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Abstract

This paper is concerned with power-weighted weight functionals associated with a minimal graph span-
ning a random sample of points from a general multivariate Lebesgue dengityer [0, 1]<. It is known
that under broad conditions, when the functional applies power expanent(1,d) to the graph edge
lengths, the log of the functional normalized b{—")/¢ is a strongly consistent estimator of théryi en-
tropy of ordero: = (d—+y)/d. In this paper, we investigate almost sure (a.s.) 8pahorm (r.m.s. fop = 2)
convergence rates of this functional. In particular, wher v < d — 1, we show that over the space of
compacted supported multivariate densitfesuch thatf € >,(3, L) (the space of Elder continuous func-
tions),0 < 3 < 1, the £,-norm convergence rate is bounded abovedof ~*5/(«5+1) 1/4)) " \We obtain
similar rate bounds for minimal graph approximations implemented by a progressive divide-and-conquer
partitioning heuristic. We also obtain asymptotic lower bounds for the respective rates of convergence,
using minimax techniques from nonparametric function estimation. In addition to Euclidean optimization
problems, these results have application to non-parametric entropy and information divergence estimation;
adaptive vector quantization; pattern recognition; and computational geometry.
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1 Introduction

It has long been known that, under the assumption @idependent identically distributed (i.i.d.) vertices[in1]¢,

the suitably normalized weight function of certain minimal graphs dveimensional Euclidean space converges almost
surely (a.s.) to a limit which is a monotone function of theni entropy of the multivariate densitfy of the random
vertices. Recall that the@Ryi entropy o-entropy is defined as

1
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Ha(f) = 1 log [ f*(@)de.

Graph constructions that satisfy this convergence property include: the minimal spanning tree{M&anest neighbors

graph ¢-NNG), minimal matching graph (MMG), traveling salesman problem (TSP), and their power-weighted variants.
See the recent books by Steele [1] and Yukich [2] for introduction to this subjeaR(An'/¢) bound on the almost sure

(a.s.) convergence rate of the normalized weight functional of these and other minimal graphs was obtained by Redmond

and Yukich [3, 4] when the vertices are uniformly distributed doet]?.

In the present paper we obtain bounds on a.s. &pdorm (r.m.s. forp = 2) convergence rates of power-weighted
Euclidean weight functionals of orderfor general Lebesgue densitigsover [0, 1]¢, for which f € $4(83, L), the space
of Holder continuous functions with Lipschitz constdntand0 < 3 < 1, and fz~7 is integrable. Here the integer
dimensiond is greater than one ande (1, d) is an edge exponent which is incorporated in the weight functional to taper
the Euclidean distance between vertices of the graph (see next section for definitions). As a special case of Proposition 4,
we obtain & (n~*#/(«#+1) 1/4)) hound on the r.m.s. convergence. This bound implies a slower rate of convergence than
the analogou® (n~'/?) rate bound proven for uniforrfi by Redmond and Yukich [3, 4]. Furthermore, the rate constants
derived here suggest that slower convergence occurs when eitherég)(Bntropy of the underlying densifyor the
Lipschitz constanL is large. We also derive lower bounds on the respective convergence rates by recasting the problem as
that of estimating the &yi entropy, or equivalently’ f*(x)dx, over the non-parametric class of densitfes (3, L).
For this, we use standard minimax techniques from non-parametric function estimation. Corollary 3 constitutes the main
result of this paper in the form of upper and lower bounds on the rates of convergence of any continuous quasi-additive

Euclidean functional.

We also obtairC,-norm convergence rate bounds for partitioned approximations to minimal graphs implemented by the

following fixed partitioning heuristic: 1) disseftt, 1] into a set ofn? cells of equal volumes/m?; 2) compute minimal
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graphs spanning the points in each non-empty cell; 3) stitch together these small graphs to form an approximation to
the minimal graph spanning all of the points|in 1]¢. Such heuristics have been widely adopted, e.g. see Karp [5],
Ravi et al.[6], and Hero and Michel [7], for examples. The computational advantage of this partitioning heuristic comes
from its divide-and-conquer progressive-resolution strategy to an optimization whose complexity is non-linetrein
partitioned algorithm only requires constructing minimal graphs on small cells, each of which typically contains far fewer
thann points. In Proposition 5 we obtain bounds Gp-norm convergence rate and specify an optimal “progressive-

resolution sequenceh = m(n), n = 1,2, ..., for achieving these bounds.

A principal focus of our research on minimal graphs has been on the use of Euclidean functionals for signal processing
applications such as image registration, pattern matching and non-parametric entropy estimation, see e.g. [8, 9, 7, 10, 11].
Beyond the signal processing applications mentioned above these results may have important practical implications in
adaptive vector quantizer design, where tl@R entropy is more commonly called the Panter-Dite factor and is related
to the asymptotically optimal quantization cell density [12, 13]. Furthermore, as empirical versions of vector quantization
can be cast as geometric location problems [14], the asymptotics of adaptive VQ may be studied within the present
framework of minimal Euclidean graphs. Other applications of the convergence rate results of this paper include classical
problems in Euclidean optimization theory, computational geometry and operations research; for further details see [1]

and [2].

The outline of this paper is as follows. In Section 2 we briefly review Redmond and Yukich’s unifying framework of
continuous quasi-additive power-weighted edge functionals. In Section 3 we give convergence rate upper bounds for such
functionals with general Blder continuous density. In Section 4 we extend these results to partitioned approximations.

In Section 5 we derive lower bounds to the convergence rates. Finally, in Section 6, we draw some conclusions and discuss

future work.

2 Minimal Euclidean Graphs

Since the seminal work of Beardwood, Halton and Hammersley in 1959 [15], the asymptotic behavior of the weight
function of a minimal graph such as the MST and the TSP over i.i.d. random pgints {X4,...,X,} asn — oo

has been of great interest. The monographs by Steele [1] and Yukich [2] provide two engaging presentations of ensuing



research in this area. Many of the convergence results have been encapsulated in the general framework of continuous
and quasi-additive Euclidean functionals recently introduced by Redmond and Yukich [3]. This framework allows one to
relatively simply obtain asymptotic convergence rates once a graph weight function has been shown to satisfy the required

continuity and subadditivity properties. We follow this framework in this paper.

Let F' be a finite subset of points ij, 1]%,d > 2. A real-valued function_. defined onF is called aEuclidean

functional of ordery if it is of the form

_ 3 Y
Ly(F) = min » _ |e(F)| @)
ecl
wheref is a set of graphs, e.g. spanning trees over the poinks inis an edge in the grapk| is the Euclidean length

of e, and~ is called theedge exponerdr power-weighting constantWe assume throughout this paper that v < d.
2.1 Continuous Quasi-additive Euclidean Functionals

A weight functionalL.,(X,,) of a minimal graph orj0, 1] is a continuous quasi-additive functional if it can be closely
approximated by the the sum of the weight functionals of minimal graphs constructed on a dense parfitjaif of
Examples of quasi-additive graphs are the Euclidean traveling salesman (TSP) problem, the minimal spanning tree (MST),
and thek-nearest neighbor graph-NNG). In the TSP the objective is to find a graph of minimum weight among the set
C of graphs that visit each point i&,, exactly once. The resultant graph is called thi@imal TSP tourand its weight

is LT3 (X,) = mincee Y ¢ |e|”. Construction of the TSP graph is NP-hard and arises in many different areas of
operations research [16]. In the MST problem the objective is to find a graph of minimum weight among theZgraphs
which span the sampl&,,. This problem admits exact solutions which run in polynomial time and the weight of the
MST is LQ/IST(XTL) = minyer ) o le|7. MST's arise in areas including: pattern recognition [17]; clustering [18];
nonparametric regression [19] and testing for randomness [20]4TEG problem consists of finding the s&f; ; of
k-nearest neighbors of each poikt in the sett,, — {X,}. This problem has exact solutions which run in linear-log-
linear time and the weight i85 N4 (x,,) = 37, 3", |, le]”. Thek-NNG arises in computational geometry [21],

clustering and pattern recognition [22], spatial statistics [23], and adaptive vector quantization [24].

The following technical conditions on a Euclidean functiohalwere defined in [3, 2].

e Null condition L (¢) = 0, whereg is the null set.



e Subadditivity Let 9™ = {Qi}g’fl be a uniform partition of0, 1]¢ into m? subcubesy; with edges parallel to
the coordinate axes having edge lengtis! and volumesn—¢ and Iet{qi}g’f1 be the set of points ifo), 1]¢ that
translate eacky); back to the origin such tha®; — ¢; has the formn 1[0, 1]¢. Then there exists a constaff

with the following property: for every finite subsétof [0, 1]¢
md
Ly(F) <m™" Y Ly (m[F N Q; — gi]) + Cim™” @
=1

e Superadditivity For the same conditions as above®@n m, andg;, there exists a consta6t with the following

property:
Ly(F)zm™ mzd Ly (m[F N Q; — ¢i]) — Com®™7 3)
i=1
e Continuity There exists a constadt; such that for all finite subsefs andG of [0, 1]¢,
|L,(FUG) — L, (F)| < Cs(card G)) /%, @)
where cardG) is the cardinality of the subsét. Note that continuity implies
|L(F) — Ly(G)| < 2C3(card F A )=/, (5)

whereF' A G = (F UG) — (F N G) denotes the symmetric difference of sétandG.

The functionalL ., is said to be aontinuous subadditive functionaf order+ if it satisfies the null condition, sudad-
ditivity and continuity. L., is said to be aontinuous superadditive functionaif order- if it satisfies the null condition,

superadditivity and continuity.

For many continuous subadditive functiondls on [0, 1]¢ there exists aual superadditive functional’. The dual
functional satisfies two properties: L) (F) + 1 > L (F) for every finite subsef’ of [0, 1]¢; and, 2) for i.i.d. uniform

random vector§/ 4, ..., U, over|0,1]¢,
|E[L,(Uy,...,Uy)] = E[L; (U, ..., Uy)]| < Cyn(=771/4 6)

with Cy a finite constant. The condition (6) is called @tlese-in-mean approximatian [2].



A stronger condition which is useful for showing convergence of partitioned approximationsoigitheise closeness

condition
|24 (F) = L5(F)| < o ([card(F)]@=/) @)
for any finite subsef” of [0, 1]<.

A continuous subadditive functiondl, is said to be &ontinuous quasi-additive functiongl L., is continuous sub-
additive and there exists a continuous superadditive dual functianalWe point out that the dual’ is not uniquely
defined. It has been shown by Redmond and Yukich [4, 3] that the boundary-rooted vergionnamely, one where
edges may be connected to the boundary of the unit cube over which they accrue zero weight, usually has the requisite
property (6) of the dual. These authors have displayed duals and shown continuous quasi-additivity and related properties

for weight functionals of the power weighted MST, Steiner tree, TSP, k-NNG and others.

In [2, 3] almost sure limits with a convergence rate upper boun@ ¢t /) were obtained for continuous quasi-
additive Euclidean functionalé, (U4, ..., U,,) under the assumption of uniformly distributed poibfs, ...,U,, and

an additional assumption that, satisfies the “add-one bound”

o Add-one bound

| E[L(Uy,...,Uy1)] — E[L,(Uy,...,U,)] | < Csn™/% (8)

The MST length functional of order satisfies the add-one bound. A slightly weaker bound on a.s. convergence rate also

holds whenL,, is merely continuous quasi-additive [2, Ch. 5]. The'/? convergence rate bound is exact for= 2.

3 Convergence Rate Upper Bounds for General Density

In this section we obtain convergence rate bounds for more general non-unifddertidontinuous Lebesgue densities.

For convenience we will focus on the case thatis continuous quasi-additive and satisfies the add-one bound, although
some of the following results can be established under weaker assumptions. Our method of extension follows common
practice [25, 1, 2]: we first establish convergence rates of the d&an X 1, . .., X ,,)]/n{4=7)/4 for piecewise constant

densities and then extend to arbitrary densities. Then we use a concentration inequality to obtain &,snammd



convergence rates @f, (X1, ..., X,)/n(d=7/d,
3.1 Mean Convergence Rate for Block Densities

We will need the following elementary result for the sequel, whose proof is given in appendix A.

Lemma 1 Letg(u) be a continuously differentiable function ®f¢ R which is concave and monotone increasing over

u > 0. Then for anyu, > 0

g9(u,)

Uo

A] < g(u) < gluo) + g (uo)| Al

9(uo) —

whereA = u — u, andg (u) = dg(u)/du.

A density f(z) over [0, 1]¢ is said to be a block density witln? levels if for some set of non-negative constants

d
{p: )] satisfying> 7", gym—* =1,

CL’) = Z ¢i1Qi (33)

wherelg(z) is the set indicator function af C [0, 1]¢ and{Q;}"; is the uniform partition of the unit cubj@, 1]¢

defined above.

Proposition 1 Letd > 2and1 <y < d — 1. AssumeX ,..., X, are i.i.d. sample points ove0, 1]¢ whose marginal
is a block densityf with m? levels and suppoi§ C [0, 1]¢. Then for any continuous quasi-additive Euclidean functional

L., of order~ which satisfies the add-one bound (8)

‘E[LW(Xl,...,Xn)]/n(d_’”/d - ﬁLV,d/ FUN (@) da
S

<0 ((nm=11) |

wherefy,, 4 is a constant independent ¢f A more explicit form for the bound on the right hand side is

K1+C4 f
(nm—d)1/d JS

xz)dx (1+0(1)), d>2
0 ((nm*d)*l/d> =

K1+C4+8L. ,a f
(nm—34)17d S

z)dz (140(1)), d=2

Proof:



Let n; denote the number of sampléX,, ..., X, } falling into the partition cell); and let{U,}; denote an i.i.d.

sequence of uniform points d6, 1]¢. By subadditivity, we have

d

3

L’Y(Xh"'aXn)

IA
3
3

M I

@
Il
-

Ly (m{X1,..., Xn} NQs —q)) + Cym*

L,(Uy,...,U,,) + Cim*™

since the samples in each partition a@ll are drawn independently from a conditionally uniform distribution gixen

Note thatn; has a BinomialB(n, ¢;m~%) distribution.

Taking expectations on both sides of the above inequality,

d

E[Ly(X1,....X,)] < m™Y E[E[L,(U,...,Uy,)

=1

ng)] + Cym?=7. (9)

The following rate of convergence for quasi-additive edge functiohalsatisfying the add-one bound (8) has been

established fot < v < d[2, Thm. 5.2],

d—~ d—1—~

|E[Ly(Uy,...,U,)] = Br,an @ | < Kin™ a (10)

whereK is a function ofC;, C3 andCs.

Using the result (10) and subadditivity (9) @n, for 1 < v < d we have

d
d—y
—a

m ~ d—~y—1
BlL(X1,...,X,)] < m ) E [ﬁLmdnl + Kyn,; * ] + Cymd=
i=1

—1

d—

md d—v md
=m By, an’ T ;E {(Z) ’ ] +m K ;E [(Z) ! } +Cymd,
(11)

Similarly for the dualL, it follows by superadditivity (3) and the close-in-mean condition (6)

E[L:(Xh . ¢

a6 ()] o e S ()

- n
i=1

forl1 <~ <d.



We next develop lower and upper bounds on the expected values in (11) and (12). As the fyufictiea u” is

monotone and concave over the range 0 for 0 < v < 1, from Lemma 1

ni\Y v -
(*) > pr -t gl (13)
n n
wherep; = ¢;m~%. In order to bound the expectation of the above inequality we use the following bound
E[E—pl}< E{ni—i]ﬁ\/pj-
n n Vn
Therefore, from (13),
n;\v 1/7%
i > v_p. .
2[(G)] =z A= (14)

By concavity, Jensen’s inequality yields the upper bound
e[(5) 1= [e ()] - 1s)

Under the hypothesis < v < d — 1 this upper bound can be substituted into expression (11) to obtain

E[L, (X1,---, n) /]
d
K m d—y—1 C
,d 1 —d 1
< Br, dE o7 (am—a)17d 21@ LM ety @A
Gy

K (d—y—1)/d
(nm—d)1/d /Sf (@)dz + (nm—d)(d=)/d’

= ﬂLw,d/Sf(dﬂ)/d(:c)da: + (16)

Applying the bounds (15) and (14) to (12) we obtain an analogous lower bound for the mean of the dual fuh¢tional

E[LX(X1,..., X,,)]/nld=0/

Z ﬁL.y,d/ fd_T’Y(w)dw_ (nm ’Yd 1/2 / f%*g

Kl + Cy 1
(nm—d)L/d / d 2)de - (nm— )(d 7d 17)

By definition of the dual,

d—~ d—v

ElL,(X1,...,X,)]/n T > BILX(X1,..., X)) /n T —n 5 (18)




which when combined with (17) and (16) yields the result

E[L’Y(levXn)] d—y K+ Cy BL«,,d 15
= - Bbwi/sf T (z)de| < nm_d (hm—d\1/d z)dz + (nm—d)1/2 /sz *(z)dx
T d)(d T (19)
whereK> = max{C4, C>}. This establishes Proposition 1. O

3.2 Mean Convergence Rate for l8lder Continuous Density Functions

To establish upper and lower bounds we adopt the settingtfef continuous density functions.

Recall that the lIder classZ, (8, L) is defined by

a8, L) = {g:19(z) ~ o () < L |o — 21 @, 2 € R}

wherepk. (z) is the Taylor polynomial (multinomial) of of orderk expanded about the point, |.| denotes a norm in
R? and | 3] is defined as the greatest integer strictly less than (1, L) is the set of Lipschitz functions with Lipschitz

constantL andX,;(3, L) contains increasingly smooth functions@mcreases.

Before extending Proposition 1 to this setting we will need to establish an approximation lemnidder ebntinuous

functions.

For 9™ = {Qi}g’;dl a uniform resolutionn partition as defined in Sub-section 2.1, define the resolutiololock
density approximatiog(x) = Z;’i $ilg, (z) of f, whereg; = m? fQ x)dzx. The following lemma establishes how

close (inL,([0, 1]¢) sense) these resolution-block densities approximate functionsily(3, L).

Lemma?2 For0 < 8 <1, let f € ¥4(3, L) have supporsS C [0,1]%. Then there exists a constaf > 0, independent

of m, such that
/ |p(x x)|de < Cs Lm™". (20)
A proof of this lemma is given in Appendix A.

Remark Lemma 2 shows how close, ify (R?) sense, a functiorf € ¥4(3, L) can be approximated by its resolution-

block density approximation. To extend the results in this and the following sections to other classes of functions, all that
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it is needed is an upper bound to the approximation error similar to the one in 20. In [26], we show how to do this for
densities in the Sobolev spabBé!?(R?%), 1 < p < co. The importance of Sobolev spaces derives from the fact that they

include functions that are not differentiable in the usual (strong) sense.

We can now return to the problem of finding convergence rate bounds on quasi-additive Euclidean functionals for non-
uniform densityf. Let {Xl-}?:l be i.i.d. random vectors having marginal Lebesgue density equal to the block density

approximationp. By the triangle inequality,

’E[L,Y(Xl,...,Xn)]/nT fﬁLwd/Sfd’T”(m)dm (21)

< \wal,...,fcn)}/n + Bry.a

d;” _ﬁL%d/S(édjT'y(m)dx

+ ‘E[LV(Xl, X)) = BlLy(Xy,. . X))

/S 6T (x)da - /S 47 (@)da

/T =T+ II+II1

TermI can be bounded by Proposition 1. To bourd consider the following elementary inequality, which holds for

a,b>0,0<~vy<d,

‘a(d*V)/d —pA=/d| < g — p|@-M/d,
and therefore, by Lemma 2 and Jensen’s inequality,
1< 1, .a / (6(@) — f(@)| T d@ < B, 4 Cg LI/ Pl=0/d, (22)
S
whereCj = {4,
The following Proposition establishes an upper bound on ferfrin (21):
Proposition 2 Letd > 2 and1 < v < d. Assume[X;},_, are i.i.d. random vectors ovep, 1]¢ with densityf
¥4(8,L),0 < 3 < 1, having suppors c [0,1]%. Let{f(i}?:1 be i.i.d. random vectors with marginal Lebesgue density
¢, the resolutionm block density approximation ¢f. Then, for any continuous quasi-additive Euclidean functidnal

of order~y

ElL(X1,....,X,)] = E[L(X1,...,X,)]| /n"T < C4Cl LA/ p=Bld=/d, (23)

whereC} = 224=7/dCy,

Proof:

11



As in equation (21), we denote the left hand side of (23) by Ill. First invoke continuity (), of
- - (d—v)/d
n =N/ < 904 E [card({Xl, LX) A {Xl,...,Xn}> ! ] .

To bound the right hand side of the above inequality we use an argument which is discussed and proved in ([25], Theorem

3). There it is shown that i approximates in the £, (R?%) sense:

/|¢ 2)|dz < e,

then, by standard coupling arguments, there exists a joint distrib&iimn the pair of random vectorsX, X) such that

P{X # X} <e. Itthen follows by Lemma 2 and the set inequalitf ;,..., X, } A {X,,...,X,} CU" {X,} A
{X,} that
II1 < 203E [card(u?_l{Xi}A{Xi})(dv)/d} /ntd=/d
n (d—v)/d
< 2C3FE <2§ 1 (X Xi}> ] /ntd="/d
< 205(2nP{X # X1 })@0/d pld=n/d < 9QRd=m)/dcy(d=1)/d

where the second inequality follows from the faatd ({Xi} A {XJ) € {0,2}. Finally, by Lemma 2 we can make

as small a€s L m~" and still ensure that be a block density approximation foof resolutionm. |

We can now substitute bounds (19), (22) and (23) in inequality (21) to obtain

BIL, (X1 X)) a0 5y [ (@) e
S

K1+C4 < 2)do+ (1 )) +( ﬁLw,dl/Q (/ f24 (z)de + o(1 ))

(nm—2)17d
+ (Br,.a + C%) Cf L=/ d gy =Bld=)/d

(24)

* e d)(d n7d T B

This bound is finite under the assumptions tfiat (3, L) with support inS c [0,1]¢ and thatfz 4 is integrable

oversS.

The bound (24) is actually a family of bounds for different valueswof= 1, 2, .... By selectingn as the function of

n that minimizes this bound, we obtain the tightest bound among them:

12



Proposition 3 Letd > 2and1 < v < d — 1. AssumeX1,..., X, are i.i.d. random vectors ovef, 1]¢ with density
f € 34(B3,L),0 < B < 1, having supportS C [0,1]?. Assume also thafz 7 is integrable ovelrS. Then, for any

continuous quasi-additive Euclidean functioda| of order~ that satisfies the add-one bound (8)

ElL(X1, ..., X)) /nl 0/ _ 5La,,d/ FOD/ () dz| < O (n—ﬁ(dmﬁ)) ,
S

where

Tl(d777ﬂ) =

wherea = ©7.

Proof:

Without loss of generality assume that—¢ > 1. In the rangel > 2 and1 < v < d — 1, the slowest of the rates in
(24) are(nm~—%)~1/4 andm—"(@=7)/4 We obtain ann-independent bound by selecting= m(n) to be the sequence

increasing i which minimizes the maximum of these rates

m(n) = arg min max {(nm_d)—l/d’ m—ﬁ(d—w)/d} _

The solutionm = m(n) occurs wher{nm=)~1/4 = q~=PFd=1/d or m = n!/[4F+D)] (integer part) and, correspond-

ingly, m—f(@-"/d — =514 This establishes Proposition 3. O

To convert the mean convergence bound in Proposition 349 eonvergence bound requires application of a con-
centration inequality. Any Euclidean functional, of order~ satisfying the continuity property (4) also satisfies the

concentration inequality [2, Thm. 6.3] established by Rhee [27]:

_ 2d/(d—~)
P(L(X1,..., X)) — E[L(X1,...,X.)]| > t) < Cexp (%) , (25)

whereC' is a constant depending only on the functioigl andd. The concentration inequality can also be used to
bound thel,, momentsE[| L, (X 1,..., X,) — E[L(X1,..., X,)]|’]"/?,p = 1,2, .. .. In particular, as for any r\Z:

E[|Z|] = [;° P(|Z| > t)dt, we have by (25)

E[L(X1,.... X)) — E[L(X1,...,X)]"] /OOO P <|L7(X17 LX) = BlL (X, X)) > tl/p> dt

IN

Cs3C ; exp< cn

= AnP (d=)/(2d) (26)

—¢2d/[p (d—7)]
Jat

13



whereA,, = C5CP (d=7)/@d)+1 5 Y 7}
Combining the above with (24), we obtain
Proposition 4 Letd > 2and1 < vy < d — 1. AssumeX,..., X, are i.i.d. random vectors ové6, 1]¢ with density

f € 24(B,L),0 < 3 < 1, having supportS C [0,1]¢. Assume also thatz—4 is integrable overS. Then, for any

continuous quasi-additive Euclidean functioda| of order~ that satisfies the add-one bound (8)

[E Ly (Xy,..., X,)/ntdn/d _ mwd/sf(d*”/d(w)dm p} v 27)
fnﬁ%d < z)dz + o(1 )) 5L_Wd’dl/2 (/ £ (@)dz + o(1 ))
T - d)<d w7a t oas v)/d + (Br,.a + C3) Cg LU0/ =)/
+ All)/pn*(d*v)/@d)
Proof:
For any non-random constamt using Minkowski inequality] B|W + u[P]Y/? < [E|W[P]'/P 4 |u|. Identify
b= Bl (Xe ., X)) gy /3 A0/ ) da
W =(L,(X1,...,X,) = B[L,(X1,...,X,)])/nd/d
and use (26) and (24) to establish Proposition 4. |

As the m-dependence of the bound of Proposition 4 is identical to that of the bias bound (24), minimization of the

bound overn = m(n) proceeds analogously to the proof of Proposition 3 and we obtain the following.

Corollary 1 Letd > 2and1 < v < d — 1. AssumeX,..., X, are i.i.d. random vectors ovep, 1]¢ with density
f € 24(B,L),0 < 3 < 1, having supportS C [0,1]¢. Assume also thatz 7 is integrable overS. Then, for any

continuous quasi-additive Euclidean functiorda| of order~ that satisfies the add-one bound (8)

E

wherer(d, v, 3) is defined in Proposition 3.

p] Voo (@) )

Ly(Xy,. .., X,,)/mld=n/d ﬂLw,d/ FU (@) da
S
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3.3 Discussion

It will be convenient to separate the discussion into the following points.

1. The bounds of Corollary 1 hold uniformly over the class of Lebesgue dengities>;(3, L) and integrable
fl=n/d=1/2 |f o = (d — ~)/d € [1/2,(d — 1)/d] then, as the suppo& C [0, 1] is bounded, this integrability
condition is automatically satisfied. To extend Corollary 1 to the range((d — 1)/d, 1) would require extension
of the fundamental convergence rate bound)c(fn—l/d) used in (10), established by Redmond and Yukich [3], to

the casé) < vy < 1.

2. It can be shown in analogous manner to the proof of the umbrella theorems of [2, Ch. 7]ftlsandt a Lebesgue
density then the convergence rates in Proposition 4 hold when the region of integr&imeplaced by the support

of the Lebesgue continuous componeny of

3. The convergence rate bound satisfigsl, v, 5) < 1/d, which corresponds to Redmond and Yukich’s rate bound
for the uniform density ovej0, 1]¢ [2, Thm. 5.2]. Thus, the bound predicts slower worst case convergence rates

for non-uniform densities.

4. Whenf is piecewise constant over a known partition of resolutios- m,, faster rate of convergence bounds are
available. For example, in Proposition 1 the bound in (19) is monotone increasing Tinerefore the sequence
m(n) = m, minimizes the bound as — oo and, proceeding in the same way as in the proof of Proposition 4, the
best rate bound is of ordetax {n~(4=7)/d) ,=1/d}As theO(n~!/¢) bound on mean rate of convergence is
tight [2, Sec. 5.3] ford = 2 and uniform densityf, it is concluded that forv = (d — 7)/d > 2/d the asymptotic

rate of convergence of the left hand side of (47) is exa@tly —'/%) for piecewise constant andd = 2.

5. Fora = (d — v)) > 2/d, it can be shown that the rate bound of Proposition 1 remains valid eendbes not
satisfy the “add-one bound.” Thus, with> 2/d, Corollary 1 extends to any continuous quasi-additive functional
L., including, in addition to the MST, the TSP, the minimal matching graph and:thearest neighbor graph
functionals. As for the case < 2/d, we can use a weaker rate of mean convergence bound [2, Thm. 5.1], which

applies to all continuous quasi-additive functionals and uniférim place of (10) in the proof of Proposition 1 to
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obtain

ElL,(X1, ..., X,)]/ntd=1/d — ﬁLwd/ FEA 1 (@) da
S

<0 (n—m) . (29)

6. A tighter upper bound than Corollary 4 on thg-norm convergence rate may be derived if a bettedependent

analog to the concentration inequality (25) can be found.

4 Convergence Rates for Fixed Partition Approximations

Partitioning approximations to minimal graphs have been proposed by many authors, including Karp [8laR2a&i,
Mitchell [29], and Arora [30], as ways to reduce computational complexity. The fixed partition approximation is a simple
example whose convergence rate has been studied by Karp [5, 31], Karp and Steele [32] and Yukich [2] in the context of

a uniform densityf.

Fixed partition approximations to a minimal graph weight function require specification of an integer resolution param-
eterm controlling the number of cells in the uniform partiti@" = {Q;}", of [0, 1]¢ discussed in Section 2. Whemn
is defined as an increasing functionvofve obtain a progressive-resolution approximatiof {9, ). This approximation
involves constructing minimal graphs of ordeon each of the cell§;, i = 1,...,m¢, and the approximation ' (X,)
is defined as the sum of their weights plus a constant bias corrécgtion

md

LX) =Y Ly(Xn N Qi) + b(m), (30)
i=1
whereb(m) is O (mdﬂ). In this section we specify a bound on tifg-norm convergence rate of the progressive-
resolution approximation (30) and specify the optimal resolution sequen¢e) },,~, which minimizes this bound. Our
derivations are based on the approach of Yukich [2, Sec. 5.4] and rely on the concrete version of the pointwise closeness
bound (7)

C'log card(F), y=d—-1#1 , (31)

Cleard(F)]@=r=D/(d=1 " 1 <y <d—1
S| <

for any finite I C [0, 1]%. This condition is satisfied by the MST, TSP and minimal matching function [2, Lemma 3.7].

We first obtain a fixedn bound onZ; deviation ofL2"(X,,)/n(4=7/4 from its a.s. limit.
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Proposition 5 Letd > 2and1 < v < d — 1. Assume that the Lebesgue dengity ¥,(5, L), 0 < 8 < 1, has support
S C [0,1]¢. Assume also that'/>~7/4 are integrable ovesS. LetL”"(X;,) be defined as in (30) whele, is a continuous

guasi-additive functional of ordey which satisfies the pointwise closeness bound (31) and the add-one bound (8). Then

E HLZY”(Xn)/n(dV)/d - 5Lwd/ FED (@) da }
s

<0 (max {(nm—d)—w/[dw—m’ m—Ad=/d n—(d—'v)/(Qd)}) (32)

if b(m)=0(m?7)

Proof:

Start with

d

L (&,)]/nl= 0 gy / P/ () g
S
al

Analogously to the proof of [2, Thm. 5.7], using the pointwise closeness bound (31) one obtains a bound on the

} < (33)

L (X) /0T —5Lwd/sfd%(m)da:

} + E[|L7(X) = Ly (X,)|] /a7 (34)

difference between the partitioned weight functibfi (/') and the minimal weight functioi..,(£') for any finite /' C

[0,1)¢
md
b(m) — Cym™7 < LI(F) — Ly(F) < m™C Y (card(F N @) /™Y 414 Cym?= +b(m).  (35)
=1

As usual letp(x) = 22’51 #;m~% be a block density approximation ft{z). As {X,, N Q; :":il are independent and

E[Z]] < (B[] Z]))* for0 < u < 1

E[|LT (X,) = Ly (Xn)]]

md

<m0y E [(card()(n nQ,)) v/ <‘H>} +b(m) — Cym?7| + 1 + Cam®™ + b(m)
=1
md
< m Ipld=r=1/d-H > Z(@m—d)(d—v—l)/(d—l) + |b(m) — Cym™| 4+ 14 Com?=7 4 b(m)
=1

71’Ld

_ m'y/(d—l)n(d—fy—l)/(d—l)c«z¢Z('df’yfl)/(d—1)m—d + [b(m) — C1mA 7| + 1 + Com?=7 + b(m)

i=1

_ mv/(d—l)n(d—v—l)/(d—l)c/ HA=7=D/E=D) (3 4 [b(m) — Crm®=] + 1+ Com?=" + b(m)
S
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Note that the bias terd(m) — Cym=7| can be eliminated by selectingn) = C;m?~". Dividing through byn(¢=7)/4,

noting that(|b(m) — C1m?=7| 4+ Com?=7 + b(m)) /nl¢=7/4 < B(nm=4)=(4=7)/4 for some constanB

} < (nm—d)—v/[d(d—l)]c/ (]5(d—'y—1)/(d—1)(ac)dg,c + (nm—d)—(d—v)/dB 4+ p-d=7/d,
S

E L:y"(Xn) - L'Y(Xn)
n(d*'Y)/d

Combining this with Proposition 4 we can bound the right hand side of (34) to obtain

E{ |

L (X)) /n@= 0 — gy / £/ () dg

K +C X
1 id ( x)dx + o(1 )) BLW,dl/Q (/ f ~a(x)dx + o(1 ))
(d=)/d p,=B(d—7)/d —(d—v)/(2d)
+ (nm—d)(d v)/d + n(d "/)/d (6L7ad+cé) CéL " m i + Aln v

+% (/ fU= =D/ () d e +0(1)> + (nm~4)~(d=n/dp, (36)
S

(nm—d)r/ld(d—1

Over the rangé < v < d — 1 the dominant terms are as given in the statement of Proposition 5. |

Finally, by choosingn = m(n) to minimize the maximum on the right hand side of the bound of Proposition 5 we

have an analog to Corollary 1 for fixed partition approximations:

Corollary 2 Letd > 2and1 < v < d — 1. Assume that the Lebesgue dengity >,(5, L), 0 < 8 < 1, has support
S C [0,1]¢. Assume also that!/2~7/4 is integrable overs. Let LT (X,) be defined as in (30) whete, is a continuous
guasi-additive functional of ordey which satisfies the pointwise closeness bound (31) and the add-one bound (8). Then

if b(m)=0(m?7)

E [ L(Xy,. . X ) 00 g /5 fle=n/ d(:v)dw] <0 (”_T'z(dmﬁ)) ’ 7)
where
af 1
d = - =
T2( aW)ﬂ) d;IOLB+1d7

wherea = djTV. This rate is attained by choosing the progressive-resolution sequeneen(n) = pl/ (S aB+1)]
4.1 Discussion

We make the following remarks.
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1. Under the assumed condition< d — 1 in Corollary 2,r5(d, v, 3) < r1(d,~, 8), wherer;(d,~, p) is defined in
Corollary 1. Thus, as might be expected, the partitioned approximation Bgsarm convergence rate (37) that

is always slower than the rate bound (47), and the slowdown increaéés-al) /v increases.

2. In view of (36), up to a monotonic transformation, the rate constant multiplying the asymptotic faté>-?) is
an increasing function of; f(4=7=1/(d=1(g)dz, which is the Rnyi entropy off of order(d — v —1)/(d — 1).

Thus fastest convergence can be expected for densities with samgli &ntropy.

1/2
3. Itis more tedious but straightforward to show thatfheleviationF [\LZI(Xn)/n(d*V)/d —Br..dfs f(d*V)/d(w)dwﬂ
obeys the identical asymptotic rate bounds as in Proposition 5 and Corollary 2 with identical bound minimizing

progressive-resolution sequenee= m(n).

4. As pointed out in the proof of Proposition 5 the bound minimizing choice of the bias corréctionof the
progressive-resolution approximation (30pisn) = C;m?~7, whereC; is the constant in the subaddivity condi-
tion (2). However, Proposition 5 asserts that, for example, uging = Cm?=" with arbitrary scale constaxt,
or even using(m) = 0, are asymptotically equivalent to the bound minimizirig:). This is important since the
constant’] is frequently difficult to determine and depends on the specific properties of the minimal graph, which

are different for the TSP, MST, etc.

5. The partitioned approximation (30) is a special case n of the greedy approximation to thepoint minimal
graph approximation introduced by Ratal [6] whose a.s. convergence was established by Hero and Michel [7]
(Note that the overly strong BV condition assumed in [7] can be considerably weakened by replacing BV space
with Holder space and applying Lemma 2 of this paper). Extension of Proposition 5 to greedy approximations to

k-point graphs is an open problem.
5 Convergence Rate Lower Bounds

In this section we derive lower bounds for the convergence rates of minimal graphs based on minimax estimation theory.
While these bounds are not generally tight lower bounds, they indicate a performance margin between graph estimators
and minimax estimators of entropy. Our results can be obtained as an application of the general theory developed by

Birgé and Massart in [33] for obtaining lower bounds on the minimax risk of nonparametric estimation of a functional

19



T(f) = [e(f(z), f'(x),..., f®(x),z)dz. In fact, Proposition 6, in this section, can be derived as a corollary to
Theorem 3 in [33], after some suitable modifications as suggested in Remark 3 of that paper. However, for the benefit of
the reader, we provide a more elementary and self contained proof of the lower bound in the sequel, which applies to the

specific functional of form (38).

Define
1n(f) = [ 1°(@)de (38)
From sections 2 and &, (X1, ..., X,)/n(@=7/4is a (strongly) consistent estimator bf(f) for « = ©=7. Thus, itis

natural to recast our problem as that of estimafingf) over the nonparametric class of densitfes X,(5, L).

Let I,, be an estimator af.(f) (0 < a < 1) based on a sample efi.i.d. observations from a densiffy To access the
“quality” of I,, we adopt the usual (nonparametric) minimax risk criterion, i.e., we loskyat, ~ E\fa — I, (f)P, the
worst case performance 6f over a known class of densiti¢g for a choice ofp > 1. Under this criterion it is natural to

ask what is the minimum achievable risk for any estimator, i.e., what is

inf sup E|l, — L.(f)?,
I fEF

where the infimum is taken over all estimatordgf /), as this quantifies the best performance possible for any estimator.
Of course, ad (X,..., X ,,)/n* is valid estimator of , (f), this will also yield a lower bound to the convergence rates

of interest. The rest of this section is devoted to deriving these (asymptotic) bounds using standard minimax techniques.
5.1 Notation

In the following, we will take the clasg as the set of multivariate Lebesgue densities defined on the unit[@uljé

(d > 1), belonging to the Eider class of functionE (53, L).
We will also use the affinity P A Q|| between measurd? and@ defined by:
1
IPAQI=1~3lIP—Qlh (39)

where|| P||; is the total variation norm aP defined as

thwﬁ/ﬂw‘
[fI<1
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and the supremum is taken over all measurable functfodmsunded by 1. If? and@ are absolutely continuous w.r.t. a
measurg., with densitieg andg, respectively, thefiP — Q|1 = [ |p — ¢/ du. In this case, we will writé|p — |, for
[P — Q|1 and|p A g| for |P A Q]|. Also, writep™ as shorthand notation fdf;__, p(z;), the density of the product

measures,, P.

Finally, write co(F) to denote the convex hull of.
5.2 Lower Bounds

In order to get lower bounds for the minimax risk, the usual technique is to build, for eyeysubsetr,, C F

of finite cardinality, such that the problem of estimatihg f) over ¥ ,, is essentially as difficult as the full problem.
Assouad’s lemma or Fano’s lemma are the commonly used tools to address such constructions ([34]). However, in the
case of entropy estimation (as well as many other functional estimation problems, [35], [36]), these methods only give
the trivial lower bound zero. We will thus rely on a result by Le Cam (see for example [35]) that relates the minimax risk
to a testing problem between two sets of hypothesis, whose convex hulls are “well” separated in a total variation distance

sense. Bellow is a simplified version of this result suitable for our needs (for a simple proof see [35]):

Lemma 3 Let I be an estimator of (f)! based om i.i.d. observations from a density € F. Suppose that there are
subsetsgj; andG, of G = {f™ : f € F} that are2-separated, in the sense thak(f;) — I(f2)| > 26 for all f* € Gy
and f € Go. Then

sup E|I —I(f)| >6- sup |p1 Apa -
feF pi € co(G;)

We will apply Lemma 3 to the usual small perturbations of the uniform densitgn [0, 1]¢. Towards this goal, fix
g € X4(B,1) with support in[0, 1]¢ such that/ g(z) dz = 0, ||g||3 = | ¢*(z) dz > 0 and|g(x)| < M. Let{Qj};”:d1 be

the uniform resolutionx partition and{x; };”zdl be the set of points if0, 1]¢ that translate eadfy; back to the origin, as

defined in Sub-section 2.1. Lgj(x) = g (m(x — x;)). ForA € A = {—1, 1}’”‘1, define the perturbation af as

@) =1+ g m=P )\ g;(x) (40)

j=1

*From now on, we will omit the subscript from I, andI.(f), unless necessary.
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It is easy to see thaf f\(x)dx = 1, fi € X4(3, L) and, form large enoughy > 0. Hence (form sufficiently large)

ferF.

We can now apply Lemma 3 to the sgls = {u"} andG, = {f{ : A € A}. We will start by determining the

26-separation betweealy, andg,. Consider the second order Taylor expansion
« 1 a—2,2
(I+y)* =1+ay+gala=1)&"7",

where¢ lies betweerl and1 + y. This implies that

/ff{“(m)da:—l:i/ﬁ (1+§m_5>\jgj(w)/i>a dx —1

2
;(é) (a—1)m %Z ga2 g3 (x) dz | (41)

wherel — M% mP<E(x) <1+ M% m~P. Inserting these bounds in equation (41), we have

(§)Qa<a—1>n2m *(1- a5 mﬁ> < [ fr@de-1

2
<1<§) ala —1)rkym™2 <1+M§m_ﬁ> ,

-2

N | =

which essentially means th#itf{ (z) dz — 1 = m~2f. We can now use this result to conclude that, for any A and

m sufficiently large,
() — 1) = \ [ 5@ dw—l‘ > 20m= = 2, (42)
for some constard’ > 0.

We next derive a lower bound fetip,,, ¢ .,(g,) lP1 A p2l|, or equivalently, by (39), an upper bound [gm — pz /1. To

this end, leth,, = 2—™" Y oxea JX € co(Ga). The following Lemma provides the required result:

Lemma 4

L 4
(5 lole) 2 m-<4ﬁ+d>} -1 3)

DN | =

[ = ha | < exp{

A proof of this Lemma is given in appendix A.
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Plugging the bounds from equations (42) and (43), together with (39), into Lemma 3 gives us a family of lower bounds,

for different values ofn:

) 1 1 /L P
sup B\ 1()| > S om0 (3—exp{2 (2g|2) n?m <4ﬂ+d>}> . (44)
feF

We can now chooser = m(n) in order to maximize this bound. This can easily be done by inspection: the first term
on the RHS of (44) should be as large as possibleyieshould be as small as possible; however, such a choice will make

the second term on the RHS of (44) negative, rending this bound useless. Hence, under this constraint, a chtkie¢ for

m = { 5 (5 lal: ) n} , (45)

where the constants multiplying in the previous expression guarantee the positiveness of second term on the RHS of

maximizes the bound is:

(44). Finally, inserting this optimum choice fan into (44) and using Jensen’s inequality, gives us the desired lower

bound:

Proposition 6 For 73, = {f : fis aLebesgue density ¢, 1] and f € £4(3, L)}, p > 1 andn sufficiently large,

there exists a constant= ¢(3, L, d, «) > 0 such that

. A 1/p 4B
inf sup |E|ly— I.(f)PP >cn 1PHd (46)
I, fE]'-ﬂ,L

where the infimum is taken over all estimatégsof I,(f) based om i.i.d. observations from densitf/.

We make the following comments about this proposition.

1. For sufficiently smooth densities, i.e., f8r> d/4, we haved4/(45 + d) > 1/2. This is the usual/n-rate of

convergence for regular parametric problems. This suggests that the lower bound in Proposition 6 can be replaced

by

A 1/p
inf sup [l — L()PP] " >
Ia fEfS,L
2. It was shown in [33], fop > d/4, that there exists an estimator that achieves,therate, for densities bounded
from above and bounded from below by some positive constant. In [37], Kerkyacharian and Picard closed the

problem by showing that the corresponding ratesdox. d/4 are also achievable. Such estimators are based
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on corrections, up to second or third order, of a preliminary plug-in estirﬁatﬁ), wheref is a nonparametric
density estimate of, based on a small part of the sample. However, these type of estimators are of little use in
a practical setting, as multivariate integration and density estimation became unmanageable in a high dimensional

space.

Now, combining Proposition 6 with Corollary 1, we obtain upper and lower bounds for the convergence rates of

minimal Euclidean graphs:

Corollary 3 Letd > 2and1 < v < d — 1. AssumeX,,..., X, are i.i.d. random vectors with densiffy € F5 1,
8 € (0,1]. Assume also thaﬁ%*% is integrable. Then, for any continuous quasi-additive Euclidean functibnadf
order ~y that satisfies the add-one bound (8), there exist positive constafitddepending orf, L, d and~y such that for

n sufficiently large

48
cn_(4ﬂ+d)§ sup {E
fE€Fs,L

p1/p
] < Cpm(@d7h) (47)

Lo(X1,..., X)) /ntd=0/d — ﬂLv,d/ FU () de
S

wherer(d, v, ) is defined in Proposition 3.

There is a big gap between the lower and upper bound in (47). For example, fordsardfirged, the lower bound

rate exponent is at leastimes faster than the corresponding upper bound rate.

We do not believe that the bounds of Corollary 3 are the tightest possible bounds. On the one hand, the derivation of
the upper bound is based on a coupling argument (see proof of Proposition 2) which may over estimate the error. On
the other hand, the derivation of the lower bounds was solely based on minimax arguments, that do not account for the

intrinsic geometric structure of minimal Euclidean graphs.

6 Conclusion

In this paper we have given upper and lower bounds on the convergence rates for length functionals of minimal-graphs
satisfying continuous quasi-additivity conditions, for general multivariate densities of the vertices. These bounds make
explicit the dependency of the approximation error not only as a function of the number of samjtlesalso in terms

of the dimension of the spacé, and the underlying class of densities. These results may be useful for exploring the
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asymptotic behavior of minimal graphs, e.g., for estimation efiy divergence, Bnyi mutual information, and &hyi

Jensen difference [8].

There are still many open problems that remain to be studied. Of great interest is the extension of these results to
k-point graphs (such as tlkeMST), as, not only do they provide robustness against outliers, but they also have a natural
application to unsupervised clustering. Also, to complete the results given in this paper, it would be interesting to extend
the rate bounds to smootheblder continuous densities (i.e3, > 1). Finally, establishing general weak convergence
results, e.g., a central limit theorem, for these types of minimal graphs could have a significant impact in applications such

as hypothesis testing and goodness of fit tests.
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A Appendix

Proof of Lemma 1Sinceg(u) is concave the tangent lingu) d:(afg(u(,) + ¢ (uo)(u — u,) upper boundg. Hence

g(u) < g(uo)—i—g/(uoﬂu—uo\.

On the other hand, asis monotone and concave, the functigfa) d:Efg(uo) + %{;’)(u — Uo) 1 {u<u,} iS @lower bound

ong, wherely, <,y is the indicator function of the st < u,}. Hence,

glu)

o

glu) > g(uo) — U — Uo.

Proof of Lemma 2By the mean value theorem, there exist po§jts ; such that

o= | flaye=1(&).

Note that, in what follows|.| means both the absolute valuelRnand any norm irR?. Using now the fact thaf <
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Zd(67L)! ,
x) — :de:m ) — f(ax)|dx N Lz —¢ | dx .
[ 1ot@) = r(@) i:Zl/Qq’wsz) f(a)| s§/Q r—

Asz,&; € Q;, asub-cube with edge length™", [, |z —§&;/°da = O(m~7~7). Thus, we have

/S|¢(€B) — f(x)|de < CLm™".

O
Proof of Lemma 4This proof is inspired by [38]. Define
Gi(A) = G(X;,A) = i ém_ﬁ)\-g'(X-) = £m-ﬁ)\{q(X-)
4 79 P 9 797 7 2 7
wherel = (A1,...,A\pa)t € Aandg = (g1, ..., gme)t. Define also
Ti(A, ) = EunG3(X)Gi(p)
for A, u € A. Note that, ay g(z)dz = 0,
ExGi;(A) =0, (48)

and due to identically distributed samples assumptigih, p1) = 71 (A, ).

Now, rewriteh,, as:

S =N wy [+ G

hn =
A€A AeA i=1
= ) wy <1+2Gi(>\)+ZGi(A)Gj(A)+ > GZ-(A)GJ-()\)G;C(A)—F...)
AeA i i<y i<j<k

wherewy = 9—m",
Using Jensen’s inequality,
[, — |2 = (Eyn |hp —1])* < Eyn|hy — 1|2

= FEyn { Z w WL (Z G;(A) + ZGZ‘(A)GJ‘()\) +.. ) (Z Gi(p)+

A pen i<j i

e )} )

i<j
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Expanding out the product in (49), due to independence and (48), only the terms where eacti fgktas paired

with a correspondingr; () will survive. All other terms with an isolated factor will be zero. The simplified result is

Eyn|hy, — 1|2 — Z wyWp (Z (A, ) + Zn()\, ;L)Tj()\,y,) +.. )

A eA i i<j
= > wywp(L+n(Ap)" -1 (50)
A e

Regarding the double sum in (50) as an expectation of a pair of independent random variabthgs, each distributed

according to a uniform prior irk, we get the following bound for the total variation norm:
A —u"|l} < E(L+ (A p)" =1 < Bexp{nn(Ap)} -1, (51)
where the last inequality comes frath > 1 + .

Now, note that the functiong have disjoint supports and, so, are orthogonal in the sens&fliat X 1)g;(X1) =0,

for i # j. Thus, we have
L 2
GICYNE (2 mﬁ) XN Epn {g(X1)g" (X))} p=0"Xp,

. _ 2 _ 2 2 _
with o2 = [($mPgi(x)) de = [ [Zm Pg(m(z — x1))] dz = (£ |gll2)” m~*5+D, where||g|3 = [ ¢*(x)d.
Equation (51) simplifies to
|hn —u"||? < Eexp{no* AX'u} —1.
The above expectation is easy to compute because the choice of a uniform pkionakes the coordinates indepen-

dent, taking values-1 and—1 with probability 1/2:

d
1 1 " 1
Eexp{no? X'u} = (2 e 3 eno2> < exp {2 m? (naz)g} .

Lemma 4 now follows. O
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