Optimal Signal Constellations for Fading Space-Time Channels

Alfred O. Hero

University of Michigan - Ann Arbor

Outline

- 1. Space-time channels
- 2. Random coding exponent and cutoff rate
- 3. Discrete K-dimensional constellations
- 4. Bound on minimum distance
- 5. Low dimensional constellations
- 6. Conclusions

Figure 1. Narrowband space time channel for M=3, $N=2\,$

Received signal in l-th frame (t = 1, ..., T)

$$[x_{t1}^l, \dots, x_{tn}^l] = \begin{bmatrix} \sqrt{\eta}[s_{t1}^l, \dots, s_{tm}^l] & h_{11}^l & \cdots & h_{1n}^l \\ \vdots & \vdots & \vdots & & +[w_{t1}^l, \dots, w_{tn}^l], \\ h_{m1}^l & \cdots & h_{mn}^l \end{bmatrix}$$

or, equivalently

$$X^l = \sqrt{\eta} S^l H^l + W^l$$

- X^l : $T \times N$ received signal matrices
- $S^l : T \times M$ transmitted signal matrices
- H^l : i.i.d. $M \times N$ channel matrices $\sim \mathcal{CN}(0, I_M \bigotimes I_N)$
- W^l : i.i.d. $T \times N$ noise matrices $\sim \mathcal{C}\mathcal{N}(0, I_T \bigotimes I_N)$

Block coding over L frames produces blocks of L symbols

$$[S^1,\ldots,S^L]$$

where $S = S^l$ is selected from a symbol alphabet S

Random Block Coding: select S^l at random from S according to probability distribution $P \in \mathcal{P}$.

- Objective: Find optimal distribution P(S) over \mathcal{P}
- Optimality criteria: capacity, outage capacity, random coding error exponent, cut-off rate
- Transmitter constraints:
 - average power constraint: $E[\|S\|^2] = \int \|S\|^2 dP \le TM$
 - peak power constraint: $||S||^2 \leq TM$, for all $S \in \mathcal{S}$ where

$$||S||^2 = \operatorname{tr}\{S^H S\}$$

transmitter with delay diversity (1994)

Capacity Results: (avg. power constraint - Telatar, BLTM 95):

1. Channel H^l Known to Txmt and Rcv:

Capacity: (bits/sec/hz) or $(\frac{bits/channel-use}{T})$

$$C = \max_{P(S|H)} E[I(S, X|H)] = \max_{P(S|H)} E[\mathcal{H}(X|H) - \mathcal{H}(X|S, H)]$$

 α -Outage Capacity: $C = \{C_o : P(C(H) > C_o) = \alpha\}$

Since

$$\mathcal{H}(X|H) \le \ln(|I_N + \eta H^H R_s H|), \quad \text{and} \quad \mathcal{H}(X|S, H) = \mathcal{H}(N)$$

$$C(H) = \max_{R_s : \operatorname{tr}\{R_s\} \le M} \ln(|I_N + \eta H R_s H^H|)$$

$$= \ln(|I + \eta H R_s^o H|)$$

where, for H = UDV

$$R_s^o = V^H \operatorname{diag}\left(\mu - \frac{1}{\eta d_i^2}\right)^+ V$$

and μ is such that (water-filling)

$$\operatorname{tr}\{R_s^o\} = M$$

2. Channel H^l known only to Rcv:

$$C = \max_{P(S)} E[I(X, S|H)] = \max_{P(S)} E[\mathcal{H}(X|H) - \mathcal{H}(X|S, H)]$$

$$\Rightarrow C = E \left[\log \left| I_N + \frac{\eta}{M} H^H H \right| \right]$$

Capacity achieving distribution:

- \bullet S Gaussian with orthogonal rows and columns of identical energy
- ⇒ BLAST (Foschini, BLTJ 1996)
- ⇒ Space time 4-PSK/4-TCM (Tarokh&etal IT 98, Tarokh&etal COM 99)

In practice must transmit training within each frame to learn H

Capacity bounds: (Hochwald&Marzetta SPIE99, Driesen&Foschini COM99)

$$\underbrace{\log(1+\eta MN)}_{\text{"="when } \operatorname{rank}(H)=1} \leq C(H) \leq \underbrace{\min(M,N)\log\left(1+\frac{\eta MN}{\min(M,N)}\right)}_{\text{"="when } \operatorname{rank}(H)=\min(M,N)}$$

- 4-PSK/4-TCM: 2 bits/sec/Hz (simulation), M=N=2
- BLAST: 1.2 Mbps over 30kHz (40 bits/sec/Hz) in 800MHz band, M=8, N=12

3. Slow fading Rayleigh channel: H unknown

Capacity? (Marzetta&Hochwald, BL TM 98, IT 99)

• $C = E [\log P(X|S)/P(X)]$ (bits/channel-use)

Capacity achieving distribution?

 \bullet $S = \Phi V$

where Φ and V are mutually independent matrices

- Φ : $T \times M$ unitary: $\Phi^H \Phi = I_M$
- $V: M \times M$ real diagonal

$$V \to cI_M$$
 as $\eta \to \infty$ or $T \to \infty$.

- ⇒ Unitary space-time modulation (Hochwald&etal BL TM 1998)
- ⇒ Differential space-time modulation (Hochwald&Sweldens COM99)
- ⇒ Space-time group codes (Hughes SAM 00, Hassibi&etal BLTM 00)

Example: Unitary space-time constellation (Hochwald&etal BLTM 98)

• T = 8, M = 3, K = 256 unitary signal matrices

$$\mathcal{S} = \{\Phi_1, \dots, \Phi_K\}, \qquad \Phi_k = \Theta^k \Phi_1$$

$$\Phi_{1} = \frac{1}{\sqrt{8}} \begin{bmatrix} 1 & 1 & 1 \\ 1 & e^{j\frac{2\pi}{8}5} & e^{j\frac{2\pi}{8}6} \\ 1 & e^{j\frac{2\pi}{8}2} & e^{j\frac{2\pi}{8}4} \\ 1 & e^{j\frac{2\pi}{8}7} & e^{j\frac{2\pi}{8}2} \\ 1 & e^{j\frac{2\pi}{8}4} & 1 \\ 1 & e^{j\frac{2\pi}{8}4} & 1 \\ 1 & e^{j\frac{2\pi}{8}1} & e^{j\frac{2\pi}{8}6} \\ 1 & e^{j\frac{2\pi}{8}3} & e^{j\frac{2\pi}{8}2} \end{bmatrix}, \qquad \Theta = \begin{bmatrix} e^{j\frac{2\pi}{8}(0)} & 0 & \cdots \\ 0 & \ddots & \\ 0 & \cdots & e^{j\frac{2\pi}{8}(7)} \end{bmatrix}$$

$$\Theta = \begin{bmatrix} e^{j\frac{2\pi}{8}(0)} & 0 & \cdots \\ 0 & \ddots & \\ 0 & \cdots & e^{j\frac{2\pi}{8}(7)} \end{bmatrix}$$

1 Random Coding Error Exponent

The minimum error probability of any decoder of a block code over L frames satisfies (Fano 61)

$$\min P_e \le e^{-LE_U(R)}, \quad R < C$$

where

- R: symbol rate (nats/symbol)
- C: channel capacity (nats/symbol)
- $E_U(R)$: error exponent

$$E_U(R) = \max_{\mu \in [0,1]} \max_{P \in \mathcal{P}} \left\{ -\mu R - \ln \int_{X \in \mathcal{X}} \left[\int_{S \in \mathcal{S}} \left(p(X|S) \right)^{1/(1+\mu)} dP(S) \right]^{1+\mu} dX \right\}, \quad \text{rats/syn}$$

 $E_U(R)$ has been studied under avg. power constraint for

- \Rightarrow Known H (Telatar BL TM 96)
- \Rightarrow Unknown H (Abou-Faycal & Hochwald BL TM 99)

$$y(R) = R_o - R_{\bullet}$$

 R_o computational cut-off rate lower bound (Gallager IT 64)

$$E_U(R) \ge R_o - R, \quad R \le R_o$$

$$R_o = \max_{P \in \mathcal{P}} - \ln \int_{X \in \mathcal{X}} \left[\int_{S \in \mathcal{S}} \sqrt{p(X|S)} dP(S) \right]^2 dX$$
, nats/symbol

where \mathcal{P} are suitably constrained distributions over $\mathcal{C}^{T \times M}$

- ⇒ Cut-off rate analysis has been used to evaluate
 - practical coding limits (Wang&Costello COM 95, Hagenauer&etal IT 96)
 - different coding and modulation schemes (Massey 74)
 - signal design for optical fiber links (Snyder&Rhodes IT 80)
 - signaling over multiple access channels (Narayan&Snyder IT81)

FACTS:

- $R_o \leq C$
- R_o is highest practical rate for sequential decoders (Savage 65)
- $E_U(R) \approx R_o R$ when $R \approx R_c$, the critical rate
- \bullet R_o specifies upper bound on optimal decoder error

$$P_e \le e^{-L(R_o - R)}, \quad R \le R_o$$

2 Integral Representation for R_o

$$R_o = \max_{P \in \mathcal{P}} - \ln \int_{S_1 \in \mathcal{S}} dP(S_1) \int_{S_2 \in \mathcal{S}} dP(S_2) \ e^{-ND(S_1 || S_2)}.$$

where

$$D(S_1||S_2) \stackrel{\text{def}}{=} \frac{1}{2} \ln \frac{\left|I_T + \frac{\eta}{2} (S_1 S_1^H + S_2 S_2^H)\right|^2}{\left|I_T + \eta S_1 S_1^H \right| \left|I_T + \eta S_2 S_2^H\right|}.$$

Low SNR approximation:

$$D(S_1||S_2) = \eta^2/8||S_1S_1^H - S_2S_2^H||^2 + o(\eta^2)$$

The following parallels Theorems 1 and 2 of Marzetta&Hochwald IT 99

Proposition 1 Assume that the transmitted signal S is constrained to satisfy the peak power constraint $||S||^2 \leq MT$. There is no advantage to using M > T transmit antennas. Furthermore, for $M \leq T$ the signal matrices achieving R_o can be expressed as

$$S = \left[egin{array}{c} \Phi \end{array}
ight] \left[egin{array}{c} \Lambda \end{array}
ight]$$

where

- ullet Φ is $T \times M$ unitary matrix $V^H V = I_M$
- ullet Λ is $M \times M$ non-negative diagonal matrix.

Case of Discrete K-dimensional Constellations

Specialize \mathcal{P} to the discrete distributions over $\mathbb{C}^{T \times M}$

Then $R_o = \tilde{R}_o(K)$ is given by

$$\max_{\{P_i, S_i\}_{i=1}^K} -\ln \sum_{i=1}^K P_i \sum_{j=1}^K P_j \ e^{-ND(S_i || S_j)} = -\ln \min_{\{P_i, S_i\}_{i=1}^K} \underline{P}^T E_K \underline{P}$$

where

- $E_k = ((D(S_i|S_j))_{i,j=1}^K$: dissimilarity (distance) matrix $\underline{P} = [P_1, \dots, P_K]^T$

Under peak power constraint, $||S_i|| \leq TM$,

$$\tilde{R}_o(K) = -\ln \min_{\{S_i\}_{i=1}^K} \left(\min_{\{P_i\}_{i=1}^K} \underline{P}^T E_K \underline{P} \right)$$

Inner maximization:

$$\min_{\underline{P}>0:\,\underline{1}_{K}^{T}\underline{P}=1}\left\{ \underline{P}^{T}E_{K}\underline{P}\right\}$$

Lagrangian

$$J(\underline{P}) = \underline{P}^T E_K \underline{P} - 2c(\underline{1}_K^T \underline{P} - 1)$$

minimized for equalizer probability $\underline{P} = \underline{P}^*$

$$E_K \underline{P}^* = c\underline{1}_K \Rightarrow \sum_{j=1}^K P_j e^{-ND(S_i || S_j)} = c$$

Fact: optimal constellation satisfies $E_K^{-1} \underline{1}_K \geq 0$

and

$$\tilde{R}_o(K) = -\ln \min_{\{S_i\}_{i=1}^K} \frac{1}{\underline{1}_K^T E_K^{-1} \underline{1}_K} = \max_{\{S_i\}_{i=1}^K} \ln \left(\underline{1}_K^T E_K^{-1} \underline{1}_K\right)$$

4 Bound on minimum distance

To $o(\eta^2)$ we have bounds

$$D_{\min}^{**} = \max_{\{S_i\}_{i=1}^K} \min_{i \neq j} D(S_i || S_j) \ge \frac{\eta^2}{8} \frac{(TM)^2}{(2^p - 1)^2} > \frac{\eta^2 (TM)^2}{128} K^{-2/T}$$

(a) (b)

Figure 12. Constellations of signal matrix singular values

Define:

 $K_o = \lfloor T/M \rfloor$: "orthogonal size"

= max value K for which closed form expression \tilde{R}_o exists

and

 K_c : "logK" transition point

- = knee of \tilde{R}_o
- \Rightarrow diminished returns by increasing K beyond K_c

5 Bound on logK transition point of constellation

Pick "test constellation" $\{S_i\}_{i=1}^K$ for which

$$D_{\min} = \min_{i \neq j} D(S_i || S_j) > \gamma K^{-2/T}$$

$$\gamma = \frac{\eta^2 (TM)^2}{128}.$$

$$\tilde{R}_{o}(K) \geq \max_{\{P_{i}\}} \log \left(\frac{1}{\sum_{i,j} P_{i} P_{j} e^{-ND(S_{i} \parallel S_{j})}} \right)$$

$$\geq \max_{\{P_{i}\}} \log \left(\frac{1}{\sum_{i,j} P_{i} P_{j} + \sum_{i \neq j} P_{i} P_{j} e^{-ND_{\min}}} \right)$$

$$= \log \left(\frac{1}{1/K + (K-1)/K e^{-ND_{\min}}} \right)$$

$$> \log \left(\frac{1}{1/K + (K-1)/K e^{-N\gamma K^{-2/T}}} \right)$$

$$= \log(K) - \log \left(1 + (K-1) e^{-N\gamma K^{-2/T}} \right)$$

$$\approx \log(K), \quad (K-1) e^{-N\gamma K^{-2/T}} \le 1$$

This gives lower bound on K_o

$$K_o \ge \left\{ K : K^{2/T} \ln K = \gamma N \right\}$$

6 Low Dimensional Constellations $K \leq K_o$

For given η , T and M define the integer M_o

$$M_o = \operatorname{argmax}_{m \in \{1, ..., M\}} \left\{ m \ln \frac{(1 + \eta T M / (2m))^2}{1 + \eta T M / m} \right\}.$$

First a result on max attainable distance under peak power constraint

Proposition 2 Let $2M \leq T$. Then

$$D_{\max} \stackrel{\text{def}}{=} \max_{S_1, S_2 \in \mathcal{S}_{\text{peak}}^K} D(S_1 || S_2) = M_o \ln \frac{(1 + \eta T M / (2M_o))^2}{1 + \eta T M / M_o}.$$
 (1)

Furthermore, the optimal signal matrices which attain D_{\max} can be taken as scaled rank M_o mutually orthogonal unitary $T \times M$ matrices of the form

$$S_1 = \eta \text{TM } \Phi_1, \qquad S_2 = \eta \text{TM } \Phi_2$$

where, for j = 1, 2,

$$\Phi_j^H \Phi_j = I_{M_o}, \quad \text{and} \quad \Phi_i^H \Phi_j = 0, \ i \neq j.$$

Proof is based on alternative representation for $D(S_1||S_2)$

$$D(S_1||S_2) = \frac{1}{2} \ln \frac{\left|I_M + \frac{\eta}{2} S_1^H S_1\right|^2 \left|I_M + \frac{\eta}{2} S_2^H S_2\right|^2}{\left|I_M + \eta S_1^H S_1\right| \left|I_M + \eta S_2^H S_2\right|} \left|I_M - \kappa^H \kappa\right|^2,$$

where κ is a $M \times M$ multiple signal correlation matrix

$$\kappa = \tilde{S}_2^H \tilde{S}_1$$

$$\tilde{S}_i = \frac{\eta}{2} S_i \left[I_M + \frac{\eta}{2} S_i^H S_i \right]^{-1}$$

Figure 15. Top panel: M_o as a function of the SNR parameter ηTM . Bottom panel: blow up of first panel over a reduced range of SNR.

Proposition 3 Let $2M \le T$ and let M_o be as defined in (1). Suppose that $M_o \le \min\{M, T/K\}$. Then the peak constrained K dimensional cut-off rate is

$$\tilde{R}_o(K) = \ln\left(\frac{K}{1 + (K - 1)e^{-ND_{\text{max}}}}\right)$$

and D_{\max} is given by (1). Furthermore, the optimal constellation attaining $\tilde{R}_o(K)$ is the set of K rank M_o mutually orthogonal unitary matrices and the optimal probability assignment is uniform: $P_i^* = 1/K$, $i = 1, \ldots, K$.

Example constellations for $T \times M = 4 \times 2$

•
$$M_o = 1, K = 4$$
: $(\eta^2 TM < 4.8)$

$$\{S_i\}_{i=1}^K = \left\{ egin{bmatrix} 1 & 0 \ 0 & 0 \ 0 & 0 \ 0 & 0 \end{bmatrix}, & egin{bmatrix} 0 & 0 \ 1 & 0 \ 0 & 0 \end{bmatrix}, & egin{bmatrix} 0 & 0 \ 0 & 0 \ 1 & 0 \end{bmatrix}, & egin{bmatrix} 0 & 0 \ 0 & 0 \ 1 & 0 \end{bmatrix}
ight\}$$

•
$$M_o = 2, K = 2$$
: $(\eta^2 TM \ge 4.8)$

$$\{S_i\}_{i=1}^K = \left\{ egin{bmatrix} 1 & 0 \ 0 & 1 \ 0 & 0 \ 0 & 0 \ \end{bmatrix}, egin{bmatrix} 0 & 1 \ 1 & 0 \ 0 & 0 \ \end{bmatrix} \right\}$$

7 Conclusions

- Peak power contrained cut-off rate reduces to minimizing Q-form
- optimal constellation equalizes the decoder error rates
- Average distance for optimal K-dim constellation decreases at most by $K^{-2/T}$
- Optimal low rate constellation is a set of scaled mutually orthogonal unitary matrices.
- Rank of the unitary signal matrices decreases in SNR
- For very low SNR, no diversity advantage: apply power to a single antenna element at a time.

References

- [1] A. O. Hero and T. L. Marzetta, "On computational cut-off rate for space time coding," Technical Memorandum, Bell Laboratories, Lucent Technologies, Murray Hill, NJ, 2000.
- [2] I. Abou-Faycal and B. M. Hochwald, "Coding requirements for multiple-antenna channels with unknown Rayleigh fading," Technical Memorandum, Bell Laboratories, Lucent Technologies, Murray Hill, NJ, 1999.
- [3] T. L. Marzetta and B. M. Hochwald, "Capacity of a mobile multiple-antenna communication link in Rayleigh fading," *IEEE Trans. on Inform. Theory*, vol. IT-45, pp. 139–158, Jan. 1999.