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Transmitter

T'=coherent fade interval
M=number of transmit antennas
N=number of receive antennas
n=receiver SNR

Figure 1. Narrowband space time channelfor M =3, N =2




Received signal in-th frame (¢t =1,...,T)

VISt -5 Stm]

[xftlv X 7375671] —

or, equivalently

X' = mS'H + W!

X! T x N received signal matrices

St T x M transmitted signal matrices

H':ii.d. M x N channel matricess ¢ N (0, I3y Q In)
W' ii.d. T x N noise matrices- (N (0,17 Q@ Iy)




Block coding over L frames produces blocks @f symbols

whereS = S' is selected from a symbol alphal#t

Random Block Coding selectS! at random fromS according to
probability distributionP € P.

e Objective: Find optimal distributio®(.S) overP

e Optimality criteria: capacity, outage capacity, random coding error
exponent, cut-off rate
e Transmitter constraints:
— average power constraink|[||S||*] = [ ||S||*dP < TM
— peak power constrainttS||? < TM,forall S € S
where

IS|I* = tr{S" S}
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Figure 2. First generation space-time coding: Seshadri&Winters FDD




Capacity Results (avg. power constraint - Telatar, BLTM 95):

1. Channel H' Known to Txmt and Rcv:
- . bits/channel—use
Capacity: (bits/sec/hyor (2e/chan )

C'= max FE[I(S,X|H)]= max E[H(X|H) - H(X|S, H)]
P(S[H) P(S[H)

a-Outage Capacity C' ={C, : P(C(H) > C,) = a}




Since

H(X|H) <In(|Ix +nH"R,H|), and H(X|S,H)=H(N)

C(H In(|1 HR,HY
(H) = . max _ In(Iy+gHRH")

= In(|[I+nHR:H|)

where, forH = UDV

_|_
R° = V#dia _ vV

andp is such that (water-filling)

tr{R2} = M
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Figure 3. Second generation space-time coding with beamforming




2. Channel H! known only to Rcv:

C = rlgl(%>)<E[I(X,S\H)] = rlgl(%fE[H(X\H) — H(X|S5, H)]

= C=Elog|Iy + i H?H|]

Capacity achieving distribution:

¢ S Gaussian with orthogonal rows and columns of identical energy

= BLAST (Foschini, BLTJ 1996)

= Space time 4-PSK/4-TCM (Tarokh&etal IT 98, Tarokh&etal COM 99)

In practice must transmit training within each frame to ledin




Capacity bounds (Hochwald&Marzetta SPIE99, Driesen&Foschini
COM99)

: nM N
log(1 +nMN) < C(H) < min(M, N)log ( 1
log(1 +nMN) < C(H) < min(M, )Og< +min(M,J\f))

“:”When rank(H):l '
“='"when rank(H )=min(M,N)

~"




coded modulation

coded modulation J

e 4-PSK/4-TCM: 2 bits/sec/Hz (simulation), M=N=2
e BLAST: 1.2 Mbps over 30kHz (40 bits/sec/Hz) in 800MHz band, M=8, N=12




Coherent Transmission and Reception — T/R know channel
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Incoherent Transmission — R knows channel
M=32
M=16
M= 4
M=1

SNR (dB)




Effect of Incoherent Transmission
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Coherent Transmission and Reception with Training Errors: T
45 T

=128
n
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Effect of Training Errors (coherent transmission): T

<L

5
SNR (dB)




3. Slow fading Rayleigh channel: H unknown
Capacity? (Marzetta&Hochwald, BL TM 98, IT 99)
o C' = F|log P(X|S)/P(X)] (bits/channel-use)
Capacity achieving distribution?

S =0V

where® andV are mutually independent matrices

o &: T x M unitary: 7 ® = I,

e V. M x M real diagonal
V. —clyrasn — oo or'’l’ — oo.
= Unitary space-time modulation (Hochwald&etal BL TM 1998)
= Differential space-time modulation (Hochwald&Sweldens COM99)

= Space-time group codes (Hughes SAM 00, Hassibi&etal BLTM 00)
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Figure 10. Third generation space-time coding.




Example: Unitary space-time constellation (Hochwald&etal BLTM 98)

o T'=8, M = 3, K = 256 unitary signal matrices

S={®,..., 0}, P, = OFd,

—t e e el el el pd e




1 Random Coding Error Exponent

The minimum error probability of any decoder of a block code adver
frames satisfies (Fano 61)

min P, < e_LEU(R), R<C

where
e R: symbol rate (nats/symbol)
e (. channel capacity (nats/symbol)

e Fy(R): error exponent




1+u
max max { — R—ln/ [/ XS 1/(1+“)dPS] dX b
ME[OJ]PEP{ p x| ses (p(X15)) (5)

Ey(R) has been studied undavg. power constrainfor
= Known H (Telatar BL TM 96)
= Unknown H (Abou-Faycal & Hochwald BL TM 99)




Figure 11. Error exponent FEy(R) and cut-off rate bound




R, computational cut-off ratdower bound (Gallager IT 64)

Ey(R)>R,—~ R, R<R,

PcP

2
R, = max—In / [ / Jp(XIS)AP(S)| dX, nats/symbol
XeX SeSs

whereP are suitably constrained distributions owgt <

= Cut-off rate analysis has been used to evaluate

e practical coding limits (Wang&Costello COM 95, Hagenauer&etal
IT 96)

e different coding and modulation schemes (Massey 74)
e signal design for optical fiber links (Snyder&Rhodes IT 80)

e signaling over multiple access channels (Narayan&Snyder I1T81)




FACTS:
R, <C
R, Is highest practical rate for sequential decoders (Savage 65)
Ey(R) = R, — RwhenR ~ R, the critical rate

R, specifies upper bound on optimal decoder error

P, <e HlB.—R)  p< R




2 Integral Representation for R,

PeP

R, = max—ln/ dP(Sl)/ dP(Sy) e~ NP S51ll52),
S1€S SaeS

where
def ,

- 2

[Ir+2 (5158 +5,85) |7
‘IT‘|‘77515{IHIT+775255{| .

In

D(51]|52)

Low SNR approximation:

D(S1]|S2) = n?/8||51511 — 5255 ||* + o(n?)




The following parallels Theorems 1 and 2 of Marzetta&Hochwald IT 9¢

Proposition 1 Assume that the transmitted sigrfals constrained to
satisfy the peak power constraih§||? < MT. There is no advantage to
usingM > T transmit antennas. Furthermore, fad < T the signal
matrices achievind?, can be expressed as

A ]

where

o & isT x M unitary matrixVZV = I,

e A iIs M x M non-negative diagonal matrix.




3 Case of Discretei -dimensional Constellations

SpecializeP to the discrete distributions ové€t! >

ThenR, = R,(K) is given by

{Plasl}fil {PMSZ}f{:l_

K K
max —anPi ZPj e VPSS — _1n min  PTERP
i=1  j=1

where

B}, = ((D(Si]S)))i%;—,: dissimilarity (distance) matrix

.BZ[Pla"'apK]T




Under peak power constraints;|| < 1TM,

Ro(K) = —In min min P! EgP
{Sihz, \{Pi}i,

Inner maximization:

Lagrangian

J(P) = P"EgP —2c¢(13 P —1)

minimized forequalizer probabilityP? = P*




K
ExP" = cly = ij e—ND(SiHSj) — .

J=1

Fact: optimal constellation satisfieEi;}llK >0

1

P* — CE]_{llK, and c¢ =

; 1TE L,

1
R,(K)=—1In min = max In (1L EZt1
( ) {S:}E l:II;E;_gllK TACS (—K K_K>




4 Bound on minimum distance

To o(n?) we have bounds

’ 2 2(TM)?
sin = max min D(S5;||S;) > ( ) S > U ) K2/
{S:}YE | i#1 (217 — 1)

Figure 12. Constellations of signal matrix singular values




Finite K cutoff rate curve: M=2, eta=2, T=4*M
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Finite K cutoff rate curve: M=2, N=1, eta=2, T=2*M

Figure 13. Cutoff-rate curve as function of size K.




Define:

K, = |T/M |: “orthogonal size”

= max valueK for which closed form expressiaR, exists

and
K.: “logK” transition point
= knee ofR,

= diminished returns by increasiig beyondkK .




5 Bound on logK transition point of constellation

Pick “test constellationS;}# , for which

Dinin = HQDD(Si”Sj) > 'VK_z/T
i£J

1
=55 o <Zi j Pv:PjGND(SiSj)>

1
> maxlo
- AP} © <Zzg PiPj + Zi;éj PinGNDmin>

= log (1/K+(K— i)/K e—NDmin>




1
> 1
o5 (1 JK + (K —1)/K e NE2/7 )
— log(K) — log (1 (K —1) e—NvK‘“)

~log(K), (K —-1) e~ VYK <

This gives lower bound ok,

K, > {K KYTInK = VN}




KC as a function of T for eta=1
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Figure 14. Corner sizes for equal




6 Low Dimensional ConstellationskK < K,

For givenn, T'and M define the integei/,

(1+nTM/(2m))?
Mo =argmax,coq {mln I & T M/m :

First a result on max attainable distance under peak power constraint

Proposition 2 Let2M < T'. Then

(1 +nTM/(2M,))?
1+nTM/M,

Dmax d:ef max D(Sl||52) — MO In

K
S1,52€8 1

(1)

Furthermore, the optimal signal matrices which attd,,, can be taken
as scaled rankl/, mutually orthogonal unitaryf” x M matrices of the
form

S1 =nTM &4, So = nTM &,




where, fory =1, 2,

P, =1y, and @;'®; =0, i+#j

Proof is based on alternative representation/3¢64 ||.52)

st s [ | o,

| 2

In

_ 1
DSIS2) = 3 I e s T s,

wherex is aM x M multiple signal correlation matrix

~H 5
/43252 Sl

_ e MoH g 1-1
S, 2SZ[IM—I—QAS‘Z Si]




Figure 15. Top panel: M, as a function of the SNR param-
eter nI'M. Bottom panel: blow up of first panel over a
reduced range of SNR.




Proposition 3 Let2M < T and letM, be as defined in (1). Suppose thqgt
M, < min{M,T/K}. Then the peak constraindd dimensional cut-off

rate Is

~

Ro(K) =1n (1 + (K —If)e—NDmaX)

and D, IS given by (1). Furthermore, the optimal constellation
attaining R, (K) is the set ofl’ rank M, mutually orthogonal unitary

matrices and the optimal probability assignment is unifoddf: = 1/ K,
1=1,...,K.

40



Example constellations faF x M =4 x 2
o M,=1,K =4: (n°TM < 4.8)

{S}z 1_<

\ L - L

o M, =2 K =2 (i*TM > 4.8)

o




Conclusions

Peak power contrained cut-off rate reduces to minimizing Q-form
optimal constellation equalizes the decoder error rates

Average distance for optimad{ -dim constellation decreases at most
by K —2/T

Optimal low rate constellation is a set of scaled mutually orthogondl
unitary matrices.

Rank of the unitary signal matrices decreases in SNR

For very low SNR, no diversity advantage: apply power to a single

antenna element at a time.

42
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