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Abstract—The application that motivates this paper is molec-
ular imaging at the atomic level. When discretized at subatomic
distances, the volume is inherently sparse. Noiseless measurements
from an imaging technology can be modeled by convolution of the
image with the system point spread function (psf). Such is the case
with magnetic resonance force microscopy (MRFM), an emerging
technology where imaging of an individual tobacco mosaic virus
was recently demonstrated with nanometer resolution. We also
consider additive white Gaussian noise (AWGN) in the measure-
ments. Many prior works of sparse estimators have focused on the
case when � has low coherence; however, the system matrix �
in our application is the convolution matrix for the system psf. A
typical convolution matrix has high coherence. This paper, there-
fore, does not assume a low coherence �. A discrete-continuous
form of the Laplacian and atom at zero (LAZE) p.d.f. used by
Johnstone and Silverman is formulated, and two sparse estimators
derived by maximizing the joint p.d.f. of the observation and
image conditioned on the hyperparameters. A thresholding rule
that generalizes the hard and soft thresholding rule appears in the
course of the derivation. This so-called hybrid thresholding rule,
when used in the iterative thresholding framework, gives rise to
the hybrid estimator, a generalization of the lasso. Estimates of the
hyperparameters for the lasso and hybrid estimator are obtained
via Stein’s unbiased risk estimate (SURE). A numerical study
with a Gaussian psf and two sparse images shows that the hybrid
estimator outperforms the lasso.

Index Terms—Biomedical image processing, image restoration,
magnetic force microscopy, sparse image prior, Stein’s unbiased
risk estimate.

I. INTRODUCTION

T HE structures of biological molecules like proteins and
viri are of interest to the medical community [1]. Existing

methods for imaging at the nanometer or even sub-nanometer
scale include atomic force microscopy (AFM), electron mi-
croscopy (EM), and X-ray crystallography [2], [3]. At the
sub-atomic scale, a molecule is naturally a sparse image. That
is, the volume imaged consists of mostly space with a few
locations occupied by atoms. The application in particular
that motivates this paper is MRFM [4], a technology that
potentially offers advantages not existent in currently used
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methods. In particular, MRFM is nondestructive and capable
of 3-D imaging. Recently, imaging of a biological sample with
nanometer resolution was demonstrated [5]. Given that MRFM
and indeed even AFM [6] measures the convolution of the
image with a point spread function (psf), a deconvolution must
be performed in order to obtain the molecular image. This
paper considers the following problem: suppose one observes a
linear transformation of a sparse image corrupted by AWGN.
With only knowledge of the linear transformation and noise
variance, the goal is to reconstruct the unknown sparse image.

The system matrix is the linear transformation that, in
the case of MRFM, represents convolution with the MRFM
psf. Several prior works are only applicable when the system
matrix has small pairwise correlation, i.e., low coherence or
low collinearity [7]–[10]. Others assume that the columns of

come from a specific random distribution, e.g., the uniform
spherical ensemble (USE), or the uniform random projection
ensemble (URPE) [11]. These assumptions are inapplicable
when represents convolution with the MRFM psf. In general,
a convolution matrix for a continuous psf would not have low
coherence. Such is the case with MRFM. The coherence of the
simulated MRFM psf used in the simulation study section is at
least 0.557.

The lasso, the estimator formed by maximizing the penalized
likelihood criterion with a penalty on the image values [12],
is known to promote sparsity in the estimate. The Bayesian in-
terpretation of the lasso is the maximum a posteriori (MAP)
estimate with an i.i.d. Laplacian p.d.f. on the image values [13].
Consider the following: given i.i.d. samples of a Laplacian
distribution, the expected number of samples equal to 0 is zero.
The Laplacian p.d.f. is more convincingly described as a heavy-
tailed distribution rather than a sparse distribution. Indeed, when
used in a suitable hierarchical model such as in sparse Bayesian
learning [14], the Gaussian r.v., not commonly considered as a
sparse distribution, results in a sparse estimator. While using a
sparse prior is clearly not a necessary condition for formulating
a sparse estimator, one wonders if a better sparse estimator can
be formed if a sparse prior is used instead.

In [15], the mixture of a Dirac delta and a symmetric, uni-
modal density with heavy tails is considered; a sparse denoising
estimator is then obtained via marginal maximum likelihood
(MML). The LAZE distribution is a specific member of the mix-
ture family. Going through the same thought experiment previ-
ously mentioned with the LAZE distribution, one obtains an in-
tuitive result: samples equal 0, where is the
weight placed on the Dirac delta. Unlike the Laplacian p.d.f.,
the LAZE p.d.f. is both heavy-tailed and sparse. Under certain
conditions, the estimator achieves the asymptotic minimax risk
to within a constant factor ([15], Theorem 1). The lasso esti-
mator can be implemented in an iterative thresholding frame-
work using the soft thresholding rule [16], [17]. Use of a thresh-
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olding rule based on the LAZE prior in the iterative thresholding
framework can potentially result in better performance.

This paper develops several methods to enable Bayes-optimal
nanoscale molecular imaging. In particular, advances are made
in these three areas.

1) First, we introduce a mixed discrete-continuous LAZE
prior for use in the MAP/maximum likelihood (ML)
framework. Knowing only that the image is sparse, but
lacking any precise information on the sparsity level,
selection of the hyperparameters or regularization param-
eters has to be empirical or data-driven. The sparse image
and hyperparameters are jointly estimated by maximizing
the joint p.d.f. of the observation and unknown sparse
image conditioned on the hyperparameters. Two sparse
Bernoulli–Laplacian MAP/ML estimators based on the
discrete-continuous LAZE p.d.f. are introduced: MAP1
and MAP2.

2) The second contribution of the paper is the introduction of
the hybrid estimator, which is formed by using the hybrid
thresholding rule in the iterative thresholding framework.
The hybrid thresholding rule is a generalization of the
soft and hard thresholding rules. The disadvantage of the
former is that it introduces bias in the estimate, while the
disadvantage of the latter is that it is sensitive to small per-
turbations in the observation [18]. Other thresholding rules
have been previously proposed, e.g., firm shrinkage [18],
non-negative garrote [19], etc. It would be informative
to compare the hybrid thresholding rules with the others
mentioned; however, this comparison is outside the scope
of this article. In order to apply the hybrid thresholding
rule to the molecular imaging problem, it is necessary to
estimate the hyperparameters in a data-driven fashion.

3) Third, SURE is applied to estimate the hyperparameter
of lasso and of the hybrid estimator proposed above. The
SURE-equipped versions of lasso and hybrid estimator are
referred to as lasso-SURE and H-SURE. Our lasso-SURE
result is a generalization of the results in [20], [21]. Alter-
native lasso hyperparameter selection methods exist, e.g.,
[22]. In [22], however, a prior is placed on the support
of the image values that discourages the selection of high
correlated columns of . Since the we consider has
columns that are highly correlated, this predisposes a cer-
tain amount of separation between the support of the es-
timated image values, i.e., the sparse image estimate will
be resolution limited. A number of other general-purpose
techniques exist as well, e.g., cross validation (CV), gen-
eralized CV (GCV), MML [23]. Some are, however, more
tractable than others. For example, a closed form expres-
sion of the marginal likelihood cannot be obtained for the
Laplacian prior: approximations have to be made [13].

A simulation study is performed. In the first part, LS, orac-
ular LS, SBL, stagewise orthogonal matching pursuit (StOMP),
and the four proposed sparse estimators, are compared. Two
image types (one binary-valued and another based on the LAZE
p.d.f.) are studied under two signal-to-noise ratio (SNR) condi-
tions (low and high). MAP2 has the best performance in the two
low SNR cases. In one of the high SNR cases, H-SURE has the
best performance, while in the other, SBL is arguably the best

performing method. When the hyperparameters are estimated
via SURE, H-SURE is sparser than lasso-SURE and achieves
lower error for as well as lower detection error

. In the second part of the numerical study, the performance
of the proposed sparse estimators is studied across the range of
SNRs between the low and high values considered in the first
part. A 3-D reconstruction example is given in the third part,
where the LS and lasso-SURE estimator are compared. This
serves to demonstrate the applicability of lasso-SURE on a rel-
atively large problem. A subset of results herein, e.g., Theorem
1, have been previously reported in [24] by the same authors.

The paper is organized into the following sections. First,
the sparse image deconvolution problem is formulated in
Section II. The algorithms are discussed in Section III: there
are three parts to this section. The two MAP/ML estimators
based on the discrete-continuous LAZE prior are derived in
Section III-A. This is followed by the introduction of the hybrid
estimator in Section III-B. Stein’s unbiased risk estimate is
applied in Section III-C to derive lasso-SURE and H-SURE.
Section IV contains a numerical study comparing the proposed
algorithms with several existing sparse reconstruction methods.
A summary of the work and future directions in Section V
concludes the paper.

II. PROBLEM FORMULATION

Consider a 2-D or 3-D image, and denote its vector version by
. In this paper, is assumed to be sparse, viz., the per-

centage of nonzero is small. Suppose that the measurement
is given by

where (1)

where is termed the system matrix, and is
AWGN. The problem considered can be stated as: given ,
and , estimate knowing that it is sparse. Without loss of
generality, one can assume that the columns of have unit
norm. In the problem formulation, note that knowledge of the
sparseness of , viz., , is not known a priori.

It should be noted that, while the sparsity considered in (1)
is in the natural basis of , a wavelet basis has been considered
in other works, e.g., [21]. It may be possible to re-formulate (1)
using some other basis so that the corresponding system ma-
trix has low coherence. This question is beyond the scope of the
paper. The emphasis here is on (1) and on sparsity in the nat-
ural basis. If had full column rank, an equivalent problem
formulation is available. Since is invertible, (1) can be
re-written as

where (2)

where is the pseudoinverse of
; and is colored Gaussian noise. Deconvolution

of from in AWGN is, therefore, equivalent to denoising of
in colored Gaussian noise. In the special case that is or-

thonormal, is also AWGN.
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III. ALGORITHMS

A. Bernoulli–Laplacian MAP/ML Sparse Estimators

This section considers the case when the discrete-continuous
i.i.d. LAZE prior is used for , with and simultaneously
estimated via MAP/ML. In this subsection, denotes the hyper-
parameter of the LAZE prior given in (4), i.e., . The
variables are used instead of respectively in contexts
where their meaning is more intuitive. For the continuous dis-
tribution, are obtained as the maximizers of the conditional
density , viz.,

(3)

If were constant, obtained from (3) would be the MAP es-
timate. If were constant, the resulting would be the ML es-
timate. Since these two principles are at work, it cannot be said
that the estimates obtained via (3) are strictly MAP or ML.

Suppose that , where denotes the
LAZE p.d.f. The latter is given by

(4)

where is the Laplacian p.d.f. The Dirac
delta function is difficult to work with in the context of maxi-
mizing the conditional p.d.f. in (3). Consider then a mixed dis-
crete-continuous version of (4). Define the random variables
and such that . The r.v.s have the
following density:

with probability
with probability

(5)

(6)

where is some p.d.f. that may or may not depend on : more
will be specified later on. It is assumed that are i.i.d.
assumes the role of the Dirac delta: its introduction necessitates
use of the auxiliary density in (6). Instead of (3), consider
the optimality criterion

(7)

Let and . The
maximization of (7) is equivalent to the maximization of

(8)

We propose to maximize (8) in a block coordinate-wise fashion

[25] via Algorithm 1. Note that . A superscript “ ”
attached to a variable indicates its value in the th iteration.

Block Coordinate Maximization of MAP Criterion

Require:
1:
2: repeat
3:

4:

5:

6: until

The p.d.f. arises as an extra degree of freedom due to the
introduction of the indicator variables . Consider two cases:
first, let in (8). This will give rise to the algo-
rithm MAP1. Second, let be an arbitrary p.d.f. such that:
1) for all ; 2) is attained for some

; and 3) is independent of . By selecting that
satisfies these three properties, the algorithm MAP2 is, thus, ob-
tained.

1) MAP1: Let denote the function obtained
by setting . Step 4) of Algorithm 1 is determined
by the solution to . This is solved as

and (9)

It can be verified that the Hessian is negative def-
inite for all and . Given samples
drawn from a Laplacian p.d.f. , the ML estimate of is

. The estimate in (9) is, therefore, the

ML estimate of where all of the s are used.
The maximization in step 5) of Algorithm 1 can be obtained

by applying the EM algorithm [16]. Recall that EM can be ap-
plied using as the complete data, where

and . Denote by the estimates
in the th EM iteration. The E-step is the Landweber iteration

(10)

Define the hybrid thresholding rule as

(11)

where and are restricted to . See Fig. 1.
This is a generalization of the soft and hard thresholding rules.
The soft thresholding rule , and the hard
thresholding rule . The
M-step of the EM algorithm is given by

(12)

where . Recall that
. If , the soft-thresholding rule is applied in the

-step of the EM iterations of MAP1. These iterations produce
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Fig. 1. Hybrid thresholding rule.

the lasso estimate with hyperparameter . However, if
, a larger thresholding value is used that increases

the smaller becomes.
2) MAP2: From (6) and the assumptions on w.p.

1. Consequently, the set

(13)

This implies w.p. 1. Apply (13) to the criterion
to maximize, viz., (8), and denote the result by .
One gets

(14)

Recall that and . The maximization in step (i) is
obtained by solving for , which produces

and (15)

As before, one can verify that the Hessian is negative
definite for all and . It is instructive to
compare the hyperparameter estimates of MAP1 versus MAP2,
i.e., (9) versus (15). The main difference lies in the estimation
of . Assuming that the estimates and obey (13), one can

re-write the MAP2 estimate . This is the

ML estimate using only the , i.e., the nonzero voxels.
On the other hand, the MAP1 estimate of can be written as

(16)

As with MAP1, the maximization in step 5) of Algorithm 1
can be obtained by applying the EM algorithm with the com-
plete data . The E-step is given by (10), which is
the same as MAP1’s E-step. Define

and (17)

The resulting in the M-step is given by the following thresh-
olding rule

(18)

where , which is similar to the M-step of
MAP1. Indeed, the M-step of MAP1 can be obtained by setting

. Just like in MAP1, the EM iterations of MAP2 pro-
duce a larger threshold the sparser the hyperparameter is. As
well, if is smaller, increases. Since the variance of the Lapla-
cian is , a smaller implies a larger variance of the
Laplacian. Use of a larger threshold is, therefore, appropriate.

The tuning parameter can be regarded as an extra degree
of freedom that arises due to being independent of . The
MAP2 M-step is a function of , and a suitable value has to be
selected. In contrast, MAP1 has no free tuning parameter(s).

B. Hybrid Thresholding Rule in the Iterative Framework

Define the hybrid estimator to be the estimator formed by
using the hybrid thresholding rule (11) in the iterative frame-
work [16, (24)], viz.

(19)

where and
are the standard unit vectors. Due to the hybrid

thresholding rule being a generalization of the soft thresholding
rule, the hybrid estimator potentially offers better performance
than lasso. Indeed, lasso performance can be achieved by fixing

. Clearly, the performance of the hybrid estimator is
dependent on the selection of the regularization parameter .
This topic will be discussed in the next subsection. The cost
function of the hybrid estimator is given in Proposition 1.

Proposition 1: Consider the iterations (19) when
and . The iterations minimize the cost function

where

(20)

Proof: This is an application of Theorem 3 in Appendix 1.
When , which gives rise to the
lasso estimator, as expected.

The penalty term satisfies the conditions of ([26], The-
orem 1). Therefore, in the sparse denoising problem, the hybrid
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thresholding rule has risk comparable to the soft and hard
thresholding rules.

C. Using SURE to Empirically Estimate the Hyperparameters

In this section, SURE is applied to estimate the regularization
parameter of lasso and the hybrid estimator. As in the previous
subsection, denote the regularization parameter as . For lasso,

, where is the thresholding parameter used in the soft
thresholding rule . For the hybrid estimator, ,
where are the parameters used in the hybrid thresholding
rule .

Consider the risk measure

(21)

for lasso. Since is not known, this risk cannot be computed;
however, one can compute an unbiased estimate of the risk [27].
Denote the unbiased estimate by : can then be estimated
as , where is the set of valid values.

When , an expression for is derived in ([20], (11)).
When , however, Stein’s unbiased estimate [27] cannot
be applied to evaluate (21). In [21], the alternative risk

(22)

is proposed instead. Equation (22) was evaluated for a diagonal
in [21].
The first theorem in this section generalizes the result of

[21] by developing for arbitrary full column rank . The
second theorem in this section derives (22) when is the hybrid
estimator. For this result, is also an arbitrary full column
matrix. If the convolution matrix can be approximated by 2-D
or 3-D circular convolution, the full column rank assumption is
equivalent to the 2-D or 3-D DFT of the psf having no spectral
nulls. The proofs of the two theorems are given in Appendix II.

1) SURE for Lasso: Since , let us drop the vector
notation and write as .

Theorem 1: Assume that the columns of are linearly inde-
pendent, and is the lasso estimator. The unbiased risk estimate
(22) is

(23)

where is the reconstruction error.
Since the hyperparameter , it can be estimated via

(24)

where is given in (23). Least angle regression (LARS) can
be used to efficiently compute (24), [28]. Note that LARS re-
quires the linear independence of the columns of . The es-
timator with obtained via (24) will be referred to as
lasso-SURE.

2) SURE for the Hybrid Estimator: Several definitions are in
order first.

Definition 1: Suppose that has .
Denote the nonzero components of by .

The permutation matrix is said to order
the zero and nonzero components of if

.
Note that in the above definition is not unique. As is a

permutation matrix, it is orthogonal.
Definition 2: For a matrix , let be a

nonzero sequence of length at most s.t. . Similarly,
let be nonzero sequence of length at most s.t. .
The submatrix is such that .

Define and

(25)

where and 0 otherwise. Recall that
by assumption, so . Let

denote the Gram matrix of . For a given , set

(26)

(27)

where is a matrix that orders the zero and nonzero compo-
nents of .

Since is a function of , denote for
in Theorem 2 below.

Theorem 2: Suppose that the columns of are linearly in-
dependent and that does not have an eigenvalue of .
With denoting the hybrid estimator, the unbiased risk estimate
(22) is

(28)

where is the matrix trace, and .
To evaluate (28) for a particular , one would have to con-

struct the matrix ; then, invert the matrix
. If is sparse, is small, and the inversion

would not be computationally demanding. The optimum is the
that minimizes . The

corresponding would be the output. This method will be
referred to as Hybrid-SURE, or for short, H-SURE.

IV. SIMULATION STUDY

In Section IV-B, the following classes of methods are com-
pared: (i) least-squares (LS) and oracular LS; (ii) the proposed
sparse reconstruction methods; and (iii) other existent sparse
methods, viz., SBL and StOMP.

The LS solution is implemented via the Landweber algorithm
[29]. It provides a “worst-case” bound for the error, i.e., .
Since the LS estimate does not take into account the sparsity
of , one would expect it to have worse performance than es-
timates that do. In the oracular LS method, on the other hand,
one knows the support of , and regresses the measurement
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Fig. 2. Illustration of the two types of � used in the simulations; as well, the
Gaussian blur psf is shown. (a) Binary �. (b) LAZE �. (c) Gaussian blur psf.

on the corresponding columns of [30]. The oracular LS esti-
mate consequently provides a “best-case” bound for the error;
however, the oracular LS estimate is unimplementable in reality,
as it requires prior knowledge of the support of . The second
class of methods includes the two MAP/ML variants, MAP1 and
MAP2; in addition, lasso-SURE and H-SURE are also tested.
Finally, in order to benchmark the proposed methods to other
sparse methods, SBL and StOMP are included in the simula-
tion study. The Sparselab toolbox is used to obtain the StOMP
estimate. The CFAR and CFDR approaches to threshold selec-
tion are applied [11]. For CFAR selection, the per-iteration false
alarm rate of 1/50 is used. For CFDR selection, the discovery
rate is set to 0.5. Although a multitude of other sparse recon-
struction methods exist, they are not included in the simulation
study due to a lack of space.

Two sparse images are investigated in Section IV-B: a bi-
nary-valued image, and an image based on the LAZE prior (4).
The binary-valued image has 12 pixels set to one, and the rest
are zero. The LAZE image, i.e., the image based on the LAZE
prior, can be regarded as a realization of the LAZE prior with

and . They are depicted in Fig. 2(a) and (b),
respectively. The two images are of size 32 32, as is : so,

. The matrix , of size 1024 1024, is the
convolution matrix for the Gaussian blur point spread function
(psf). In order to satisfy the requirements of Theorems 1 and 2,
the columns of are linearly independent and does not
have an eigenvalue of 1/2. The Gaussian blur is illustrated in
Fig. 2(c).

The Gaussian blur convolution matrix has columns that are
highly correlated: the coherence . Let

. The stability and support results of lasso all require
that

(29)

where or 1/4 in order that some statement of recover-
ability holds [8]–[10], [30]. For a given , (29) places an upper
bound on for which recoverability of is assured in some

fashion. With the Gaussian blur for
both and 1/2. Since , the simulation study is
outside of the coverage of existing recoverability theorems.

In Section IV-B, the performance of the proposed sparse
methods over a range of SNRs is investigated. The bi-
nary-valued image and Gaussian blur psf are considered in this
section. In addition to the proposed sparse methods, the LS
estimate is included as a point of reference. Last, a 3-D MRFM
example of dimension 128 128 32 is given in Section IV.D
comparing the LS estimate and lasso-SURE. This serves to
illustrate the computational feasibility of lasso-SURE for a
relatively large problem.

The proposed algorithms are implemented as previously out-
lined. The tuning parameter of MAP2 is set to in
Section IV-B and IV-C. LARS is used to compute the lasso-
SURE estimator. H-SURE is suboptimally implemented: the
minimizing is obtained via two line searches. The
first, along the direction in the plane, is
done using lasso-SURE. A subsequent line search in the (1,0) di-
rection is performed, i.e., is kept constant and is increased.
Define the SNR as , and the SNR in
decibels as .

A. Error Criteria

Recall that the reconstruction error . Several error
criteria are considered in the performance assessment of a sparse
estimator.

• for .
• The detection error criterion defined by

(30)

Values of such that are considered equivalent to
0. This is used to handle the effect of finite-precision com-
puting. More importantly, it addresses the fact that, to the
human observer, small nonzero values are not discernible
from zero values. In the study, is selected.
This error criterion is effectively a 0–1 penalty on the sup-
port of . Accurately determining the support of a sparse
is more critical than its actual values [7], [31].

• The number of nonzero values of , i.e., . One would
like , which is small if is indeed sparse.

B. Performance Under Low and High SNR

The performance of the estimators is given in Table I for
the binary-valued with the SNR equal to 1.76 dB (low SNR)
and 20 dB (high SNR). The number reported in Table I is the
mean over the simulation runs. For each performance criterion,
the best mean number is underlined. The oracular LS estimate
is excluded from this assessment, as it cannot be implemented
without prior knowledge. In terms of , the best number is
the value closest to . Recall that for the binary-valued image

. The best number for the other performance crite-
rion is the value closest to 0.

In the low SNR case, MAP2 has the best performance. MAP1
consistently produces the trivial estimate of all zeros, as evi-
denced by the mean value of being equal to 0. The trivial
all-zero estimate results in for . For

Authorized licensed use limited to: Alfred Hero. Downloaded on December 31, 2009 at 10:44 from IEEE Xplore.  Restrictions apply. 



TING et al.: SPARSE IMAGE RECONSTRUCTION FOR MOLECULAR IMAGING 1221

TABLE I
PERFORMANCE OF THE RECONSTRUCTION METHODS

FOR THE BINARY-VALUED �

a sparse , a small , therefore, is not necessarily an indi-
cator of good performance. A second comment regarding
is that it does not always give an accurate assessment of the per-
ceived sparsity of the reconstruction. In Table I, SBL never pro-
duces a strictly sparse estimate, as the mean equals the
maximal value of 1024. However, consider Fig. 3(a), where the
SBL estimate for one noise realization at an SNR of 1.76 dB
is depicted. The looks sparser than would be suggested by

. This is because many of the nonzero pixel values
have a small magnitude, and are visually indistinguishable from
zero. The SBL estimate has many spurious nonzero pixels, in ad-
dition to blurring around several nonzero pixel locations. Nega-
tive values are present in the reconstruction, although the binary

is non-negative.
The StOMP (CFAR), MAP2, and lasso-SURE estimate are

illustrated in Fig. 3(b)–(d), respectively. The StOMP (CFAR)
has large positive and negative values. It does not seem like

a sufficient number of stages have been taken. While blurring
around several nonzero voxels are evident in the MAP2 esti-
mate, closely resembles , cf. Fig. 2(a). None of the esti-
mators considered here take into account positivity. From Fig.
3(b), however, one sees that the MAP2 estimate has no negative
values. Qualitatively, the lasso-SURE estimate looks better than
SBL, but worse than MAP2. This is reflected in the quantitative
performance criteria in Table I.

In the high SNR case, H-SURE has the best performance. The
mean values of all the performance criteria decrease as com-
pared to lasso-SURE. The greatest decreases are in ,
and . They indicate that the H-SURE estimator is properly
zeroing out spurious nonzero values and producing a sparser
estimate than lasso-SURE. However, this comes at a price of
higher computational complexity.

Fig. 3. Reconstructed images for the binary-valued � under an SNR of 1.76 dB
for SBL, StOMP (CFAR), MAP2 �� � ��

�
��, and lasso-SURE. (a) SBL.

(b) STOMP (CFAR). (c) MAP2 �� � ��
�
��. (d) lasso-SURE.

TABLE II
PERFORMANCE OF THE RECONSTRUCTION METHODS FOR THE LAZE �

Examine next the performance of the reconstruction methods
with the LAZE image. One expects MAP1 and MAP2 to have
better performance than the other methods, as the image is
generated using the LAZE prior. The numbers for the perfor-
mance criteria are given in Table II. Again, the reconstruction
method with the best number for each criterion is underlined.
For the LAZE .

In the low SNR case, MAP2 has the advantage. MAP1 pro-
duces the trivial estimate of all zeros, just as in the case of the
binary-valued . The high SNR case has mixed results. While
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SBL has the best mean and , the best result for the
other three criteria each occur at a different method. The fact
that MAP1 and MAP2 do not have superior performance over
the other methods in the case of the LAZE image is unintu-
itive. As the SNR increases, however, the hyperparameter es-
timates become biased [32]. The bias primarily manifests as a
decrease of in , thereby allowing more noise to
pass through. A possible explanation for the bias is that given

in (7) depends also on and ; a better estimate of may be
obtained by integrating over [33]. The other unintuitive result
is that for the oracular LS estimate is not zero. This
arises because of the choice of . Since , the
values of that are smaller than in absolute value are thresh-
olded to zero. This results in a nonzero in some cases.

C. Performance Versus SNR of the Proposed Reconstruction
Methods

The performance of the proposed reconstruction methods
when applied to the binary-valued is examined with respect
to SNR. The intent in this subsection is to study the behavior
of the proposed methods at SNR values in between the low
and high values of 1.76 and 20 dB, respectively. As with the
previous section, the MAP2 estimator is used with .
For each estimator, the mean is plotted along with error bars of
one standard deviation. The error plots are given in Fig. 4. Note
that in Fig. 4(e), the MAP1 curve is missing the first several
SNR values because and the y-axis is in a log scale.

First, consider the , and error criteria. MAP1
is unable to distinguish the location of the nonzero pixels in
low SNR. Under high SNR conditions, it has performance
that is comparable to lasso-SURE and H-SURE in terms of
the and errors. The value of increases with
respect to increasing SNR for MAP1. Taken together with the

and curves, the trend is indicative of small nonzero
coefficients appearing in that are spurious. MAP2 also has the
same behavior with respect to ; however, a performance
gap under high SNR exists in its and curves as com-
pared to MAP1, lasso-SURE, and H-SURE. The lasso-SURE
and H-SURE estimates have curves that decrease as the SNR
increases. H-SURE’s error curve is lower than lasso-SURE’s
for and , and it is almost identical for .

Consider next the and error criterion. The lasso-
SURE curve for is relatively flat, and its curve de-
creases for high SNR. This indicates that, while the number of
nonzero coefficients in remains the same, the amplitude at the
spurious locations are decreasing. With MAP1 and MAP2, the
opposite trend is true. For low SNR, the number of nonzero co-
efficients in is small, but increases with higher SNR. A similar
increase can be seen in the curves. One can conclude that
the number of spurious nonzero locations is increasing. With
H-SURE, both the and curves decrease as the SNR
increases. This behavior is intuitive, as higher SNR should re-
sult in better performance. We note that H-SURE’s curve is
lower than lasso-SURE’s; moreover, H-SURE’s curve is
closer to than lasso-SURE’s.

Fig. 4. Performance versus SNR for Landweber iterations, MAP1, MAP2,
lasso-SURE, and H-SURE when applied to the binary-valued �. (a) ��� .
(b)��� . (c) ��� . (d) � (e) ���� .

D. MRFM Reconstruction Example

A 3-D example using the hydrogen atom locations of the
DNA molecule (PDB ID: 103D) [34] as and the 3-D MRFM
psf is carried out in this subsection. Both and have dimen-
sion 128 128 32, and the SNR is 4.77 dB. Each hydrogen
location in is set to 1, and the rest of the locations set to 0.
The resulting image has a helical structure: see Fig. 5(a). The
image represented by is illustrated in Fig. 5(b). The LS and
lasso-SURE estimates are given in Figs. 6 and 7, respectively.
The 3-D figures plot contours for several values. The white
volume in Fig. 6 does not indicate ; rather, the are at a
value smaller than the lowest color bar value. On the other hand,
the white volume of the lasso-SURE estimate is mostly .
The histogram of for the LS and lasso-SURE estimator given
in Fig. 8(a) and (b), respectively illustrate this point. The sharp
peak at 0 in the lasso-SURE histogram suggests that the lasso
estimator incorporates a thresholding rule, which it does. The
values are separated into two distinct sets: the sparse image cen-
tered around 0.95 and the background around 0. In contrast, the
histogram of for Landweber is not separated in this fashion,
nor does it have a sharp peak at 0.
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Fig. 5. Image � and noiseless projection�� used in the MRFM reconstruction
example. (a) Image �. (b) Image��.

Fig. 6. LS estimate of the MRFM example under a SNR of 4.77 dB.

Fig. 7. Lasso-SURE estimate of the MRFM example under a SNR of 4.77 dB.

Fig. 8. Histogram of �� for the LS and lasso-SURE estimator. (a) LS (b) lasso-
SURE.

V. SUMMARY AND FUTURE DIRECTIONS

Use of a mixed discrete-continuous LAZE prior and jointly
estimating as the maximizer of gives rise to the

Bernoulli–Laplacian sparse estimators MAP1 and MAP2. The
hybrid thresholding rule is observed in both of these sparse esti-
mators. When used in the iterative thresholding framework, the
resulting penalty on is quadratic around the origin, and linear
away from the origin, cf. (20). In order to apply lasso and the
hybrid estimator to data, an empirical means of estimating the
hyperparameters is required. This is achieved via Stein’s unbi-
ased risk estimate.

A numerical study shows that MAP1 and MAP2 perform well
at low SNR, but the performance deteriorates at higher SNR.
While StOMP demonstrates competitive results in [11], such is
not the case in the simulation study conducted in this paper. The
SBL estimate is not sparse; despite this, the estimates look vi-
sually sparse due to many nonzero values being small. In the
high SNR regime for the LAZE , SBL has good performance.
When the hyperparameters are estimated via SURE, the hybrid
estimator achieves a sparser estimate with lower reconstruc-
tion error for as compared to lasso. In addition, the
hybrid estimator has lower detection error . The numerical
study suggests that sparse estimators based on sparse priors may
achieve superior performance to the lasso.

The paper did not compare the MAP/ML and SURE estimates
of the hyperparameters to other estimates, e.g., GCV, the method
of [22] for lasso, etc. This is primarily due to a lack of space. In
the case when is a linear function of , SURE is equivalent to
the statistic, while GCV is the statistic with replaced
by an estimated version [35]. Unfortunately, the sparse estima-
tors considered in the paper are all nonlinear in . Another issue
that should be looked in future work is how to improve MAP1/2
to rectify the deteriorating performance at higher SNR. The esti-
mates generally become more biased as the SNR increases
[32]. With MAP2, the degree of bias is affected by the selection
of .

Implementation considerations were not discussed, although
they are critical in the implementation of a deconvolution al-
gorithm. The interested reader is referred to [32]. In terms of
increasing complexity, the estimators can be approximately or-
dered as: StOMP, LS/oracular LS, MAP1 and MAP2, lasso-
SURE, H-SURE, and SBL. Thanks to LARS, evaluating a good-
ness-of-fit criterion for lasso whether it be a SURE criterion,
a GCV criterion, etc. has low computational complexity. Al-
though LARS requires the selection of individual columns of

, this is not an issue when represents a convolution oper-
ator. The selection can be efficiently implemented using the fast
Fourier transform (FFT). Solving for the H-SURE hyperparam-
eters has higher computational complexity since an efficient im-
plementation of the H-SURE estimator is currently lacking. In
this paper, the iterative thresholding framework is used for part
of the solution; however, a LARS-like method would be a wel-
comed improvement.

APPENDIX I
PROOFS OF SECTION IV

A more general result is derived here. Consider the iteration

(31)
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where is a thresholding rule ([15],
Sec. 2.3) with the following condition. Suppose that has
threshold ; then, is strictly increasing on .
Note that is only defined for . Extend the defi-
nition at to get

(32)

is continuous on . For the remainder of this
section, the dependency of , and on will be omitted
for the sake of brevity.

Proposition 2: The function

(33)

is continuous for .
Proof: Since is continuous in , the only place

that should be checked is . The second term in (33) is
continuous, so it remains to check the first and third terms. By
definition of a threshold function, and

.
Consider . Since is right continuous at , there

exists s.t. implies that .
Likewise, since is left continuous at , there exists

s.t. implies that . Set

so that .
Consider the third term. Define : since

is continuous, so is . Moreover, for
. For , there exists s.t. .

Since is right continuous at , there exists s.t.
. In a similar fashion,

since is left continuous at , there exists s.t.
. Set .

From , one gets when .
Proposition 3: The minimizer of

is .
Proof: Let : , and is

lower bounded. Similarly, consider : for
. Since for all and

for all

is also lower bounded. Applying Proposition 2 results
in being a continuous, lower bounded function. Consider
now two cases.

Case 1: , where recall that is the threshold of .
For . So

iff , which occurs uniquely at
. Consider

(34)

Since we assume that is strictly increasing on
is also strictly increasing for . For sufficiently small

and . So is
a local minimum. At this value of . To
verify that is the global minimum, it is necessary to compute

. So indeed, minimizes .
Case 2: . Suppose that the minimizer . Then,

the analysis in Case 1 applies, resulting in . However,
since by assumption, one gets . This is a contra-
diction: it must, therefore, be the case that .

Theorem 3: Suppose that and . Consider the
iteration (31), where is a thresholding rule with threshold

, and is strictly increasing in . Then, the
iterations (31) converge to a stationary point of , where

where (35)

Proof: Use the following definitions, which appear in [17]:

(36)

(37)

where is chosen to ensure that is strictly positive and
convex in for any choice of . By assumption, , and
so select [17]. The function is the surrogate
function that is minimized in place of . Consider the mini-
mization of , which can be simplified as

(38)

Since , the minimization of can
be decomposed into subproblems, where each is sepa-
rately minimized. Indeed, each should minimize

(39)

where . Apply Proposition 3 to get the
minimizing , i.e., .

Let denote the sequence generated by

(40)

where is the initial estimate. Then, is generated by (31),
where recall that . Any limit point of the iterations (31)
is a stationary point of (35), [36].

APPENDIX II
PROOFS OF SECTION V

A. Proof of Theorem 1

Recall that is the Gram matrix of . In order
to simplify notation, for , denote by

,
and . The following proposition
is needed. Its proof is omitted due to a lack of space.
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Proposition 4: If has linearly independent columns

(41)

where is a matrix that orders the zero and nonzero compo-
nents of .

For , an unbiased estimate of the risk (22) is [27], [37]

(42)

where . If is obtained via a minimization
, (42) can be evaluated as [37, (2)]

(43)

where .
Let denote the cost function

of lasso. Since is not twice differentiable on , (43)
cannot be directly applied. Consider

(44)

which is twice differentiable on . It can be shown that
pointwise. The minimizer of

, therefore, equals the minimizer of in the

limit as . Denote by the unbiased estimate of
(22) when is obtained by minimizing . As the RHS

of (42) is solely a function of (recall that , and are
known), pointwise.

Applying (43)

(45)

where

(46)

Consider the expression in (45). As is orthogonal and
matrix multiplication is commutative under the trace operator

Without loss of generality, suppose that is ordered so that
, where and for

. Let . Then, equals

where
, and .

is invertible for sufficiently small . Likewise, for sufficiently
small is invertible by Proposition 4.

As and . In addition,
and . So

(47)

as . Consequently

(48)

B. Proof of Theorem 2

Earlier notation from this appendix will be retained. The
proof of the following proposition is omitted due to a lack of
space.

Proposition 5: Suppose that has linearly independent
columns. If , then
has an eigenvalue of 1/2.

The Proof of Theorem 2 parallels the Proof of Theorem 1. As
is not twice differentiable on , consider instead

(49)

where

(50)

is twice differentiable in and
pointwise. Result (43)

can be applied to get

(51)

with

(52)

Notice that similarity between and ; the

same applies to and . The steps of Theorem
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1 can be carried out to evaluate the expression in (51) as
. One arrives at

(53)

Now . By assumption, does not
have an eigenvalue of . Therefore, application of Proposition
5 implies that the inverse in (53) exists.
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