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ABSTRACT a region which does not contain the true parameter. A drawback of

. . . - . these tests is that under model mismatch, they cannot distinguish
Given a relative maximum of the log-likelihood function, how to |, veen local and global maxima

assess whether it is the global maximum? This paper investigates
a statistical tool, which answers this question by posing it as a
hypothesis testing problem. A general framework for construct-
ing tests for global maximum is given. The characteristics of the
tests are investigated for two cases: correctly specified model an

model mismatch. A finite sample approximation to the power is In addition, we derive an approximation of the power of the tests,

given, which gives a tool for performance predlctlon.and a mea- \yhich is useful for predicting performance and provides a measure
sure for comparison between tests. The tests are illustrated for,

two applications: estimating the parameters of a Gaussian mixturefor comparing between tests. For cases where model mismatch
pp ons. estimating the p . “can occur, a method is given for off-line calibration of the tests to
model and direction finding using an array of sensors - practical

roblems that are known to suffer from local maxima improve performance. Finally, we illustrate the method for two
P ' parameter estimation problems.

The contribution of this paper is as follows. For correctly spec-
ified models a general framework for constructing tests that a lo-
cal maximum is the global maximum is presented. Then a class
dof new tests is given, which are simpler to compute and in some
cases give better performance than previously proposed methods.

1. INTRODUCTION
2. PROBLEM FORMULATION

The maximum likelihood (ML) estimation method is one of the ) ) N
standard tools for parameter estimation. A major drawback of this Consider a collection of i.i.d. P x 1 random vectory, ¢t =
method when applied to non-linear estimation problems is the fact 1, - - -, » drawn from an unknown density(y). The information
that the associated likelihood equations required for the derivation We Want to extract from the data is encoded if"a< 1 parameter
of the estimator rarely have a closed form analytic solution. To Vectoré = [61, 62, ..., 6x]", through which we define aregular
solve the resulting global optimization problem, initiate and con- Parametric class [5] of density functiofg(y, 8) : 6 € ©}.
verge methods are often applied. These methods are based on an Denote byL,(Y,;0) = =37  log f(y+;0) the normal-
initial guess (often found by a simpler method) which is followed ized log-likelihood function of the measurements, whafg =
by a local, often iterative, optimization procedure (e.g. the EM [yi1y2 ... y»]. Denote byf, = argmaxece Ln(Yn;0) the
algorithm). As a consequence, the performance of these meth-ML estimator (MLE).
ods highly depends on the starting point. In particular, if the log- Denote byE {-} the expectation with respect to true under-
likelihood function is not strictly convex and there is no available . ; * A .
method that is guaranteed to provide an initial guess within the at- !?-/;‘lgoienqgti/g;};)';%% I2et09f — argmaxoco B {log /(y:9)}.
traction region of the global maximum, then there is a risk that a T '
local search will stagnate at a local maximum. This phenomenon
leads to large-scale estimation errors.

White [6] assert that under possible

model mismatctd,, 3 6* and\/n(8,, — 6*) is asymptotically

zero-mean Normal distributed with covariance maig40*) =
—1 * * —1 * 2 .

The maximum likelihood framework would benefit from an & (67)B(67)A7(67), threA(e) = E{Vjlog f(v;6)},
answer to the following question: Given a relative maximum of B(6) = E {v? log f_(Y§ 0)Ve log f(y; 6)}. When the model is
the log-likelihood function, how to assess whether this is the global correctly specified, i.eg(y) = f(y,6") for some unique® €
maximum? In this paper we take a statistical approach to answer-©. this result becomes the standard consistency, and asymptotic
. . . . . . . . H * _ o 0y _
ing this question. Specifically, given a relative maximum, a statis- Normality result for the MLE, wher@™ = §°, andC(6”) =
tical test is performed to test whether or not it is the global maxi- —A ™ (6”) = B™ (") is the inverse of the Fisher information
mum. matrix (FIM).

Several global maximum tests have been proposed [1, 2, 3].  Denote byd,, one of the relative maxima of the log-likelihood
While applied to cases where the statistical model is correct, thesefunction. The problem addressed in this paper can be formulated
tests are based on tests for model mismatch [4] and the observatioms a hypothesis testing problem. Givén decide between
that a local maximum of the log-likelihood function in a correctly
specified model is in fact a global maximum of a particular mis- Ho: 6, =
specified model - a model in which the parameters are restricted to H,: 6
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3. CONSTRUCTION OF THE TESTS moments of the distribution induced by the estimated parameter
o S should be in good agreement with the empirical moments of the
We start by deriving the asymptotic distribution of a general class data. Therefore, these tests are especially suited for cases in which

of statistics which are functions @, andY,.. This will lead to the underlying physical model specifies a simple parametrization
the construction of tests of (1). A similar treatment is given in of one of the moments of the data. For example assume that the
the context of model specification testing in [4]. The tests given first moment ofy is modelled byu(8) = [ yf(y;0)dy, where
in [1, 2, 3] can be derived as special cases of this construction. u(-) is a pre-specified non-linear functlon Then to construct a
Consider a vector valued functiaf(y,8) : R” x ©® — R?, test, which is based on the first momeaty, 6) is taken to be
and define the vectois, (6) = 1/n>_7_, e(y+,0), andh(0) = e(y,0) =y — u(8). This choice ofe(y, 6) leads toh,,(6,,) =
E{e(y,0)}, theQ x K matrixH,,(6) = 1/n>";_, Vge(y:,0), L5yt — u(8y). If the first moment of the data does not de-
and its expectatiobl (). Finally, define they x @ matrix V(6) pend ond or is weakly dependent, it is possible to base the test
by on any other moment. For example, one can ke$e 6) on one
1 element of the correlation matrix(y, 0) = [y, [y]. — Ri;(0),
E{[e(v,6) —h(6) ~H(6)A™ (0)Vlog f(y; )] x whereR.;(0) = [ [y], [y], f(y;6)dy is pre- spec?fied from the
[e(y7 0) — h(0) — H(Q)Afl(g)v log f(y; 9)] T} , underlying model. Tests that are based on the moments of the data
are easier to compute than the tests available in the literature, and,
and its empirical estimat¥, (6) by as will be shown in the simulation results, remarkably do not re-

duce performance.

1 . In Sec. 6, moment based tests are compared to Biernacki’s
P Z [e(ytv 6) —hn(6) — Hn(0)A, (0)Vlog f(y+; 9)] X test [3], in whiche(y, 8) =log f(y; 8)— [log f(y; 0) f(y; 0)dy.
=t r Thus, Biernacki's test compares the log-likelihood evaluatethat
le(y+,0) —h,(8) —H.(0)A,' (0)Viog f(y:;0)] and its expected value, which is calculated a@,ifis the true pa-
rameter.
and assume thaf(y, 0) is such thaV (™) is nonsingular.
Theorem 1 4. MISSPECIFIED MODELS
n [hn(é\") _ h(g*)} T v (8,) [hn(é\n) _ h(o*)] @) If the test statistic is designed under the assumption that the model

is correctly specified but the actual underlying distribution is out-
is asymptotically distributed as Chi-square wifhdegrees of free-  Side the parametric family, then (3) may be violated. In this case,
dom (3). S, will not be x2, distributed and hence the specification of the
level is incorrect. Whei(6*) # 0 it can be shown that the finite
Proofs of all theorems are given in [7]. Theorem 1 is used Sample distribution of the statistic is approximately a non-central
to construct tests for global maximum in the following manner. X¢ With noncentrality parametek,, = nh™ (6*)V ™" (6")h(8"),

Choose a functior(y, 8) having zero mean at the poit, that denoted by, (Ar). Therefore, specifying the level of the test ac-
is cording to theXQQ distribution is no longer valid, and in fact, as the
h(6") = E{e(y,0")} = 0ox1 - 3 number of samples increases, the false alarm probability increases

This function will be called thglobal-maximum validation func- to one regardiess of the test threshold.

tion. Theorem 1 asserts that undés, and when (3) is satisfied, However, suppose an upper boundAn can be found, say
the statistic un. Then by setting the threshold according to the non-central

Chi-square critical valué’ 2 2 (u )(1 — a)) we insure that the false

Sn = nhy, (8,)V, " (8n)hn(6,) | 4 alarm probability decreases (instead of increases)mitfhis will

be demonstrated in Sec. 6.1.
with V ( ») computed by (2) is asymptotlcalbyﬁg distributed.

Denote byFX%( )theXQ cumulative distribution function. There-

fore, a false alarm levek test of the hypotheses (1) is made by
comparingS, to the threshoIdF (1 — a). If S, exceeds the

5. FINITE SAMPLE POWER APPROXIMATION

To derive the power function, the distribution 6f, underH,
threshold Hy is rejected and one concludes that the iterative local needs to be approximated. Therefore, assumptions on the structure
search should be reinitiated in the hope of convergence to a differ-of the ambiguity function, defined by(6) = E {log f(y; 0)}, at

ent maximum. Otherwise, the null hypothesis cannot be rejecteddifferent local maxima are required. Assume that the system of
andé,, is declared a global maximum. If (3) does not hold for any equationsVa(6) = Ok x1, has a finite number of solutions @

other local maximum of the ambiguity function, then the test is and each one of these solutions is an interior poir®ofin addi-

consistent, i.e., it has asymptotically unit power for ang (0, 1) tion, at each of these points, the matki¥a(0) is either negative
(see [1, 3], and the discussion in Sec. 5). definite or positive definite. The ambiguity functiaiig) has its
global maximum a®*. Denote byd™, m = 1,..., M, the other

3.1. Moment Based Tests M local maxima ofu(8).

Moments based tests were previously proposed as tests for modeTheorem 2 3N such thatvn > N, L,,(Y,;0) hasM + 1 local
mismatch [4] but were not applied to the problem of discrimina- maximaw.p.1. Furthermore, the location of these relative maxima
tion of local maxima. The tests are based on the property that theare strongly consistent estimates #&trand6™, m =1,..., M.



Let ®™ be a closed neighborhood 6f", in which 8™ is the : o
highest relative maximum ai(@). Define them'th local-MLE
by 5:? = argmaxgecem Ln(Yn;0),m=1,..., M. Theorem 2
asserts that for sufficiently large 6., will be equal to one of the
local-MLEs@™. The local-MLE@™ is the MLE associated with
the model{ f(y,0) : 6 € ©®™}. By applying Theorem 1 we
obtain the following:

o
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Corollary 1 If V(™) is nonsingular,

n [h, (07) — h(G’")}TV;l(ﬁZL") ha(07) — h(gm)} (5) Fig. 1. Gaussian mixture: performance when the model is cor-

rectly specified.

is asymptotically(é distributed.

Hence, for the test to be informative for the hypothedg®™) : - ‘ e ower
must not equabgx:. Otherwise the statistic is asymptotically // = i
identically distributed under the two hypotheses. Wlten = 1
6 andh(0™) # Oxx1, the test statistic (4) is approximately — £..[ |
xo(en), wheree)” = nh™ (0™)V~'(6™)h(6™). Now, recall- & oap 1
ing that for a given leveky, the threshold of the test is set to > i
FX‘21(1 — a), the finite sample power of the test against a local .| 4

Q o
maximum at9™ can be approximated by - o e % amborofsammes 0 te° e 200
~ p— 71 _ . . . .
fr =1 Fxég(e?)(Fxg) (1-a)) . ®) Fig. 2. Gaussian mixture: performance under model mismatch.

Therefore the power of the test against a local maximufi’ats
characterized bh™ (6™)V~'(6™)h(#™), which will be called
the power characteristic of the teas a function o®™. For any the variances, and the mixing probabilities are assumed known. In
fixed z, lima—oo Fi2 (ay(z) = 0. Hence, if the power charac- the simulation, the true paramete#is= [0, 3], the variances are
2 o? = 1, 03 = 0.5, the mixing probabilities arg; = 1 — p» =
0.35 and it is known tha® = [—1, 4] x [—1, 4]. In this setting,
the likelihood function has two relative maxima.

Biernacki's test [3] and the first moment test of Section 3.1
6. SIMULATION RESULTS were applied to this problem. In Fig. 1, the empirical level and
power, and the analytical approximate power (6) are presented,
&vhere B and M are shorthand notations for Biernacki's test and

teristic is not identically zero, the level of the test approadhas
n increases. In Sec. 6.1 an example will be given in which this
approximation is accurate even for small

The asymptotic regime assumed throughout the paper raises th ; !
question of small sample performance. In this section, tests for the first moment test, respectively.
global maximum are evaluated through00 Monte Carlo itera- Next, the robustness of the tests to model mismatch was eval-
tions. By computing the empirical level and power of the tests, uated. The mismatch is due to misspecified values of the param-
we evaluate: (a) the accuracy of the asymptotic approximation eters that are assumed known, namely the variances of the two
F><_21(1 — a) for the levela threshold of the test, (b) how fast mixtures. A discussion on scenarios in which this kind of model
therowean of the test approachesas the number of samples mismatch occurs was recen@ly given in [10]. The MLE and the
tests were computed according to the model given before but the

increases, and (c) how accurate is the finite sample power approx | ted ding to a diff t model. Th
imation (6). Finally, the sensitivity of the tests to model mismatch samp'es were generaled according 1o a dilierént model. The new
4rr_10del, which is outside of the parametric class, is the same Gaus-

is examined and the threshold adjustment procedure of Section sian mixture but with variances? — 0.75 ando? — 0.4. As

is demonstrated. i . . .
can be seen in Fig. 2, the moment test is robust to this model mis-
) . . . match whereby Biernacki’s test suffers as the number of samples
6.1. Estimation of Gaussian Mixture Parameters increase. Biernacki's test detects the model mismatch and rejects

The problem of estimation of Gaussian mixture parameters arisesth® null hypothesis even when the relative maximum is indeed the
in non-parametric density estimation [8] and a variety of cluster- global one. The moment test is not sensitive to this model mis-
ing problems [9]. The MLE for this problem is usually found by match. Even though the MLE is sllght_ly |n_con5|ster_1t in this case
using the EM algorithm. In [9], the authors describe a method that (6" = [—0.0248 3.0052]), equation (3) is still approximately sat-
attempts to find the global maximum. However, even this state of iSfied and the performance of the test is preserved.
the art method might stagnate at a local maximum, and therefore,  In Fig. 3 the effect of the threshold correction of Sec. 4 is pre-
tests for global maximum are useful. sented. An upper bound ofy,, for each of the tests was found
We consider the univariate case, in which independent scalarunder the assumption that the maximal deviation from the nomi-
measurements are generated according to a two component uninal values ob? ando? are0.25 and0.1 respectively. Due to the
variate Gaussian mixture density, where the parameter vector conthreshold correction, the level of the tests is decreasing rather than
sists of the two mean® = [ 72]”. The number of components,  increasing as increases, at the price of reduced power.
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Fig. 3. Gaussian mixture: performance of the tests under model

mismatch, after threshold correction.
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Fig. 4. Direction finding: performance when the model is correctly

specified.

6.2. Direction Finding in Array Signal Processing

We adopt the standard narrow band model of [11]. We consider
the estimation of the directions of two uncorrelated narrow band

Gaussian sources using a uniform linear array’of= 4 sensors
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with A\/2 spacing between elements. The received signal model [3]

is given byy; = D(8)s; + e;, wherey, € CF is the noisy
measurement vectob () = [d(0:1), d(62)], where[d(0)], =
exp{jpmcos(6)}, p =0, 1,2, 3 is the steering vectos, contains
the two signal components, amrg is a temporally and spatially

white circular Gaussian noise. This signal model corresponds to
the so called stochastic signal model in which the received sig-
nal at the array is distributed as a temporally white zero-mean

circular Gaussian random vector with covariance maig) =

D(0)K,D(0) + o1, where, due to an uncorrelated sources as-

sumption K, = diag(c?,02), o2, ando?, are the two source

variances, ana? is the noise variance. The noise and signal

(4]

(5]

(6]
(7]

variances are assumed known. The unknowns are the source di-

rections, = [61, 62]7. In the simulations® = [1.4, 1.7]%,
[021, 02] = [1, 4], ando® = 1. In this problem, the likelihood
function has two relative maxima.

Biernacki's test [3] and a second moment test which is based
on the first off diagonal element of the covariance matrix were
applied. In Fig. 4 it is seen that for this choice of parameters the

second moment test outperforms Biernacki’s test.

Next, the robustness to model mismatch was tested as the nois
variance was altered fromnto 1.2 without changing the parametric
class. In Fig. 5 it is seen that Biernacki's test is more sensitive to

this kind of model mismatch than our second moment test.

7. CONCLUSIONS AND FUTURE WORK

(8]

9]

T10]

(11]

This paper has presented a method for detecting a case in which a

local search for the maximum likelihood has stagnated at a local

T T T
140 160 180 200
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5. Direction finding: performance under model mismatch.

maximum. This is a useful tool in the solution of the global op-
timization problem associated with the ML method. Because ex-
isting tests are sensitive to model mismatch, the general treatment
given here is necessary for implementing this tool in practice. The
framework given for the construction of tests and the power anal-
ysis enable us to pose fundamental questions of optimality: Given
a statistical model, what is the best choicee¢y, 8) in terms of
achieving maximum power for a given level with minimum sensi-
tivity to model mismatch? This remains an open question.
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