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ABSTRACT 

We consider the single-user computational cut-off rate for  
the complex Rayleigh flat fading spatio-temporal channel 
under a peak power constraint. Determination of the cut- 
off rate requires maximization of an average error expo- 
nent over all possible space-time codeword probability dis- 
tributions. This error exponent is monotone decreasing in 
a measure of dissimilarity between pairs of codeword ma- 
trices. For low SNR the dissimilarity function reduces to a 
trace norm of differences between outerproducts of pairs 
of codewords. We characterize the cut-offrate and the rate 
achieving constellation under different operating regimes 
depending on the number of transmit and receive anten- 
nas, the number of codewords in the constellation, and the 
received SNR. 

1. INTRODUCTION 

In this paper we investigate the cut-off rate for the Rayleigh 
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ifies the highest information rate beyond which sequential 
decoding becomes impractical [6, 81 and as it is frequently 
simpler to calculate than channel capacity. 

The receiver is an N element antenna array which, for L 
Si E S, produces 

(1) 

where r )  = p / M  is the normalized signal-to-noise ratio 
(SNR) with p > 0 the SNR per-entry of Si, Hi is an M x N 
matrix of complex channel coefficients, and Wi is a T x N 
matrix of complex noises. The piecewise constant Rayleigh 
flat fading model corresponds to taking the L N ( T  + M) 
elements of the matrices and {Wi}t.l to be i.i.d. 
zero mean Gaussian random variables with unit variance. 
The following results are presented. Proofs are given in [3]. 

For the flat Rayleigh fading model under a peak trans- 
mitted power constraint there is no advantage to using more 
transmitting antennas than time samples (Proposition 1). Fur- 
thermore, there is no advantage to transmitting signals that 

transmitted codeword matrices 
the sequence of T x N observation matrices 

X i  = JsjSiHi + Wi, i = 1, .  . . , L 

flat fading spatio-temporal channel model introduced by Marzetta 
and Hochwald [5] under a maximum peak transmitted power 
constraint. Codewords {Si} for this channel are complex 
T x M matrices whose T rows represent temporal coordi- 
nates and whose M columns represent spatial coordinates, 
indexed over T transmitted time samples and M transmitter 
antenna, respectively. The set of peak constrained code- 
words s are the set Of matrices which 

llS112 = tr{SSH}. 

not spatially orthogonal, i.e. one might as well transmit 
mutually oflhogonal temporal waveforms at each antenna 
element. These Parallel results of Marzetta and Hochwald 
for average Power constraints [51* 

An integral representation for the cut-off rate is obtained 
which depends on a pairwise dissimilarity Over the 
set of signal matrices. n i S  dissimilarity is a de- 
creasing function of the spatial correlation between pairs of 

duces to a distance metric equal to the trace norm of pair- 
wise differences between outerproducts of the signal matri- 
ces. 

satisfy the peak power constraint: llsi112 5 T M ,  where signa] matrices. For low SNR the dissimilarity measure re- 

Cut-off rate analysis has frequently been adopted to es- 
tablish practical coding limits [7,2] as the cut-off rate spec- 

This work was performed, in part, while the first author was visiting 
the Mathematical Sciences Research Center. 

A lower bound is given on the largest possible minimum 
distance for arbitrary sets of signal matrices of fixed finite 
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dimension. This is also a lower bound on the maximum 
distance of signals in the optimal cut-off rate attaining signal 
set. 

A necessary and sufficient condition for a signal proba- 
bility distribution to attain cut-off rate is that it equalize the 
decoder error rate over all possible signal matrices. We call 
this the equalization condition and it plays a central role in 
this work. 

The determination of the K dimensional cut-off rate re- 
duces to maximization of a quadratic form over the set of 
feasible constellations, defined as those constellations which 
satisfy both the peak power constraint and the finite dimen- 
sional equalization condition. This quadratic form is simi- 
lar to that arising in the Capon/MVDR method for adaptive 
beamforming arrays. If the feasible set of K dimensional 
constellations is empty then the optimal constellation is nec- 
essarily of dimension less than K .  

For low symbol-rate the optimal constellation is a set 
of scaled mutually orthogonal unitary matrices in 67 *' M .  
This constellation also maximizes minimum distance over 
all constellations of the same dimension. When SNR is low 
the rank of the signal matrices in the constellation is one 
and cut-off rate is achieved by applying all power to a single 
antenna element at a time. As the SNR increases the rank 
of the signal matrices increases and more and more antenna 
elements are utilized. Interestingly, the number of receive 
antennas N plays no role whatsoever in determining how 
many transmit antennas should be used. 

trace norm of pairwise differences between outerproducts 
of the codeword matrices. 

We end this subsection with a result that parallels Theo- 
rems 1 and 2 of Marzetta and Hochwald [ 5 ] ,  but covers the 
case of peak power constrained signal sets. 

Proposition 1 Assume that the transmitted signal S is con- 
strained to satisfy the peak power constraint llS1(2 < M T .  
The peak power constrained cut-off rate attained with M > 
T transmit antennas is the same as that attained with M = 
T antennas. Therefore, there is no advantage to using more 
than T transmit antennas. Furthermore, for M 5 T the 
signal matrix which achieves peak power constrained cut- 
off rate can be expressed as S = VA where V is a T x T 
unitary matrix, A = [AM, 0IT is a T x M matrix, and AM 
is a diagonal M x M matrix. 

Readers familiar with Theorems 1 and 2 of [5] might 
suspect that characterization of the statistical distribution P 
of the optimal cut-off achieving signal matrix S can be ob- 
tained. Indeed, paralleling the arguments of [5 ] ,  it can be 
shown that, as tr{SSH} 5 TM is invariant to unitary pre- 
multiplication of S and as the maximization in the definition 
of R, is over a concave function of P, the peak-power con- 
strained cut-off rate is attained by random matrices of the 
form S = VA where V is a T x T isotropically distributed 
matrix, A = [AM, 0IT is a random T x M diagonal matrix, 
and V and A are statistically independent. 

Define a constellation as follows 

2. CUTOFF RATE REPRESENTATIONS 

We first obtain an integral representation for the cut-off rate 

Definition 1 A set of matrices {&}El in is a code- 
word constellation if all assigned codeword probabilities Pi 
are strictly positive, i = 1, . . . , K .  

In the following sections we specialize to the case of dis- 
d p ( s 2 )  ,-No(& 1l.S~). (2~rete signal constellations for which equalizer distributions 

are always optimal. 

R, which depends on a pairwise dissimilarity measure D(SillSj) 
over the set of codewords S: 

R, = m u  - 1x1 LIES dP(S1) 1 
PEP S 2 E S  

where 

3. DISCRETE CONSTELLATIONS 
D(S1 IlS2) 4 In 

rn (2) the max.imization is performed Over a suitably con- 
strained set p of probability distributions p defined over 
the set of peak constrained codewords S. 

The K dimensional cut-off rate, defined as the cut-off rate 
for constellations whose dimension does not exceed K, is 
the appropriate limiting factor for practical coding schemes. 

Define the feasibility set Ssak of K-dimensional con- The dissimilarity measure D(Si IlSj) is a decreasing func- 
tion of the spatial correlation between prewhitened versions 
of pairs of codeword matrices. It can be shown that D(S1IlSz) = 

stellations 

772/SllSlS~-S2S,HI12+o(772), so that for low S N R  the dis- 
similarity measure reduces to a distance metric equal to the 

SEak = {{&}El : si E @ T M ,  llSi112 <_ TM, 
EG1LK E R:, SiSy # SjS:,i # j }  . (4) 
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TM n whereiK = [ I , .  . . , 1IT E RK andEK = ( (e-ND(Sil lSj)  ) ) i , j=I  

is the K x K dissimilarity matrix of the constellation. EK is 
positive definite as long as the outerproduct matrices {SiSF}zl 
are distinct. It can be shown that SEak is the set of “equal- 
izer” constellations for which there exists an “equalizer prob- 
ability vector” PK satisfying 

EKPK = CIK 

for some c > 0. 

The following representation theorem asserts that Ro(K)  
is attained by an equalizer constellation which maximizes a 
simple quadratic form. 

Proposition 2 Let K be a positive integel: The peak power 
constrained K dimensional cut-off rate R, (K)_is attained 
by a constellation in one of the feasible sets Speak, k = 
1 , .  . . , K ,  and 

Observe that by taking K = 00 in Proposition 2, we ob- 
tain the cut-off rate of constellations of countable, but pos- 
sibly infinite, dimension. The objective function lzEilfk 
maximized in (5) is similar to the criterion used in Capon’s 
method, also known as minimum variance distortionless re- 
sponse (MVDR), for adapting the weights of a beamform- 
ing array of antenna elements and for high resolution spec- 
tral estimation [4]. 

4. SPECIAL LIMITING CASES 

Here we specialize the cutoff rate to several limiting regimes. 

4.1. Large Dimension K 

Recall the definition Dmin = minifj D(Si1lSj). When 
K 5 [ T / M J  we will see (Proposition 5) that a set of sig- 
nal matrices {&}El exists for which D(SillSj) = Dmin 
for all i # j ,  and which simultaneously attains the cut-off 
rate Ro( K) and attains the maximum possible value Dmin. 
The following result establishes a lower bound on the largest 

Figure 1: For gT(2’-l - 1 ) < K 5 gT(2’ - 1) and p 
a positive integer the vectors of singular values of the con- 
stellation are optimal (maximum Dmin) when they form a 
uniform lattice and there are exactly K = g ~ ( 2 P  - 1) sig- 
nals in the constellation. In the figure T = 2 and p = 3. 
3.  

{(il,. . . , i ~ )  : il E (0, 1/(2p - 1),2/(2P - l), . . . , 1)). De- 
fine the integer valued function 

For example, 949)  = (q  + l ) ( q  + 2)/2 and ~ ( 9 )  = (q + 
l)(q+2)(q+3)/6. gT(2’-1) is the number of lattice points 
of C p , ~  which are inside of the T-dimensional unit simplex 

{ (uI,. . . , U T )  : 
T u1 5 1, UI E [0, l]} (See Fig. 1). 

Proposition 3 For given K > 1 l e tp  be the unique integer 
for which gT(2’-l - 1 ) < K 5 g ~ ( 2 P  - 1). Then 

Thejrst  inequality is tight when K = g ~ ( 2 P  - 1) and the 
anti-diagonal matrices Zi = SiSF - diag(SiSF) satisfy 
llZi - Zjll = 0, i # j. 

The proposition says that, for sufficiently small SNR 
~~ - 

possible value D z n  = max{Si)~l:SiEspKcak mini+j ~ ( ~ ~ 1 1 s ~ ) .  q2, Dzin  cannot asymptotically decrease to zero faster than 
rate K-2 /T .  This asymptotic rate can be achieved, for ex- A constellation { Si}El achieving Dmin = D z n  is called 
ample, in the case that M = T ,  the { S i S ~ } ~ = l ’ ~  are di- a maximin constellation of dimension K. 
agonal and form the constellation of a linearly constrained - 

For positive integer p let C p , ~  be the uniform lattice of 
2PT points covering the T-dimensional unit cube: C p , ~  = 

lattice code [ 11 in RT. Specifically, each Si is a square ma- 
trix with orthogonal rows and the vectors of diagonals of the 
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SiSF matrices are locations of the tie points of the K point 
lattice shown in Fig. 1. 

The above result leads to a lower bound on the average 
distance D(S;  IIS;) of the optimal K-dimensional cut-off 
rate achieving constellation, { S ; } E l ,  where 

We can show [3] that D(STIlSj’) 2 DS, ,  so that 

4.2. Low Dimensional Constellations 

When the number of signal matrices K to be considered 
is sufficiently small significant simplification of the cut-off 
rate computation is possible. In particular, one obtains opti- 
mality of a set of scaled mutually orthogonal unitary signal 
matrices and a simple form form for Ro(K) .  

The first result specifies the solution to optimization of 
the dissimilarity measure D(SillSj) defined in (3 ) .  

For given q, T and M define the integer MO 

We will see below that under some conditions MO is the 
rank of the signal matrices Si in the optimal K-dimensional 
constellation. 

The proof of the following proposition is based on the 
alternative but equivalent representation for D(S1 IIS2) 

where IC is a M x M multiple signal correlation matrix 

K, = S f S l  

Proposition 4 Let 2M 5 T .  Then 

where, for  j = 1 , 2 ,  

The assumption 2M 5 T is critical and ensures that the 
singular vectors of SI and 5’2 can be chosen as mutually 
orthogonal for any set of singular values. 

The rank MO of the optimal matrices S1 and S2 in- 
creases from 1 to M as the S N R  parameter q T M  increases 
from 0 to 00 (see Fig. 2). Numerical evaluation has shown 
that the functional relationship between MO and S N R  is well 
approximated by the relation 

MO x m a  ( 1 ,  LaqTM + b + 0.481) 

where a, b are the slope and intercept of the least squares 
linear fit to the function y(z) = argma~,,~,~,,, ,m ln[(l + 
~ / ( 2 m ) ) ~ / (  1 +z/m)]. The approximation is a lower bound 
and underestimates the exact value of MO, given by (7), by 
at most 1 over less than 0.5% of the SNR range shown in 
Fig. 2 (0 < qTM 5 120). If the SNR is sufficiently large, 
e.g. (from Fig. 2) qTM 2 17 for M = 6 and T 2 12,  
MO = M and the optimal signal matrices utilize all M 
transmit antennas. On the other hand for small SNR, i.e. 
(from Fig. 2) qTM < 4, MO = 1 and the optimal sig- 
nal matrices apply all available transmit power to a single 
antenna element over the coherent fade interval T. 

The final result of this section is an expression for the 
cut-off rate. 

Proposition 5 Let 2M 5 T and let MO be as defined in 
(7). Suppose that MO 5 min{M,T/K}. Then the peak 
constrained K dimensional cut-ofSrate is 

and D,, is given by (8). Furthermore, the optimal con- 
stellation attaining R, ( K )  is the set of K rank MO mutually 
orthogonal unitary matrices and the optimal probability as- 
signment is uniform: Pi* = 1/K, i = 1,. . . , K .  

Any unitary transformation on the columns (spatial co- 

D,,, def max 
s1 ,S2ESpKelk 

D (  Sl IlS2) = MO In (l + qTM/(2Mo))‘ ordinates) of a set of signal matrices produces a set of sig- 
‘nal matrices with identical Dmin. In particular, any set of 
K mutually orthogonal T x MO permutation matrices has 
optimal distance properties. This simple set of signal matri- 

element at a time, among a total of MO 5 M elements, in 
each of the available T time slots. Since R,(K) is increas- 
ing in K the maximum cut-off rate achievable using these 

1 + VTM/MO 

Furthemore, the optimal signal matrices which attain 
D,,, can be taken as scaled rank MO mutually orthogonal ces corresponds to transmitting energy on a single antenna 
unitary T x M matrices of the form 

SI = JmpiEcP1, s2 = J m p i E i E 2  
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mutually orthogonal unitary matrices is obtained by using 
the maximum possible number of them: K = LT/M,J. 1988. 

and Application, Prentice-Hall, Englewood-Cliffs N.J., 

Observe that the resulting optimal constellation may corre- 
spond to a code of qui te .10~ symbol rate, e.g. for MO = 
M = T / 2  the symbol rate is only 1 bit-per-symbol. 

It is noteworthy that the optimal peak constrained signal 
constellation specified by Proposition 5 does not include the 
zero valued signal matrix Si = 0. Including zero in the sig- 
nal constellation would allow signalling using on-off key- 
ing. On-off keying is often proposed for average power con- 
strained signalling over low SNR channels since it permits 
energy discrimination at the receiver. As contrasted with on- 
off keying all signals in the optimal peak constrained signal 
set have equal power. We conjecture that the zero signal 
would result from replacing the peak power constraint with 
an average power constraint in Proposition 5. 

[5] T. L. Marzetta and B. M. Hochwald, “Capacity of a mo- 
bile multiple-antenna communication link in Rayleigh 
fading,” IEEE Trans. on Inform. Theory, vol. IT-45, pp. 
139-158. Jan. 1999. 

[6] J. E. Savage, “Sequential decoding - the computation 
problem,” Bell Syst. Tech. Journ., vol. 45, pp. 149-175, 
Jan. 1966. 

[7] E-Q. Wang and D. J. Costello, “Probabilistic construc- 
tion of large constraint length trellis codes for sequen- 
tial decoding,’’ IEEE Trans. on Communications, vol. 
COM-43, no. 9, pp. 2439-2448, Sept. 1995. 

[8] J. M. Wozencraft and R. S. Kennedy, “Modulation and 
demodulation for probabilistic coding,” IEEE Trans. on 
Inform. Theory, vol. IT-12, pp. 291-297, July 1966. 

4.3. Conclusions 

We have derived representations for the computational cut- 
off rate for space time coding under the Rayleigh flat fading 
channel model under a peak transmitted power constraint. 
For finite dimensional constellations the cut-off rate and the 
optimal signal distribution were specified as a solution to a 
quadratic optimization problem and it was shown that op- 
timal constellations have codeword distributions which sat- 
isfy an equalization condition. This characterization of opti- 
mality motivated us to study properties of the set of feasible 
constellations which satsify the equalization property. Eas- 
ily verifiable necessary and sufficient conditions were given 
for validating that a given signal constellation lies in the fea- 
sible set. Based on one of these conditions in [3] a greedy 
procedure was proposed for recursively constructing or re- 
fining a good feasible constellation. 
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