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Abstract - Minimal spanning trees (MST) have 
been applied to multi-dimensional random processes 
for pattern recognition and randomness testing (See 
[l] for references). In this paper we present a robust 
version of the MST to estimate complexity features 
of a point process intensity function under an epsilon 
contaminated model for the intensity. The principal 
feature considered is the Renyi entropy of the mix- 
ture and a strongly consistent entropy estimator is 
given which depends on the data only through the to- 
tal length of the MST passing through the data points. 
Robustification of the MST estimator is achieved by 
applying the theory of k-minimum MST’s [Z]. 

I. RENYI FEATURES AND FRACTIONAL MOMENTS 
Let d N ( z ) ,  2: E X, be a multi-dimensional Poisson point pro- 
cess having normalized multivariate intensity A(z) which is 
the mixture: X(z) = (1 - e)X,(z) + cA,(z), 0 5 t < 1. We as- 
sume that  the “noise component” A, is a uniform intensity and 
e is unknown. A spanning tree is a connected acyclic graph 
which passes through all coordinates associated with the point 
cloud generated by the process. It consists of an ordered list 
of normalized edge lengths along with a list of edge adjacency 
relations. The  total length of the tree is defined as the sum 
of all edge lengths. The  minimal spanning tree (MST) is the 
spanning tree which posesses minimal total length. The k- 
minimum spanning tree is the minimum length MST among 
those that  pass through any k of the n points - thus the stan- 
dard MST is equivalent to  the n-minimum MST. The features 
are defined as the Renyi entropy H,(dN)  of fractional orders 
a, 0 < a 5 1, associated with A, 

The Renyi entropy equals zero for a = 0 and converges to  the 
Shannon entropy - s, A, In A, as a approaches 1. For any a 
the Renyi entropy is maximized for a uniform intensity and 
minimized for an intensity concentrated a t  a single point. 

Define the fractional moment of the edge lengths {Z,}y=-: 
of an MST passing through n points of an observed p 
dimensional point cloud 

7L-1 

,=1 

When a = 5, d a positive integer, ( L g ) *  is the Euclidean 
Zd norm of the lengths of the MST vertices. By convention, 

when (1 - a ) p  = r / q  is rational = ( I : ) ’  denotes the r- 
th  power of the real positive q-th root of I , .  It follows directly 
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Figure 1: Length of the k-minimum MST plotted as a 
function of k for 60 points  drawn f r o m  an annulus  inten- 
sity + 40 points  drawn f rom a uniform intensity. 

from the results of Steele [3] that  the MST-based estimate H a  
defined below is a strongly consistent estimator of H,(A), 

(3) 

where p is a constant independent of A. 

11. ROBUST ESTIMATION VIA Ic-MST PRUNING 
As compared to  the length L; of the original MST, the 

length L:,k of the k-minimum MST is a robust Renyi entropy 
estimate. Robustness is attained since uniform additive noise 
will tend to  produce points whose neighborhoods of “nearest 
neighbors” are larger than the corresponding neighborhoods 
of signal points. Thus exchanging a noise point with a signal 
point will typically reduce the total MST length and thus the 
k-minimal MST tends to eliminate only noise points in the 
early iterations k = 1 , 2 , 3 , .  . .. By looking for the knee in 
the k-minimum MST total edge length curve, plotted as a 
function of k, it  is possible to  identify the best estimate of the 
number of offending noise points N - k; the corresponding 
k-minimum MST effectively eliminates these from the point 
cloud (see Figure 1). 
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