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Abstract- Adaptive channel equalization algorithms are 
commonly used in wireless communications receivers to 
counter intersymbol interference, multi-path dispersion, and 
other time varying channel degradations. In this paper we 
obtain approximate expressions for the increase in mean 
square error of the LMS adaptive algorithm when the to- 
tal processing power is decreased by reducing the number 
of data and filter coefficient bits used by the algorithm. We 
also obtain expressions for the power-optimal bit-allocation 
factor which determines the proportion of the bits allocated 
to the data vs. allocated to the coefficients. Numerical stud- 
ies are presented for an exponential memory IS1 channel and 
4-ary PSK signalling. These studies indicate that as few as 8 
bits total are needed to equalize the channel and that most 
of these bits (6 out of 8) should be allocated to the filter 
coefficients. 

I. INTRODUCTION 

In a battery powered receiver, the adaptive equalization 
function consumes a significant portion of total processing 
power. For example the SINCGARS combat radio used 
by the US Army consumes on the average 7 Watts in re- 
ceive mode of which more than 1 Watt is consumed by 
the channel equalizer [l]. Therefore the channel equal- 
ization function is a prime target for power reduction in 
these handsets. There have been many digital hardware 
design strategies proposed for power reduction including: 
reduction of supply voltage, reduction of clock speed and 
data rate, parallelization and pipelining of operations, us- 
ing sign-magnitude arithmetic, and differential encoding of 
data [2], [3]. Another technique, which is the springboard 
for this paper, is the reduction of the number of bits used 
to represent the data and control variables in the digital 
circuit. This bit width reduction strategy is very highly 
leveraged since it reduces the power dissipation everywhere 
in the data and control flow paths. This strategy is also 
very versatile since it can be applied to any hardware archi- 
tecture and can be easily adjusted in real time by dynam- 
ically switching-off bus lines and register bits. However, 
bit width reduction generally entails a degradation in al- 
gorithm performance, as measured by adaptive algorithm 
convergence rate, steady state mean square error (MSE), 
and subsequent probability of bit error. This paper pro- 
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vides an analysis of MSE degradation versus power reduc- 
tion for a widespread class of adaptive algorithms popularly 
known as the LMS algorithm. 

The LMS algorithm was introduced by Widrow [4] and 
is one of the most common adaptation algorithms found in 
practical systems such as channel equalizers [5], adaptive 
antenna arrays [6], and interference cancellation systems 
[7]. The LMS algorithm adapts the filter coefficients of an 
FIR filter driven by an error signal formed by subtracting 
the training signal from the received data. We consider 
a quantized version of the LMS algorithm, called QLMS, 
which is an LMS algorithm implemented with separate uni- 
form scalar quantizers in the data path and the filter coef- 
ficient path, where the quantizers can have different reso- 
lutions. To obtain significant power reduction, we propose 
applying different pairs of quantizers during the transient 
acquisition phase and the steady state tracking phase of 
the algorithm. In this paper we focus on the steady state 
tracking phase. 

We first present a formula for the increase in steady state 
mean square error (MSE) due to quantization which gen- 
eralizes the formulas of Caraiscos and Liu [8] to the case 
of complex data and coefficients. We then derive a pair of 
optimal bit-allocation factors which minimize the increase 
in MSE subject to: 1) a total bit-width constraint; and 
2) a total power consumption constraint. Finally we show 
that QLMS with optimal bit-allocation consumes signif- 
icantly less power than LMS at little expense in perfor- 
mance. While these results hold for the generic LMS al- 
gorithm in a variety of applications, we concentrate on the 
case of channel equalization with training in this paper. 
Numerical examples will be given for an IIR (exponential 
memory) channel which illustrate that the power can be 
reduced by more than a factor of 4 relative to the standard 
LMS implemented with 16 bit arithmetic and at negligible 
increase in MSE. This power reduction is achieved by a 
QLMS algorithm having a total of 8 bits and optimal bit 
allocation strategy consisting of assigning 2 bits to the data 
and 6 bits to the coefficients. 

11. REGISTER LENGTH AND POWER 
It is well known that the power consumed by the oper- 

ation of loading successive time samples of a random se- 
quence into a B-bit register is proportional to the average 
number of bit flips induced in the register 191. While for 
a white sequence the average number of bit flips is B ,  in 
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general this average can be much less than B for a corre- 
lated sequence. This is because for correlated sequences 
higher order bits have lower probability of transitioning 
than lower order bits. Several models for the power con- 
sumption of register loading have been proposed [9]. We 
propose to use the following simple upper bound on the 
power consumption for a B bit register, derived under the 
assumption of a zero mean wide sense stationary Gaussian 
random sequence: 

Channel 
where 7 is the power dissipation-per-bit, which depends 
on factors such as load capacitance and supply voltage, 
and R(T) is the autocorrelation function of the random 
sequence. Note that it is important that the bound (1) is 
conservative: if we constrain the right hand side of (1) to 
some maximum tolerable power dissipation, P,,, say, then 
a circuit design which uses register bit width B,,, which 

solves the equation P,,, = B7 + erfc (&&) is 
guaranteed to consume less power than P,,,. 

A plot of PB versus B is given in Fig. 1 for an AR(1) 
sequence with real pole located at a l .  Note that as the pole 
approaches the unit circle the PB curve displays an abrupt 
threshold occurring at an increasingly high bit-width. The 
threshold bit-width can be specified by the formula 

" 

1 

For lull < 0.8 the threshold occurs at or below one bit so 
in this range of a1 the power dissipation increases almost 
linearly as a function of B. 

Power vs resolution for AR(1) process 
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Fig. 1. Power versus bit width B as function of A R  parameter a1 
for loading a B-bit register with successive samples of an  AR(1)  
process. Curves are normalized relative to  power consumed 
for a white sequence in a 16 bit register. 

111. QUANTIZED ADAPTIVE CHANNEL 
E Q U ALIZ AT10 N 

Figure 2 shows the block diagram of an adaptive equal- 
ization system with two different quantizers, denoted Qd 

and Q,, applied to the data and to the filter coefficients 

of an adaptive p t a p  FIR filter. The quantizers Q d  and 
Q ,  are allocated Bd bits plus sign and B, bits plus sign, 
respectively. Here yk  is a (baseband) training signal, Sk is 
the transmitted signal, Xk is the received (baseband) data, 
and & is a h e a r  estimate of the transmitted signal given 
the p samples :k = [Zk-1 ,  . . . , Zk-plX and filter coefficients 
wk = [Wlk , * * , WpkIT* 

I Q  I ek 

L-1" QLMS Alg 

Fig. 2. Quantized LMS adaptive channel equalizer with training 
sequence Yk. 

The standard LMS algorithm adapts the filter coeffi- 
cients in an attempt to minimize the quadratic surface 
specified by the mean squared error: E [ I Y k  - & I 2 ]  [4]. The 
quantized LMS algorithm, which we call QLMS, imple- 
ments a recursive filter coefficient update of the form: 

&!k+l w k  + Qc ( P Q d ( i C k )  ' e k )  

where 

e k  = & d ( Y k )  - Qd ( & d ( i ? l f )  . & c ( U k ) )  . 

is the quantized error signal. Here p is the gain parameter 
which controls the convergence properties of the algorithm. 

The total power per iteration of the quantized LMS al- 
gorithm is determined by power dissipation of shift, add, 
multiply, memory load, and memory store operations. This 
depends on the specific design of the FIR filter and control 
circuitry. For illustration we will use the following expres- 
sion for total power dissipation per iteration of LMS: 

PT = [24~(3Bd + B, - 2 )  + 32~17, + 24p(Bdqt). (2 )  

This expression is linear in the number of bits Bd and B, 
and assumes fixed point complex arithmetic, overwriting 
the data stack without using shift operations, multiplica- 
tion using table lookup as opposed to adding partial prod- 
ucts, and generic power coefficients qg representing logic 
gate power consumption and r]t representing table lookup 
operation. 

A .  P e r f o r m a n c e  o f  L M S  Algorithm 

The performance of the LMS adaptive algorithm is typ- 
ically characterized by two quantities: the speed of con- 
vergence and the excess MSE. We assume that X k ,  Y k  and 
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S k  are all wide sense stationary random sequences. For a 
moderate number of filter coefficient quantization bits B,, 
it can be shown that the convergence of QLMS in the mean 
is primarily determined by the quantized data Q d ( x k ) .  On 
the other hand, the excess MSE is affected by both the 
number of data quantization bits B d  and the number of 
filter coefficient quantization bits B,. 

A. 1 Mean Convergence 

Define the p x p  covariance matrix R Q ~ ( ~ )  = cov(&d(Zk)) 
of the quantized data vector &d(gk) and let this ma- 
trix have real non-negative eigenvalues { A,}:==, . Fur- 
ther define the cross correlation vector R Q ~ ( ~ ) , Q ~ ( ~ )  = 
cov(Qd(gk), Q d ( y k ) ) .  Then the mean filter coefficients of 
the QLMS algorithm converge to  the Wiener filter coeffi- 
cients of the quantized processes: 

as long as the gain parameter p satisfies the condition 

0 < 11 - pxi1 < 1, i = 1, . . . , p .  

When the QLMS algorithm converges, the MSE converges 
as a decaying exponential with the 1/e time constant of 
the slowest mode equal to 73dB = l/(- maxi h ( l l  - ,U&/), 
called the adaptation time constant. Note that the speed 
of convergence generally increases as p increases. 

A.2 Excess Mean Square Error 

When the above condition for mean convergence of 
QLMS is met, an expression for the steady state mean 
square error can be derived. 

where 

is the increase in MSE due to  quantization, 

and Ad, A,  are the maximum amplitude ranges of the data 
and filter coefficient quantizers. 

The expression above applies to complex sequences and 
is derived in a very similar Tanner to the derivation of 
Caraiscos and Liu [8] for real-valued sequences. As in [8] 
we make several standard assumptions including: the pro- 
cess X k  is circularly Gaussian, the quantization error is a 
zero mean white sequence, the quantization errors are inde- 
pendent of the data xk and the filter coefficients wk. These 
assumptions are fairly restrictive but enable us to obtain 
useful closed form expressions. 

With these relations the increase in MSE due to quan- 
tization, A&, can be plotted as a function of B d  and B,. 
A plot for the increase in MSE is given in Figs. 3 and 4 

0 

40 40 Weight Bits 
#Data Bits 

Fig. 3. Excess M S E  as a function of B d  and B, for single pole IIR 
channel. 

Fig. 4. Excess M S E  as a function of Bd and B, for single pole I IR 
channel. 

for the case of white signals S k  = Y k  and for Xk generated 
by passing s k  through a single pole IIR filter ( p  = 2) with 
pole at a1 = 0.8. 

Observe from the surface plot that the increase in MSE 
is fairly flat over the range B,,Bd > 4 but undergoes a 
rapid increase as either B, or Bd decreases much below this 
range. The objective of the following section is to  specify 
optimal choices of Bd and B, which minimize this increase 
under various constraints on B d  and B,. 

IV. OPTIMAL BIT ALLOCATION STRATEGIES 

We present expressions for the optimum allocation of bits 
to data versus filter coefficients under two constraints: @tal 
number of bits and total power consumption. While a com- 
bined study of bit allocation as a function of convergence 
rate and excess MSE is of importance, for concreteness we 
limit the focus in this paper to the excess MSE. 

Assume that there are a total of BT + 2 bits which 
are available to allocate between data and coefficients, i.e. 
BT = B d +  B,. Further define the data bit allocation factor 
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p = B,j/BT. Then we have the obvious relations 

B d  = PBT, B, = (1 -  BT. (4) 

A .  Total Bat- Width Constraint 
Under a constraint on BT the objective becomes to min- 

imize the increase At- in MSE with respect to p. Graphi- 
cally, this is the same as minimizing AE along the diagonal 
line BT = B d  + B, of slope -1 in the B,, Bd plane shown 
on Fig. 4. It is straightforward to  show that At- is convex 
as a function of p with a single minimum occurring at the 
point p = p*:  

p* = -log, 1 (2) + 5 1 4BT 

P +”) + f - - -log, (2.”- 1 
4BT 

and the minimum value is 

m i n a €  = 2-BT+1 
P 

- - 2-BT-1 
3 P  

To obtain the concise relations involving go we have as- 
sumed that the ranges of the quantizers are identical & = 
A, = 1. 

Observe that the optimal bit allocation factor p* con- 
verges to 1/2 as the combined register length BT goes to 
infinity. This is the regime where the standard allocation 
is optimal: allocate an equal number of bits to  data as 
to  filter coefficients. As register length decreases or con- 
vergence speed increases the standard allocation becomes 
suboptimal. In typical implementations, e.g. where AGC 
is implemented to  prescale the data to  unit variance, the 
gain parameter is chosen such that p << 1 to ensure con- 
vergence. In particular, if p < 1/4 then p* is less than 1/2 
and more bits should be allocated to  the filter coefficients 
than to the data. Also worth noting is that At- increases in 
p at a linear rate, decreases in p at an inverse square root 
rate, and decreases in BT at an exponential rate. There- 
fore, the total number of bits allocated gives more leverage 
over excess MSE than any other of the design parameters. 

B. Total Power Constraint 
Under the constraint on PT, we can use (2) to  re-express 

the total combined number of bits BT as a function of p 
and PT 

Now using (4) in the expression for AE (3) we again obtain 
a convex function of p with unique minimum at p = p** 

which gives the corresponding minimum MSE 

where BT is given in (5). 
Observe that the optimal bit allocation factor p** con- 

verges to the standard allocation 1/2 as the total power 
constraint PT is relaxed to infinity. As PT decreases the 
standard allocation becomes suboptimal. 

V. NUMERICAL EXAMPLE: 4-PSK 

Here we briefly consider the case of a Gaussian noise IIR 
channel with a single pole at a1 = 0.8, a 4-PSK signal 
Sk of unit variance, noiseless training sequence yk = Sk, 
and a 2-tap LMS filter with gain coefficient p = 0.01. This 
corresponds to a rather severe exponential memory channel 
with intersymbol interference (ISI) extending over 5 to 10 
data samples. 

Figure 5 shows the BT-constrained optimal data bit al- 
location factor p* as a function of BT superimposed on a 
plot of the resultant optimal MSE, t. Note that the for- 
mula (3) for A€ is independent of any channel effects (i.e. 
independent of R, and R x g ) .  Therefore, the channel af- 
fects only that portion of the MSE that is not attributed 
to  quantization error. This quantity is visible at the large 
BT region. Hence, the only effect of the channel on the 
MSE plot is to “shift” it up by the infinite precision MSE, 
cri - R&R;lR,, + ptr(R,). The channel has no effect on 
the shape of the plot, or, as will be shown, the optimal bit 
allocation factors. Figure 5 shows that MSE does not begin 
to  degrade significantly until BT falls below approximately 
6 bits. For BT = 6 bits the optimal data bit allocation 
factor is approximately p* = 0.4 which means that 2 bits 
plus sign should be allocated to the data while 4 bits plus 
sign should be allocated to each of the filter coefficients. 

Performance vs. TQtal# Bits for 2-Tap LMS 
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Fig. 5 .  IIR channel with 4-PSK input. Optimal data bit allocation 
factor under BT constraint and total MSE as function of BT. 

Figure 6 shows the PT-constrained optimal data bit al- 
location factor p** as a function of PT superimposed on a 
plot of MSE. The power coefficients used are vs = 1 and 
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qt = 10. Note that MSE does not degrade significantly un- 
til PT falls below approximately 1200 Watts (normalized). 
At this breakdown point the optimal data bit allocation 
factor is approximately p* = 0.25. We can use relation (5) 
with p = p**, which is plotted in Fig. 7, to find the corre- 
sponding BT as a function of PT. From the plot we see that 
PT = 1200 corresponds again to BT = 6, but the optimal 
p** tells us to allocate only 1 bit plus sign to the data and 
5 bits plus sign to the filter coefficients. This reduction is 
because the data operations dominate the power relation 
(2). 

2-Tap LMS MSE 

0.5. Optimized for Total Bits 
Optimized for Power 

PowedPerformance Tradeoff for 2-Tap LMS 
I 
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Fig. 8. I IR  channel with &PSK input. M S E  as function of PT for 
BT-OptzmUl and PT-optimal allocation factors. 

I 
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-0.051 
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Fig. 6. I I R  channel with d-PSK input. Optimal data bi t  allocation 
factor under PT constraint and total M S E  as function of PT .  

VI. CONCLUSION 
We have derived expressions for optimal bit allocation for 

adaptive LMS algorithms under combined register length 
constraints and total power constraints. These expressions 
can easily be specialized to a specific hardware implemen- 
tation for computation of the number of bits to allocate 
to data and filter coefficients. A general conclusion is that 
the standard design strategy of allocating an equal number 
of bits to the data and filter coefficients is optimal only 
as the power or register length constraints get very large. 
For typical LMS implementations, it is optimal to allocate 
more bits to the coefficients than to the data. In particu- 
lar, we have found that it is possible to reduce the number 

Normalized Power vs. Total #Bits for LMS 
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