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ABSTRACT

In image reconstruction and restoration, there exists
an inherent tradeoff between the recovered spatial res-
olution and statistical variance: lower variance can be
bought at the price of decreased spatial resolution. This
tradeoff can be captured for a particular regularized es-
timator by tracing out the resolution and variance as
a curve indexed by the estimator’s smoothing parame-
ter. When the resolution of an estimator is well char-
acterized by the norm of the estimator bias-gradient
the uniform Cramèr-Rao (CR) lower bound can be ap-
plied. The bias-gradient norm fails, however, to con-
strain the width of the estimator point response func-
tion and the uniform CR bound with bias-gradient norm
can give counter-intuitive results. In this paper we
present a modified uniform CR bound on estimator vari-
ance which captures the width of the estimator point
response. These results on the theoretically minimum
attainable resolution-variance curve are useful both for
exploring near optimality of practical image estimation
algorithms and for optimizing the design of image ac-
quisition systems.

1 INTRODUCTION

Image reconstruction and restoration are inherently ill-
conditioned problems since physical imaging sensors are
resolution limited. Consequently, the full resolution im-
age is unrecoverable from the measurements, i.e. all fi-
nite variance estimators of the image are necessarily bi-
ased. For such problems there exists an inherent tradeoff
between the recovered spatial resolution of an estimator,
overall bias, and its statistical variance: lower variance
can only be bought at the price of decreased spatial res-
olution and/or increased overall bias. The goal of this
paper is to relate these three fundamental quantities in
the analysis of imaging systems.

Let θ = [θ1, . . . , θn]T ∈ Θ be a column vector of un-
known, nonrandom parameters that parameterize the
density fY (y; θ) of the observed random variable Y . The
parameter space Θ is assumed to be an open subset of
the n-dimensional Euclidean space IRn. For a fixed θ,
let θ̂j = θ̂j(Y ) be an estimator of the jth component of

θ. Let this estimator have mean value mθ = Eθ[θ̂j], bias

bθ = mθ − θj , and variance σ2
θ = Eθ[(θ̂j −mθ)2]. In the

context of image reconstruction and restoration, Y cor-
responds to a noise and blur degraded measurement of
the true image θ, and θ̂j is an estimate of the jth pixel
of the true image θ. Bias bθ is due to mismatch between
the estimation algorithm and truth. Variance σ2

θ arises
from statistical fluctuations due to uncertainty in the
measured data Y . Resolution is defined as the effective
width of the estimation algorithm point response which
will be defined later.

For a particular choice of estimator, the tradeoff be-
tween bias and variance is often analyzed by sweeping
out the measured bias bθ and variance σ2

θ , indexed by
the estimator’s smoothing parameter. Although com-
mon in the analysis of imaging system performance, this
method has its drawbacks. First, an estimator can al-
ways be found where the bias and variance are zero at
some point θ. For example, setting the estimator value
to an arbitrary constant results in a zero-variance (but
highly biased) estimator. Second, the bias value bθ pe-
nalizes estimators that may have a large constant, and
thus removable, bias. Third, these types of tradeoff
curves only apply to the particular estimator in ques-
tion, and do not say anything about the optimality of
the particular estimator.

One method to determine the variance of a particular
estimator is the Cramèr-Rao lower bound. Let FY be
the n×n Fisher information matrix of the measurements
Y , and let F−1

Y be its inverse. When θ̂j is unbiased, its
variance σ2

θ is bounded below by the jth diagonal ele-

ment of F−1
Y . Since almost all estimation algorithms of

interest used in image processing are biased, this bound
is not very useful.

In [1] we presented a lower bound on estimator vari-
ance as a function of the norm of the estimator bias-
gradient ‖∇bθ‖. When the resolution of an estimator
is well characterized by the norm of the estimator bias-
gradient the uniform Cramèr-Rao (CR) lower bound can
be applied. However, the bias-gradient norm fails to
constrain the width of the point spread function and
the uniform CR bound with bias-gradient norm can give
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counter-intuitive results [2].
In this paper we present a modified uniform CR bound

which captures the width of the estimator point spread
function by placing an additional constraint on the
second moment of the estimator mean-gradient ∇mθ.
We characterize the estimator which attains this lower
bound. For any fixed total bias and (2nd moment) reso-
lution this estimator attains minimum variance at that
particular resolution. This work generalizes the uni-
form CR bound of [1]. These results on the theoretically
minimum attainable resolution-variance curve are use-
ful both for exploring near optimality of practical image
estimation algorithms and for optimizing the design of
image acquisition systems.

2 THE BIASED CR BOUND

For a biased estimator θ̂j of θj with mean mθ the CR
bound has the following form [3], referred to here as the
biased CR bound.

σ2
θ ≥ (∇mθ)

TF+
Y (∇mθ) (1)

where ∇mθ is the gradient of the estimator mean value
mθ, FY = FY (θ) is the Fisher information matrix,

FY = Eθ
{

[∇θ ln fY (Y ; θ)] [∇θ ln fY (Y ; θ)]T
}
,

and F+
Y denotes the Moore-Penrose pseudo-inverse of

the possibly singular matrix FY . Note that the scalar
estimator θ̂j can be expressed in terms of the vector

estimator θ̂ = θ̂(Y ) by the inner-product θ̂j = ej
T θ̂,

where ej is the jth unit vector (0, . . . , 0, 1, 0, . . . , 0)T .
Thus the estimator mean- and bias-gradient vectors are
related by ∇mθ = ej +∇bθ, and the CR bound can be
expressed in terms of the estimator bias-gradient,

σ2
θ ≥ (ej +∇bθ)TF+

Y (ej +∇bθ) (2)

However, the biased CR bound only applies to estima-
tors with a given bias-gradient vector ∇bθ. Thus (2)
can not be used to simultaneously bound the variance
of several different estimators, each with comparable but
non-equal bias-gradient vectors.

3 THE UNIFORM CR BOUND

The bias-gradient vector ∇bθ can be interpreted as the
sensitivity or coupling of the bias in the jth pixel esti-
mate to perturbations in the remaining pixels of the im-
age. Thus, its length or norm ‖∇bθ‖ is a measure of the

overall bias in the estimate θ̂j . When ‖∇bθ‖ → 0, the
biased CR bound given in (2) reduces to [ej ]

TF+
Y [ej ] =

[F+
Y ]j,j, as one would expect from an unbiased estimator.

More precisely, [1] showed that the norm δ = ‖∇bθ‖C of
the bias-gradient with respect to a positive definite ma-
trix C is an upper bound on the maximal bias variation
over an ellipsoidal neighborhood C about θ.

The concept behind the UCRB is that for a fixed
value of bias-gradient norm δ > 0, find an optimal bias-
gradient vector d that minimizes (2) by performing a
constrained minimization over the feasible set of bias
gradient vectors ∇bθ : ‖∇bθ‖C ≤ δ,

min
d:‖d‖C≤δ

(ej + d)TF+
Y (ej + d) (3)

Derivation and proof of the optimal bias-gradient vector
d in (3) is given in [1].

3.1 UCRB

The uniform CR bound for biased estimators with a
given bias-gradient norm δ and non-singular Fisher in-
formation matrix FY is as follows. Let θ̂j be an esti-
mator of the jth pixel of the true image θ. For a fixed
δ ≥ 0, let the bias-gradient satisfy the norm constraint
‖∇bθ‖C ≤ δ where C is a positive-definite symmetric

matrix. Then the variance σ2
θ of θ̂j satisfies

σ2
θ ≥ B(θ, δ) (4)

where the variance lower bound B(θ, δ) is given by one
of the following two cases:

1. If δ2 ≥ ∇bTθ C∇bθ, then B(θ, δ) = 0

2. If δ2 < ∇bTθ C∇bθ, then

B(θ, δ) = (ej + d)TF−1
Y (ej + d) (5)

where the optimal bias-gradient vector d is given by

d = −[I + λ1FY C]−1ej (6)

and λ1 is the Lagrange multiplier given by the
unique solution of δ2 = dTCd.

Note that the estimator variance lower bound B(θ, δ)
is independent of the choice of estimator, and only de-
pends on the Fisher information FY and choice of norm
matrix C.

3.2 Example: Limits of Image Restoration

Figure (1) shows a 64x64-pixel image of a Shepp-Logan
head phantom, along with a noise- and blur-degraded
simulated measurement. Image blur was simulated by
convolving with a 5x5 pixel extent, shift-invariant, 1.5-
pixel FWHM symmetric gaussian kernel, along with ad-
ditive gaussian noise of variance σ2 = 1.

Figure (2) shows the limiting square-root variance vs.
bias-gradient norm of an estimate of pixel (32,32) in the
presence of blur and additive gaussian noise. Two dif-
ferent cases are considered: a 1.5-pixel fwhm gaussian
blur as in figure (1), along with a 1.75-pixel fwhm blur.
In both cases the noise is additive gaussian with unity
variance. The bias-gradient norm matrix C used in cal-
culate the bias-gradient length δ was the identity matrix.
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Figure 1: True Image (left), Noisy Image (right).
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Figure 2: Pixel estimation performance in presence of
blur and additive gaussian noise.

Note that the 1.75-pixel fwhm blur case has larger vari-
ance then the 1.5-pixel blur case. Estimating a pixel in
the presence of larger blur is a more ill-posed problem
and results in a noisier estimate for a given total bias.

Figure (3) shows a plot of mean-gradient images for
the 1.75-pixel fwhm blur case, for bias-gradient norm
δ = 0.1 (left) and δ = 0.5 (right). Note that with in-
creasing bias-gradient norm, the mean-gradient is more
spread out.
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Figure 3: Mean gradients images, δ = 0.1, δ = 0.5.

3.3 Interpretation Difficulties of the UCRB

One problem with the bias-gradient norm as a mea-
sure of estimator resolution is that it is possible for
different mean-gradients to have the exact same bias-

gradient norm, but with dramatically different resolu-
tion properties. Figure (4) shows cross-sectional slices
through two representative mean-gradients as a function
of their pixel location. Their associated bias-gradients
both have the same norm δ = 0.5, however their spread
or full-width-half-max are obviously different.
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Figure 4: Mean gradient cross-sections, δ = 0.5

4 MODIFICATIONS TO UCRB

As a modification to the UCRB we will add a constraint
on the mean-gradient ∇mθ and shows its connection
to the estimator local impulse response. Let µ(θ) =

Eθ[θ̂(Y )] be the expected value of the vector estimator

θ̂. Let ε be a small perturbation in the pth pixel of
the source θ. For an estimator with mean µ(θ), define
the local impulse response vector h of all reconstructed
pixels due to a perturbation in the pth pixel of θ as

hp(θ) = lim
ε→0

µ(θ + εep)− µ(θ)

ε
=

∂

∂θp
µ(θ) (7)

As noted in [4], this definition of impulse response re-
flects the space-varying nature of nonlinear estimators.
It is space-varying through its dependence on the per-
turbing pixel index p, and object-dependent through θ.
The mean-gradient and local impulse response are re-

lated by ∇mθ =
[
h1
j(θ), . . . , h

n
j (θ)

]T
, where hpj is the

jth component of hp. In general ∇mθ and h(θ) are not
equivilant except under certain conditions [1, 4]. Con-
sider the case of an estimator whos mean is linear in θ:
µ(θ) = Lθ for some square matrix L. The local impulse

response hj(θ) due to a perturbation in the jth source
pixel is the jth column of L, while the mean-gradient
∇mθ = ∇Eθ[θ̂j ] is the jth row of L. Thus when L is
symmetric the mean-gradient is equivilant to the local
impulse response.

The local impulse response of an estimator describes
the coupling to all reconstructed pixels due to a pertur-
bation in a single source pixel, while the mean-gradient
describes the coupling into a single reconstructed pixel
due to perturbations in all source pixels. A weighted
norm of this coupling would be a natural measure of the
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estimator response about the jth pixel. In this case, as
with 3.1, we want to find the optimal bias-gradient (and
thus, mean-gradient) that results in a minimum variance

estimate of θ̂j given constraints on ∇bθ and ∇mθ.

4.1 Mean-gradient 2nd-moment

Define the 2nd-moment γ of the mean-gradient as

γ2 =

∑
i d(j, i)2(∇mθ)

2
i∑

i(∇mθ)2
i

(8)

where d(j, i) is the distance between the jth and i-th
pixel (nominally set equal to the Euclidean distance,
although any other distance could be used). Since the
mean-gradient is the sum of the unit vector ej and the
bias-gradient ∇bθ, (8) can be written as the ratio of two
quadratic forms,

γ2 =
(ej +∇bθ)TMj(ej +∇bθ)

(ej +∇bθ)T (ej +∇bθ)
(9)

where Mj is a positive semi-definite diagonal matrix
whose (i,i)-th diagonal entry is d(j, i)2.

4.2 UCRB with Mean-Gradient Constraint

The uniform CR bound for biased estimators with a
given bias-gradient norm δ, mean-gradient 2nd-moment
γ and non-singular Fisher information FY is as follows.
For a fixed δ, γ ≥ 0, let the bias-gradient satisfy the
norm constraint

∇bTθ C∇bθ ≤ δ2

and 2nd-moment constraint

(ej +∇bθ)TMj(ej +∇bθ)
(ej +∇bθ)T (ej +∇bθ)

≤ γ2

Then the variance σ2
θ of the estimator θ̂j satisfies

σ2
θ ≥ B(θ, δ, γ) (10)

where the variance lower bound B(θ, δ, γ) is given by
the following three cases:

1. If δ2 ≥ ∇bTθ C∇bθ, then B(θ, δ) = 0

2. If δ2 < ∇bTθ C∇bθ and γ ≥ γ∗, then

B(θ, δ, γ) = (ej + d)TF−1
Y (ej + d) (11)

where d is as given in (6) and

γ2
∗ =

(ej + d)TMj(ej + d)

(ej + d)T (ej + d)
(12)

3. If δ2 < ∇bTθ C∇bθ and γ < γ∗, then B(θ, δ, γ) is as

given in (11), and d =

−[F−1
Y + λ1C + λ2[Mj − γ2I]]−1[F−1

Y − λ2γ
2I]ej (13)

where λ1, λ2 ≥ 0 are Lagrange multipliers found
implicitly through the two equality constraints

(ej + d)T [Mj − γ2I](ej + d) = 0 (14)

dTCd− δ2 = 0 (15)

4.3 Interpretation

By the addition of a second constraint on the UCRB, we
now define a minimum-variance surface that all estima-
tors must lie above. For a given estimator, its variance
follows a trajectory in (δ, γ), parameterized its regular-
ization parameter. By analyzing the distance the partic-
ular estimator lies above the surface, one can determine
how far from optimality the estimator is.

4.4 Example Calculation

In figure (5) we show the variance bound surface for the
estimation task in 3.2. The image was degraded by a
1.5-pixel fwhm blur along with additive gaussian noise
of unity variance. The variance-trajectory of a penal-
ized weighted least-square estimator is superimposed on
top. The estimator penalty P is a 1st-order neighbor
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Figure 5: UCRB surface along with PWLS Estimator
Trajectory

roughness penalty. The estimator was purposely mis-
matched from the true system model in order to show it
lying above the bound surface (the estimator assumed
a 1.75-pixel fwhm blur).
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