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ABSTRACT

We relate the distinguishing features of the fixed point
power-of-two step size LMS algorithm’s learning curve to
the precision of its data and coefficient variables. In par-
ticular, we show that the increase in the steady state MSE
floor due to finite precision effects is determined primar-
ily by data quantization while the decrease in convergence
rate due to finite precision is determined by both data and
coefficient quantization. We also derive a condition under
which the slowdown phenomenon can be eliminated, given
the reference variance and lower bounds on the minimum
MSE and optimal weight vector magnitude.

1. INTRODUCTION

The LMS algorithm is the most commonly used adaptive al-
gorithm for such tasks as channel equalization and system
identification. The algorithm is used to adapt the coeffi-
cients, or weights, of an FIR filter to minimize the mean
square error (MSE) between the filter’s output and a pri-
mary signal. Two important performance measures of the
algorithm are its steady state MSE and convergence rate
[1]. In practice, the LMS algorithm is implemented in finite
precision, and often with fixed point arithmetic 2, 3, 4].

The performance penalty incurred as a result of finite pre-
cision implementation has been analyzed in [2] and [3, 4]. In
[2], Caraiscos and Liu derived an expression for the increase
in steady state MSE due to quantization of data and coeffi-
cients using an additive white noise model for the quantiz-
ers. Bermudez and Bershad [3, 4] considered an implemen-
tation of the LMS algorithm with infinite precision data
and finite precision coefficients and, by using a nonlinear
model for the coefficient quantizer, derived a recursion that
accurately predicts the MSE trajectory of this algorithm.
For the algorithm considered in [3, 4] it was shown that the
stopping phenomenon is actually a slowdown phenomenon
that is always present and renders the analysis of [2] inap-
plicable.

In this paper we show that the slowdown phenomenon
can be eliminated in the general (where both data and
coeflicients are quantized) fixed point power-of-two step
size algorithm by the proper choice of data and coefficient
wordlength. Specifically, for most practical cases, more bits
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should be allocated to coefficients than data to prevent
slowdown. We show that the algorithm considered in [4]
is a limiting case of the general fixed point LMS algorithm
in which slowdown can not be prevented. Finally, we show
that both analyses [2] and [3, 4] give useful insights into the
behavior of the finite precision LMS algorithm.

2. FIXED POINT LMS ADAPTATION

Given a complex primary signal, yx, and a complex ref-
erence signal, zj, that is correlated with yz, the infinite
precision complex LMS algorithm adapts the complex co-
efficients, w, = [wok,--.,wp—1,k]¥ (weight vector), of a
p-tap FIR filter such that the mean square error between
the filter output, §x = wfz,, and the primary signal is
minimized. Here z, = [zx,...,Tr-pt1)T is a vector of the
p most recent samples of zx. Both z; and yi are assumed
to be wide sense stationary. The adaptation of the weight
vector is accomplished according to the recursive weight
update equation

Weyy = Wy +prier (1)
e = Yk—Uk

where p is the adaptive gain parameter which determines
the transient behavior of the algorithm.

The finite precision LMS algorithm implements the re-
cursive weight update (1) with quantizers in all data and
coeflicient paths. In this paper we consider a special case
of the finite precision algorithm in which all quantizers are
uniform scalar quantizers, all arithmetic is done in fixed
point, and p = 277 where g € {0,1,...}. We refer to this
algorithm as the fixed point power-of-two step size LMS
algorithm.

Define the quantization operators Qq(-) and Q.(:) as
fixed point rounding quantizers with granularities Ag. =
2784 and A, = 275¢, respectively. Thus the data quan-
tizer, Q4(-), uses By bits plus sign and the coefficient quan-
tizer, Qc(-), uses B. bits plus sign. Then, with w} =
Qe(wy), 24 = Qulzy), and yj = Qa(ye), the fixed point
algorithm’s weight update recursion is

Wiy, = Wi+ Qe (pzpel) (2)

/ _ ’ ~f
€x = Yk~ Yk

p—1
= Y- ZQd(wi,kzk_,-)
i=0
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Figure 1: Finite Precision 'LMS Algorithm used in system
identification configuration.

Since p = 279, the multiplication by g in (2) is accom-
plished by a right shift of g bits.

Figure 1 shows the finite precision LMS algorithm used
for identification of an unknown FIR system, h, with im-
pulse response vector kb = [ho,...,hr—1]". Note that with
infinite precision and p = L, the optimal weight vector is
w® = h and the minimum MSE is €min = 02 = E[jnk)?].

In this paper, we consider z; to be a zero-mean, circular,
white Gaussian sequence with variance o2 < 0.1. With this
choice, the probability of quantizer overload is small. In
addition, for the simulations, we focus on the case p=L =
4.

3. SLOWDOWN PHENOMENON

In [2] it was noted that the fixed point LMS algorithm suf-
fers from a potentially bazardous condition in which the
weight update (2) stops prematurely. This condition was
called the stopping phenomenon and was believed to oc-
cur when the argument of the weight update quantizer, Q.,
in (2) fell into the quantizer’s dead zone. Mathematically,
this can be expressed as |[Re{uz}_;ef }| < 4¢. for some
i € {0,...,p — 1}. Here Re{-} denotes the real part. We
have assumed that the real and imaginary parts of xx_;
are uncorrelated and have equal variance. In [3, 4] it was
shown that this phenomenon does not stop adaptation as
previously believed, but instead severely reduces the con-
vergence rate. Thus a slowdown, not stopping, phenomenon
was taking place.

By defining ¢}, = Elle|?], and using the above condi-
tion for slowdown as well as the independence assumption,
we can determine £.;,,,, the minimum value of ¢} before
the onset of slowdown. This approach, however, yields an
overly conservative estimate as slowdown typically occurs
well after the above condition is satisfied. Thus we propose
the following condition for slowdown

P (IRE{I“‘;:—-:‘C;:}I < %—c> >1-—¢€ (3)
for some 7 € {0,...,p— 1} and 0 < ¢ < 1. To derive
an accurate estimate of £, using (3), we first assume
that the transient behavior of the fixed point algorithm is
approximately the same as that of the corresponding infinite
precision algorithm prior to slowdown. This assumption
has been shown to be correct by experimental evidence [3,
4]. Then we can replace z),_,ex in (3) with gi = zx—ie€x.
Next we assume gy, is approximately circular Gaussian with
mean zero and variance 202, where 02, = Ellex|’] is
the mean square error trajectory (learning curve) of the
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Figure 2: Ezperimental and theoretical MSE, &, pre-
dicted in [4] and [2, 5]. Both curves use p = 1/8, h =
[0.7,-0.2,0.5,-0.1]", 02 = 0.05, 02 = 107%. The slow-
down curve uses Bq = 15, B = 12 and real signals while
the other uses By = 8, B. = 12 and complez signals.

infinite precision algorithm. Under the assumption that
& = 02 = Eflyx — §x|°] prior to slowdown, using (3), we
propose the estimate, K, of the iteration at which slowdown
commences as the integer, K, for which

9g-2Beti-a)

’ '
< = = &510w, VK> K. 4
§Ic a%[erf‘l(l — 6)]2 551 ’ = ( )
Experiments have shown that the value of € for which K
predicts the actual slowdown time depends only on p and

p. More details follow in Section 6.

4. PERFORMANCE ANALYSIS

The finite precision LMS algorithms analyzed in [3, 4] are
of the same type as (2) with the restriction By = oo. It
was found that under this condition, the slowdown phe-
nomenon was unavoidable. Fortunately, by using a non-
linear coefficient quantizer model, recursions were obtained
that accurately predicted the transient behavior, including
slowdown.

The analysis in [2] was of the general fixed point algo-
rithm of (2). There, a closed form solution for £, the in-
crease in MSE due to finite precision data and coefficients,
was derived for the real finite precision LMS algorithm un-
der the assumption that slowdown does not occur. In [5]
this derivation was extended to the case of complex data
and coefficients giving ' €, & &; + &min for small values of
the gain parameter, p, where

o [ ] [ et ] o

12p 6 )

Figure 2 shows the learning curves for two implementa-
tions of the fixed point LMS algorithm in the system ID con-
figuration. The algorithm exhibiting slowdown is predicted
accurately by [4] while the steady state MSE of the algo-
rithm without slowdown is accurately predicted by {2, 5].

INote that &, differs slightly from &g in [5] as & is the asymp-
totic increase in Ef|y} — 51%] while & is the asymptotic increase
in Eflyx — ;%]



I € v By=7)B;s=9

I 1T5x107% | 1.86 0 0
3x107% 1] 354 0 0

6 | 1% 1071 | 4.94 0 0

Table 1: Number of systems of fixed norm for which finite
precision algorithm using B. = By + [v] exhibits slowdown
out of 25 4-tap FIR systems selected at random with the
constraint ||k = 1.

The results of [4] are valid since the algorithm with slow-
down uses fine data quantization compared to coefficient
quantization. Similarly, the prediction of [2, 5] is accurate
because the algorithm in question does not exhibit slow-
down. In the next section we derive bounds on B. and By
that ensure that slowdown does not occur.

5. PREVENTION OF SLOWDOWN

Assuming slowdown does not occur, we have £, & £;+Emin-

This implies £, > &l _ 4 &min and therefore

2—2Bd

6

€ > w®ll* +p +1) + &min 2 Efioor- (6)

Now, since the infinite precision and finite precision al-
gorithms agree closely before slowdown, slowdown can be
prevented by choosing B, such that £;;,,, < &fj0,,- Using
(4) and (6), this condition becomes

27 2Bet1=0) o G2erf (1 - €)]?-
2*23,1
B

(w2 +p+1) + gm] @

Application of this formula to choosing B, requires knowl-
edge of both the minimum MSE, &min, and the optimal
weight vector magnitude, |jw®]]. Although these quanti-
ties are usually unknown a priori by the designer, a suffi-
cient condition for preventing slowdown can be obtained by
lower bounding these values. In the particular case where
272Bd 5 £,.:, > 0 and |[w°]|? > %, the sufficient condition
in B., By for no slowdown is

B.>Bag+v (8)

where

2
v=q—-1- %logz (U—g(ll)—{—p—i-l)[erf_l(l - e)]z) . (9

6. SYSTEM ID DESIGN EXAMPLES

In this section, we consider fixed point LMS system iden-
tification of a 4-tap FIR system using step size, u, chosen
from {1/16,1/4,1/2}, and p = 4. To determine ¢ for each
value of p, the fixed point algorithm was simulated with a
baseline set of parameters for which slowdown is exhibited.
In this case, these parameters are B. = By = 10, 02 = 0.05,
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n € Byg=7| Bg=9

i 151077 0 0
3x1077 0 0

15 | 1x107T 0 0

Table 2: Number of systems of varying norm for which finite
precision algorithm using B. = By + [v] exhibits slowdown
for systems of the type h = [1/2,1/2,1/2,1/2]7 and 10
values of a ranging from 0.1 to 1.0.

02 ==107% and h = [1/2,1/2,1/2,1/2]. Then, ¢ was com-
puted by determining the actual slowdown point and invert-
ing (4). Selection of € by this procedure has been shown ex-
perimentally to provide accurate predictions of ¢.;,,, and,
consequently, valid wordlength constraints. Furthermore,
these results remain valid as the FIR system, h, the ref-
erence variance, o2, and the wordlengths, B. and By, are
varied. Of course, as ¢ and p vary, € must be recomputed.

With ¢ known for each value of g, v in (8) can be cal-
culated for various systems, h, and various signal powers,
02, To demonstrate the validity of the e-selection pro-
cedure, v was calculated using (9) with v = 1, p = 4,
and 02 = 0.05. The algorithm was then simulated with
02 = 0.05, 02 = 1078, B, = Bq + [v] and B; € {7,9}
with 25 randomly chosen FIR systems, h, satisfying the
constraint ||h||> = 1. The resulting experimental learn-
ing curves were inspected for slowdown. Table 1 shows
that for all cases, slowdown was not exhibited. The ro-
bustness of the procedure to changing [|A]|> can be seen
from Table 2. Here, the systems, h, are of the form
h=a1/2,1/2,1/2,1/2)T. Ten values of o were chosen be-
tween 0.1 and 1.0. The value v was calculated using ¥ = o®
and the same € determined from the baseline experiment.
Again, for all systems considered, slowdown was not ex-
hibited. Similar results were obtained when the system, h,
was fixed and o2 was varied, although they are not shown
here. Note that there is a possibility for the bound (8) to
be too conservative. It is therefore possible that for these
examples, the value v prevents slowdown but is larger than
necessary.

Figure 3 shows three fixed point LMS learning curves
with p 1/4 and h [0.7,-0.2,0.5,—0.1]7. The
wordlengths, B, and By, are chosen to satisfy (8). Clearly,
slowdown is not evident on these curves. Note also that the
prediction of [2, 5] is accurate. Finally, note that the fixed
point algorithm behavior is the same as that of the infinite
precision algorithm in the transient region. This validates
the assumption made earlier.

7. SLOWDOWN VS. MSE TRADEOFF

Based on the inequality (8), which gives the condition under
which slowdown is avoided, we conclude that the conver-
gence rate of the general fixed point power-of-two step size
LMS algorithm is dependent on both data and coefficient
wordlengths. Specifically, if B. > Bq + v, the convergence
rate is approximately equal to that of the infinite preci-
sion algorithm. As B, falls below the threshold wordlength,
By + v, the convergence rate should decrease.
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Figure 3: Ezperimental and theoretical MSE, &, predicted
in [2, 5]. All curves use p = 1/4, h = [0.7,-0.2,0.5, -0.1]7,
02 =005 02 =10"8.

Although the bound (6) uses the results of [2], which are
applicable only in the absence of slowdown, (6) is still valid
for implementations in which slowdown occurs. In such
cases, the formula (5) will indeed be overly conservative.
However, the steady state will eventually be reached and the
finite precision algorithm will obey the bound (6). It is in
the steady state region that (6) becomes useful. Note that
when By = oo, (6) becomes €., > &min. This is precisely the
behavior observed and analyzed in [3, 4]. Figure 4 shows the
learning curves for three fixed point systems with p = 1/2,
along with the value £}, for each system. This figure
shows that (6) is a tight lower bound even when slowdown
occurs. Thus we conclude that the MSE floor is determined
by the data wordlength, although the steady-state region
may take many iterations to reach.

These results suggest a tradeoff between slowdown and
steady state MSE. To see this, assume the fixed point algo-
rithm must use a total of Br + 2 bits with By = By + B,.
If the constraint (8) is satisfied, the slowdown phenomenon
will be eliminated completely and the convergence rate will
be almost identical to that of the infinite precision algo-
rithm. On the other hand, if (8) is not met and By is
increased, slowdown will occur, but if given enough itera-
tions to converge completely, the steady state MSE will be
reduced. The three systems in Figure 4 all use Br = 18.
Observe that as expected, the data wordlength determines
the MSE floor while the convergence rate is determined by
the quantity B, — By. Note, however, from this figure that
choosing B, too large can result in increased MSE without
much improvement in convergence rate. In this case, it is
beneficial to use more data bits than coefficient bits as the
decrease in convergence rate is not drastic compared to the
decrease in MSE. For smaller values of u, however, it is
beneficial to use more coeflicient bits as slowdown can have
a more significant impact.

‘8. CONCLUSION

We have analyzed the fixed point power-of-two step size
LMS algorithm and derived the threshold MSE which de-
termines the onset of the slowdown phenomenon under the
independence assumption on the LMS update term, z,ej.
We have also derived a constraint on the wordlengths of
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Figure 4: Ezperimental MSE, ¢, and theoretical MSE floor,
Ertoor with p = 1/2, h = [0.7,-0.2,0.5,—0.1]7, o2 = 0.05,
0l =10"% Br =18.

the data and coeflicients under which the slowdown phe-
nomenon can be avoided.

We conclude that the steady state MSE floor of the fixed
point power-of-two step size LMS algorithm is determined
primarily by the data wordlength, while the convergence
rate depends on both data and coeflicient wordlengths.

We also conclude that the analyses in [2] and (3, 4] are
both valid and give correct performance predictions for spe-
cial cases of the general fixed point LMS algorithm. Specif-
ically, [2] provides a closed-form solution for the increase
in steady state MSE when the constraint (8) is met and
[3, 4] gives a deterministic recursion for the learning curve
when the data resolution is high. It remains to combine the
efforts of [2] and [3, 4] to determine a recursion for the learn-
ing curve in the general case of coarse data and coefficient
quantization. It also remains to relax the independence as-
sumption on the LMS update term. Finally, an analytic
process for selection of € using p and p is yet unavailable.
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