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ABSTRACT

There has been considerable recent interest in applying max-
imal invariant (MI) hypothesis testing as an alternative to
the generalized likelihood ratio test (GLRT). This interest
has been motivated by several attractive theoretical prop-
erties of MI tests including: exact robustness to variation
of nuisance parameters, finite-sample min-max optimality
(in some cases), and distributional robustness, i.e. insensi-
tivity to changes in the underlying probability distribution
over a particular class. Furthermore, in some important
cases the MI test gives a reasonable test while the GLRT
has worse performance than the trivial coin flip decision rule
[1]. However, in other cases, like the deep hide target detec-
tion problem, there are regimes (SNR, number of wireless
users, coherence bandwidth) for which either of the MI and
the GLRT can outperform the other. We will discuss con-
ditions under which the MI tests can be expected to outper-
form the GLRT in the context of a radar imaging and target
detection application.

1. INTRODUCTION

In automatic target recognition, the most important issue is
reliable detection which is robust to target and clutter vari-
ability, yet maintains the highest possible discrimination ca-
pability. In the past, most adaptive radar and array detection
problems have been formulated under the general assump-
tion that the target has known form but unknown ampli-
tude in Gaussian noise whose covariance matrix is totally
unknown or unstructured. The nature of this assumption
led to the application of the general multivariate analysis of
variance (GMANOVA) model [2] to the measurements, and
the subsequent development of many detection algorithms.
With this assumption and the GMANOVA model, Kelly [3]
derived the constant false alarm rate (CFAR) test using the
generalized likelihood ratio (GLR) principle.

However, when a prior structure of the clutter covari-
ance matrix exists, one can expect an improvement in per-
formance by exploiting this a priori structure. Also when
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tractable, the reduced parameterization of the structured co-
variance can be introduced and the GLR test can be applied.
For adaptive arrays, Bose and Steinhardt [4] proposed an MI
detector which outperforms the Kelly’s test when the clutter
covariance matrix is assumed to have a certain known block
diagonal structure. This work was the springboard in [5] for
synthetic aperture radar (SAR) imaging target detection in
the difficult deep hide scenario where the target parks along
a known boundary separating two adjacent clutter regions.
Indeed, under the assumption that the two clutter types are
statistically independent, the spatial covariance has a simi-
lar block diagonal structure to that in [4] and this structure
was used in [5] to derive another MI test.

In this paper we extend the work reported in [5] by de-
riving the form of the GLR test and comparing the invariant
methods of [4] and [5]. Derivations of the GLR and MI
test statistics for the case of structured covariance are not
trivial, and the details are omitted due to space limitations.
Here we compare the GLR tests to the MI tests on the basis
of simulation for the deep hide scenario when the bound-
ary can be accurately estimated. We establish that the MI
test outperforms the GLRT when the target-to-clutter ratio
is low.

2. GLR VS. INVARIANCE PRINCIPLES

Fig. 1 displays the magnitude of a complex valued SAR
clutter image of a rural scene consisting of two clutter types
(forest canopy and grass field) separated by a boundary. The
deep hide target detection problem treated in this paper is
to detect a target that straddles the boundary between re-
gions A and B. We make the assumptions that the complex
clutter image is circular Gaussian with zero mean and that
two spatial samples taken respectively from region A and
region B are uncorrelated. By centering a 1-pixel wide ver-
tical window with fixed vertical extent at the boundary (or
its estimate) in Fig. 1 and sliding it over the image from
left to right we obtain a reduced image (Fig. 10) with a
horizontal boundary. Any of the vectors repacked from the
clutter-alone image chips shown in Fig. 10 will be multi-
variate complex Gaussian with zero mean and covariance
matrixR having block diagonal structure. Then by con-



catenating these vectors we obtain the measurementX =
[x1; : : : ; xn]:

X = a s bH +N

wheres is then-dimensional target signature with unknown
amplitudea, b is the target location vector, andvec(N) �
CN (0;R

N
In), i.e. N follows a multivariate zero-mean

complex normal distribution with covarianceR
N
In. Note

that if bH = [1; 0; : : : ; 0], the first columnx1 is the primary
data which may contain the target. The goal is to construct a
test that a given chip contains clutter alone (H0) vs. clutter
plus target (H1) where target spatial structure is known. We
separate the clutter scenarios into three different cases:

� Case 1:R =

�
RA O

O RB

�

(totally unknown clutter in regions A and B)

� Case 2:R =

�
RA O

O �2
I

�

(clutter known in region B up to variance�2)

� Case 3:R =

�
RA O

O I

�

(clutter known exactly in region B)

whereRA > 0,RB > 0, and�2 > 0.
Since there exists no uniformly most powerful test for

these structured covariance matrices, the invariance princi-
ple can be applied in addition to the GLR method as good
candidates for sub-optimal CFAR tests. It can be shown
that in the case of real observations the GLR is closed form
while in the complex case the GLR has explicit form up
to rooting a complex quartic equation in the complex tar-
get amplitude parametera. GLR test statistics are listed in
Table 1 where the measurement matrix is partitioned as

X =

�
XA

XB

�
=

�
xA1 XA2

xB1 XB2

�

and each column corresponds to pixel values in a different

chip. The known target signature iss =
�
sHA sHB

�H
, and

p(a;XA) = (xA1 � asA)
H (XA2X

H
A2)

�1(xA1 � asA)

q(a;XB) = trf(XB � asBe
T
1 )

H (XB � asBe
T
1 )g:

Here the subscripts denote the two different regions A and
B. xA1(mA�1) andxB1(mB�1) denote pixels in the chip
which is being tested for containing the target.

As described in [2], the MI test is constructed by apply-
ing the likelihood ratio test to a statistic called the maximal
invariant. The maximal invariant is the lowest dimension
statistic summarizing the data yet preserving target vs. clut-
ter discrimination capability for the specific parameter un-
certainty. Using the maximal invariant approach, Bose and

RA RB Log GLR : 1
n
ln� = maxaf�g

? ? ln
h
1+p(0;XA)
1+p(a;XA)

i
+ ln

h
1+p(0;XB)
1+p(a;XB)

i
? �2

I ln
h
1+p(0;XA)
1+p(a;XA)

i
+mB � ln

h
q(0;XB)
q(a;XB)

i
? I ln

h
1+p(0;XA)
1+p(a;XA)

i
+ 1

n
[q(0;XB)�q(a;XB)]

Table 1. GLR tests for Case 1, 2 and 3. (The notation ‘?’
denotes ‘unknown’ quantity in the model)

Steinhardt [4] derived an MI test for Case 2, and modified
the Kelly’s test [3] to fit Case 1. However, using a different
function of the maximal invariant we have obtained another
MI test for each case which reduces exactly to the unstruc-
tured GLR test when a target is entirely contained in one of
regions A or B. The MI tests are listed in Table 2 where

qA = 1 + xHA1(XA2X
H
A2)

�1xA1 ; v2 =
trfXH

BXBg

mB

qB = 1 + xHB1(XB2X
H
B2)

�1xB1 ; v3 = n:
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������
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2
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3
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3
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? ? KA = qAXA2X
H
A2; KB = qBXB2X

H
B2

? �2
I KA = qAXA2X

H
A2; KB = v2I

? I KA = qAXA2X
H
A2; KB = v3I

Table 2. MI tests for Case 1, 2 and 3

3. NUMERICAL COMPARISONS

To compare the performance of the GLR and MI tests de-
rived under the three structured covariance assumptions, ROC
curves are generated for each case. In Figs. 2-4, 8 differ-
ent tests are compared case by case: structured Kelly’s test
matched to Case 1, Bose and Steinhardt’s test matched to
Case 2, and the three MI tests and the three GLRTs matched
to one of the three cases. In all cases, these figures confirm
that the tests derived under the matched assumption outper-
form those which are mismatched.

Of particular interest, however, are the crossings in the
low probability of false alarm (PFA) regions between the
GLR tests and the MI tests. In Fig. 2, we can observe
the gains in probability of detection (PD) of MI test 1 over
GLRT 1 forPFA < 0:1. Moreover, it should be noted that
the structured Kelly’s test is outperformed by MI test 1 in
low PFA and by GLRT 1 in highPFA. Also in Case 2 (Fig.
3), both MI test 2 and GLRT 2 outperform Bose and Stein-
hardt’s matched test and it appears that MI test 2 slightly



outperforms GLRT 2 for lowPFA. These observations also
hold for mismatched cases: between MI test 1 and GLRT 1
in Case 2/3 (Figs. 3/4), and between MI test 2 and GLRT 2
in Case 1 (Figs. 2). For Case 3 (Fig. 4), the ROC curve for
GLRT 2 approaches that of the matched GLRT 3 since large
number of pixels (mBn = 60� 61) provide sufficiently ac-
curate estimates of the variance in region B.

In Figs. 5 and 7, ROC curves are compared with dif-
ferent ratios ofmA=mB from those of Figs. 2-4. Kelly’s
test for Case 1 and Bose and Steinhardt’s test for Case 2 are
shown to be more sensitive to the dimensional parameters
mA andmB .

The relative advantages of MI vs. GLR tests are more
closely investigated in Fig. 6 and 8. In (a) of both figures,
we increasedn while fixing SNR. Note that the GLR and
MI tests have ROCs which are virtually indistinguishable
for largen. In (b), however, by increasing SNR while fixing
n, thePFA positions of the crossings of the ROCs for the
GLR and MI tests decreased. In particular, if one fixes a
level of false alarm, sayPFA = 0:1, then note from Fig. 6
(b) that the GLR test dominates the MI test for SNR = 19dB
while the reverse is true for SNR = 7dB.

Next, we consider an application to real SAR imagery
in Fig. 1. The image shown is a rural scene near Redstone
Arsenal at Huntsville, Alabama, reproduced from the data
collected using the Sandia National Laboratories Twin Ot-
ter SAR sensor payload operating at X band. The bound-
ary was hand extracted and a9 � 7 SLICY target extracted
from Fig. 9 (e) was inserted so that it straddles the bound-
ary. The images in Fig. 9 correspond to the same target but
viewed at different pose angles of azimuth. The data from
which these images are reproduced was downloaded from
the MSTAR SAR database at the Center for Imaging Sci-
ence (www.cis.jhu.edu). With the realigned image in Fig.
10, structured Kelly’s test, MI test 1, and GLRT 1 statistics
are calculated and maximized over each possible location
along the boundary. Table 3 shows the minimum magnitude
of amplitude required for each test to detect the target at the
correct location. In this experiment both the GLR and MI
tests perform as good as the structured Kelly’s test.

Test jaj

Structured Kelly 1:407� 10�2

MI Test 1 1:454� 10�2

GLRT 1 1:462� 10�2

Table 3. Amplitudes required in magnitude for detection of
the target at the correct location.

Finally, we maximized the test statistics over the differ-
ent target poses in Fig. 9 as well as over all possible loca-
tions along the boundary. Only the peak values for 9 target
signatures are plotted in Fig. 11, and all the tests success-
fully picked the signature at the true pose and location.

4. CONCLUSION

The deep hide scenario considered in this paper complicates
the design of optimal target detectors. This scenario gives
rise to block diagonal constraints imposed by the clutter co-
variance structure. Both GLR and MI tests can be derived
under these constraints. Numerical results indicate that nei-
ther GLR nor MI tests dominate the other in terms of ROC
performance. The GLRT outperforms the MI test only when
high estimator accuracy is attainable, e.g. for a large num-
ber of samples, but otherwise MI test is better especially in
low PFA. Therefore, MI test not only plays an important
role as an alternative to GLRT, but also has the desirable
property of reliable performance in lowPFA with a small
number of snapshots. The results in this paper are general-
izable to other applications where invariance principle can
be applied.
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Fig. 1. SAR clutter image with SLICY target in the bound-
ary at column 305.
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Fig. 2. ROC curves for Case 1 with SNR = 22dB (mA =
50;mB = 50; n = 51).
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Fig. 3. ROC curves for Case 2 with SNR = 10dB (mA =
40;mB = 60; n = 61).
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Fig. 4. ROC curves for Case 3 with SNR = 10dB (mA =
40;mB = 60; n = 61).
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Fig. 5. ROC curves for Case 1 with SNR = 19dB (mA =
60;mB = 40; n = 61).
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(a) SNR = 7dB
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Fig. 6. Comparison of GLR and MI tests for Case 1 by
(a) varyingn with fixed SNR and (b) increasing SNR with
smalln (mA = 60;mB = 40).
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Fig. 7. ROC curves for Case 2 with SNR = 10dB (mA =
50;mB = 50; n = 61).
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Fig. 8. Comparison of GLR and MI tests for Case 2 by
(a) varyingn with fixed SNR and (b) increasing SNR with
smalln (mA = 50;mB = 50).
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Fig. 9. SLICY canonical target images at elevation39� and
different azimuth angles. Image in (e) is inserted in Fig. 1.
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Fig. 10. Image realigned along the extracted boundary. SL-
ICY target is located at column 305 withjaj = 0:015.
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Fig. 11. Peak values obtained for 9 different target images.


