver [4], have been investigated. Receivers of this type 
are near-far resistant, but they enhance the noise. 

In this paper we present an iterative solution to the ML 
parameter estimation problem, where the unknown param- 
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eter consists of the complex gains (amplitude and phase), 
time delays, and symbol sequences of each of the users. 
This approach is the most general since estimation of the 
gain and delay parameters is essential for implementing a 
phase coherent and time synchronized receiver. Maximiza- 
tion of the likelihood function for the Additive White Gaus- 
sian Noise (AWGN) channel is analytically intractable. To 
solve this problem we use an iterative Grouped Coordinate 
Ascent (GCA) algorithm, in which a subset of the param- 
eter is updated in each iteration. We derive an efficient 
digital algorithm that can be executed in real time, has a 
fixed complexity, and only requires a “single pass” over the 
received signal. The GCA algorithm is related to a class 
of EM algorithms known as Space Alternating Generalized 
EM (SAGE) algorithms [2], and like SAGE its asymptotic 
convergence rate is significantly better than standard EM. 

The implementation of the algorithm is facilitated by ex- 
panding the signal on a time-frequency localized basis. This 
expansion allows us to develop a simple recursion from one 
cycle of updates to the next one, and to effectively de- 
couple the parameter updates. The choice of a compactly 
supported orthonormal wavelet basis [5] is motivated by 
its excellent time-frequency localization, multi resolution, 
and the existence of efficient algorithms for computing the 
Discrete Wavelet Transform (DWT) via discrete time filter 
banks. The algorithm has at most cubic complexity ( t y p  
ically quadratic complexity) per iteration in the number 
of users, and involves tractable updates of all the parame- 
ters; time delays are updated via polynomial rooting, data 
symbols are updated by a simple discrete search or via un- 
constrained maximization of a quadratic form, and complex 
gains are updated analytically. 

This paper is organized as follows. In section 2 we de- 
fine the multiuser system model and introduce the GCA 
algorithm. In Section 3 we describe the wavelet expansion 
and outline the parameter update strategy. The efficient 
implementation of the algorithm is given in Section 4. We 
conclude with simulation results of a two user system. 

2. SYSTEM MODEL AND THE GCA 
ALGORITHM 

We consider the following complex baseband model of an L 
user CDMA system: 

y ( t )  = sr(t) + up), -CO < t < 0 ,  (1) 
1=0 
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where s i ( t )  is an attenuated and delayed version of the data 
modulated signal transmitted by the I-th user, 

N-1 

n=O 

The unknown parameters associated with the I-th user are 
the complex gain ai E {Re"+' : R > 0,O 5 cp < T}, the 
data symbols bn,i E {fl} for n = 0,. . . , N - 1, and the 
time delay dr E [ - T d / 2 , T d / 2 ]  for some positive T d .  The 
signaling waveforms p i ( t )  are known PN sequences com- 
pactly supported on [-T,/2,Ts/2] where T, 2 Tp.  Usu- 
ally it is assumed that T, z Tp, however this assumption 
is not explicitly used here. The data symbol model cor- 
responds to a BPSK modulation format, but with minor 
modifications the algorithm can also be applied to M-ary 
PSK, PAM, or QAM. The restriction on the phase of the 
complex gains ai is necessary in order to avoid the phase 
ambiguity in the signal model (2). Without loss of general- 
ity we assume that all the complex gains are restricted to 
the upper half of the complex plane. The noise u( t )  is a 
complex, zero mean, white Gaussian process with power 
spectral density N 0 / 2 .  The goal is to find the ML es- 
timate of the parameter vector 8 given the observation 
y = { y ( t )  : --oo < t < m}, where 8 = [eo ,... , 8 ~ - 1 ] ~  
and 81 = [ut, di, bn,i : n = 0,. . . , N - 1IT. 

The GCA algorithm is a simple iterative algorithm for 
finding the Penalized Maximum Likelihood (PML) estimate 
of 6 given the observation Y = y: 

(3) 

where 

d(e) = logp(y; 6) - w, (4) 

and P(8)  is a suitably defined penalty function. The el- 
ements of 8 are indexed by the set of integers IK = 
{ O , .  . . , K - 1 3 .  At each iteration an index set S C I K  
is chosen and the objective (4) is maximized with respect 
to 8 s  which denotes the elements of 6 indexed by S, while 
keeping 6s fixed where s is the complement of S. 

3. EXPANSION ON AN ORTHONORMAL 
WAVELET BASIS 

The effectiveness of the recursive algorithm is enhanced 
by choosing a wavelet basis representation, because it re- 
quires a small number of basis coefficients, and it yields 
an algorithm with rapid convergence. It is superior to 
other choices, e.g. a windowed Fourier basis which has 
poor frequency localization. Let $ j k ( t )  be an orthonor- 
mal wavelet basis, where $(t)  is the basic wavelet and 
$ ' j k ( t )  = + ( ' t - j t  - I C ) .  The received signal y ( t )  is expanded 
on this basis, yielding a set of wavelet coefficients: 

Using the multiuser system model y j k  are given by: 
T.-1 N - 1  

where 

are the wavelet coefficients associated with the I-th user's 
signaling waveform, and U j k  are the iid Gaussian noise ran- 
dom variables. This can also bx written in terms of the 
Fourier decomposition of W j k ( n ,  1; d )  as: 

L-1 N-I 

1=0 n=o 

where C j k ( n ,  I )  = [ { C j k , m ( n , l )  : m E z}lT, zi = [{z;" : m E 
z}]', C j k , m ( n ,  2 )  are the Fourier coefficients of W j k ( n ,  1; d )  
on the interval [ - T 0 / 2 ,  T 0 / 2 ] :  

1 T O P  

C j k , m ( n ,  I) = T;; 1 W j k ( 7 2 ,  I ;  6 ) e - ' m w o 6  d 6 ,  (9) 
--To12 

and z1 = e a w O d l , q  = 27r/To. In a similar fashion to 
the single user algorithm we define the convolution vector 
d 3 k ( n 1 ,  7 ~ 2 ,  I) = [ ( d 3 k , m ( n 1 ,  7 2 2 , l )  : m E z}]* for each user, 
where 

Next we define an increasing sequence of wavelet index 
sets s E N, each is a subset of Z2. The recursive algo- 
rithm is organized in cycles indexed by s, and iterations in- 
dexed by i. In cycle s the algorithm uses only those wavelet 
coefficients whose indices are in W(") ,  and performs several 
iterations (updates) on subsets of 6 such that the likelihood 
is increased. Finally we define the following variables: 

The multiuser GCA algorithm is presented in the next 
section. 

4. MULTIUSER GCA ALGORITHM 
An efficient implementation of the multiuser GCA algo- 
rithm is given below. We assume that the algorithm is in 
the i + 1-st iteration of the s + 1-st cycle, so the objectives 
for the wavelet index set W('+') are computed. The state 
of the parameter estimates at the end of the i-th iteration 
is denoted by the superscript (i), e.g. zii), b'n;lL, and aii) for 
the I-th user time delay (represented by a complex variable), 
data symbols, and gain parameter estimates respectively. 
We will use the notation z = [{z" : m E Z}lT for a column 
vector whose components are integer powers of z. 
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The algorithm is a "sliding window" type algorithm. We 
define the current symbol index set f i s )  such that only sym- 
bols whose index n is in fis) are updated in cycle s. Simi- 
larly, a set of symbol indices U(') is defined corresponding 
to datta symbols whose estimates will not be updated after 
cycle s + 1. The set V(")  is a two dimensional set of pairs 
of syimbol indices, such that both symbol estimates will not 
be updated after cycle s + 1. The size of each of these sets is 
fixed, so the algorithm has a fixed complexity per iteration. 
Multiuser GCA Algorithm 

1. Ihitialize do),  initialize the variables p,  Y ,  U ,  a, 0, p,  

2. Choose a wavelet index set W('+'). 
3. For Z,Zl,Z2 E I L  update the variables p('), U('), and 

U(') by accumulating on the difference set D("+I) = 
W('+') - W(').  Only variables whose symbol indices n 
are in the current symbol index set f i S + l )  are updated. 

4. For I ,  ZI, 12 E IL update the state variables a('), f I ( ' ) ,  

E ,  and T to zero, and set s = 0, i = 0. 

E(' ) ,  and T(') as follows: 

d~+1)(z)  = a ( 5 ) ( 2 )  

5 .  Select a parameter index set S and do one of the fol- 
hwing : 

0 If 8 s  = z1 for some I E I L  then: 
Compute the following temporary variables: 

Set up the penalized objective for z = eiwodl of the 
Zth user: 

where II(z) is a positive penalty function on the 
unit circle. 
Maximize the penalized objective using polynomial 
rooting: 

zii+l) = arg:ax{d{'+''(z)}. (15) 
Z=e'W 

0 If 0s = {bn,1 : n E P,Z-E Q}, where P c T ( ' + I )  

and Q c I t ,  then: 
Compute the set of IPI . IQ1 variables d"')(n,Z) 
(see [SI). Compute the set of ( lPl .  IQI)2 variables: 

Arrange the E and x variables above in a IPI-IQI x 1 
vector E(*+ ' )  and a IPI. IQ1 x IPI. IQ1 matrix x("') 
respectively. The objective for b = {bn,l : n E 
P, Z E Q} arranged as a column vector is given by: 

( p + l ) ( b )  = L [ b T E ( i + l )  + bHE("+l)* 
No 

bl- (17) - b H X ( i + l )  

Maximize the objective either by a discrete search 
or via the following suboptimal solution: 
- Let i, = s~gn( (~ ( i+ l ) ) - l~ ( i+ l )* ) .  If d(i++')(&) 2 

, p + l ) ( b ( i ) )  set $'+I) = i, else set b(i++l) b(9. 
0 If 8 s  = [ac, bn,i : I E IL, n E  IN]^ then: 

Compute the elements of the L x 1 vector C( i+l )  
and the L x L matrix q(;+'): 

cl(i+l) = ZpHp(stl) ( I )  7 

The objective for a = [ao, . . , ) ~ ~ - 1 3 ~  is given by: 

&(i+ l )  + ( ( i + I ) X ,  - , H q ( i + l ) a .  

(19) 

Maximize the objective (19). Let, 

U = ( q ( i + l ) ) - l ( ( i + l ) .  

For each 1 E I L ,  if 0 5 arg(U1) < R set ai'") = Ui 
and b ( ' + l )  n,l = b ( i )  n J  for all n E IN, otherwise set 
a!*+') = -&, b("') n,l = -b:,)l for all n E I N ,  and 

6. Set e:+1) = e$).  
7. Set i = i+  1. If cycle is complete proceed to next step, 

8. Set s = s + 1 and go back to  step 2.  

The symbol and gain updates require matrix inversions, 
which have a cubic complexity in L if joint estimation of 
a l l  the users is done. Typically, smaller groups of users will 
suffice, so the complexity becomes close to quadratic in L. 

otherwise go back to step 5 .  
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5. SIMULATIONS 
Bit error simulations of the multiuser algorithm were done 
for a two user system. Each user was assigned a 7 chip Gold 
code. The data modulated multiuser signal was then passed 
through a low pass filter with bandwidth 1/T, where T, is 
the chip interval. 

The simulations were performed in blocks of approxi- 
mately 250 bits each, where in each block the gains, time 
delays, data bits and noise were chosen randomly and in- 
dependently. The data bits {bn ,c}  were selected as either 
+l or -1, the time delays dt were uniformly distributed in 
[-Tp/2, Tp/2], and the gains at were chosen with a fixed am- 
plitude and random phase uniformly distributed in [-r, .]. 
The algorithm has to be properly initialized in order to 
avoid convergence to a local maximum. Typically, the gain 
and time delay estimates converged within the first 30 bits 
of each transmission, so they were assumed to be known for 
the purpose of bit error simulations. Note that the restric- 
tion on the phase is no longer necessary for known gains, 
because the symbols can now be unambiguously estimated. 

The performance of the GCA algorithm depends on the 
parameter update strategy. Updating a single coordinate 
in each iteration, leads to a rapid convergence but increases 
the likelihood of the algorithm being trapped in a local 
maximum. Generally, the convergence rate is inversely re- 
lated to the Fisher information of the complete data space 
[a]. Sequential group updates yield a fast algorithm with 
tractable maximization steps. The algorithm was tested in 
the range of SNR from -2dB to 8dB. Wavelet decomposition 
on 6 scales was performed using the Daubechies compactly 
supported wavelet basis of filter length N = 4. The step 
size of the algorithm (number of new wavelet coefficients 
in each cycle) was 10. The number of wavelet coefficients 
per bit was approximately 63. In the GCA algorithm 4 bits 
were jointly updated ( 2  adjacent bits per user). 

Figure 1 shows bit error probability results for the case 
of nearly equal power users: E1 - E2 = 0.7dB, where El is 
the I-th user power in dB. The results indicate that both 
users practically achieve the single user BPSK bound. For 
comparison, the results of a conventional receiver for user 
1 are shown. The conventional receiver was implemented 
with the single user algorithm of [l] assuming known gain 
and time delay. Clearly, the conventional receiver’s perfor- 
mance degrades compared to the multiuser receiver with the 
increase of SNR, although it gives comparable performance 
at the lower end of the SNR range. 

Figure 2 shows results of the same algorithm for the un- 
equal power case. Here E1 - E2 = 3.7dB. Similar to the 
first case, both users achieve the single user bound. This 
shows that the near-far problem has been alleviated. Re- 
sults of the conventional receiver for user 2 are shown for 
comparison. The performance degradation of the conven- 
tional receiver with respect to the multiuser receiver over 
the whole SNR range is clearly evident. 
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Figure 1. Bit error probability vs. SNR, 2 users, 
GCA algorithm El - E2 = 0.7dB, ’*’: user 1; ’+I: 

user 2; ‘of: conventional receiver for user 1; dotted: 
BPSK error bound. 
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Figure 2. Bit error probability vs. SNR, 2 users, 
GCA algorithm E1 - E2 = 3.7dB, ‘*’: user 1; ’+’: 
user 2; ’0’: conventional receiver for user 2; dotted: 
BPSK error bound. 
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