
PARETO DEPTH SAMPLING DISTRIBUTIONS FOR GENE RANKING

G. Fleury
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ABSTRACT

In this paper we propose a method for gene ranking
from microarray experiments using multiple discriminants.
The novelty of our approach is that a gene’s relative rank is
determined according to the ordinal theory of multiple ob-
jective optimization. Furthermore, the distribution of each
gene’s rank, called Pareto depth, is determined by resam-
pling over the microarray replicates. This distribution is
called the Pareto depth sampling distribution (PDSD) and
it is used to assess the stability of each ranking. Graphical
representation of the PDSD as an image communicates in-
formation about the stability of each gene’s rank. We illus-
trate on data from a mouse retina microarray experiment0.

1. INTRODUCTION

Multicriteria gene filtering seeks to find genes whose ex-
pression profiles strike an optimal compromise between max-
imizing (or minimizing) several criteria. It is often easier for
a molecular biologist to specify several criteria than a single
criterion. For example the biologist might be interested in
aging genes, which he might define as those genes having
expression profiles that are increasing over time, have low
curvature over time, and whose total increase from initial
time to final time is large. Or one may have to deal with two
biologists who each have different criteria for what features
constitute an interesting aging gene.

In this paper we present a general method for rank or-
dering of genes based on a statistical version of the Pareto
front partial order in multicriteria optimization. As a linear
ordering of multiple criteria does not generally exist, an ab-
solute ranking of the selected genes is generally impossible.
However a partial ordering is often possible when formu-
lated as a multicriterion optimization problem. This idea
was used in our previous work [1, 2, 3] to obtain relative
rankings of gene expression levels based on microarray ex-
periments. We called our multiobjective approach to gene

0This research was partially supported by National Institutes of Health
grant NIH-EY11115 (including microarray supplements), Macula Vision
Research Foundation, and Elmer and Sylvia Sramek Foundation.

rankingPareto front analysis(PFA). As pointed out in [3]
the PFA approach is related to the notion of data depths and
contours of depth in a multivariate sample [4]. In an analo-
gous manner we will refer to thePareto depthof a gene as
the Pareto front on which the gene lies. Here we introduce
the Pareto depth sampling distribution (PDSD) as a tool to
both select high ranked genes and to visualize the stability
of the gene rankings as an image. Gene microarray data
from two experiments performed with collaborators in the
Dept. of Ophthalmology at the University of Michigan will
be used to illustrate our analysis.
Mouse Retinal Aging Study: The experiment consists of
hybridizing 24 retinal tissue samples taken from each of 24
age-sorted mice at 6 ages (time points) with 4 replicates per
time point. These 6 time points consisted of 2 early de-
velopment (Pn2, Pn10) and 4 late development (M2, M6,
M16, M21) samples. RNA from each sample of retinal tis-
sue was amplified and hybridized to the 12,422 probes on
one of 24 Affymetrix U74Av2 Mouse GeneChip microar-
rays. The data arrays from the GeneChips were processed
by Affymetrix MAS5 software to yield log2 probe response
data.
Human Retinal Aging Study: The experiment consists of
hybridizing 16 retinal tissue samples taken from 8 young
human donors and 8 old human donors. The ages of the
young donors ranged from 16 to 21 years and the ages of
the old donors ranged from 70 to 85 years old. The 16 tis-
sue samples were hybridized to 16 Affymetrix U95A Hu-
man GeneChip microarrays each containingN = 12, 642
probes.

2. GENE SCREENING AND RANKING

We assume that there areT populations (time samples) each
consisting ofMt replicates,t = 1, . . . , T . For each of the
samples we assume an independent microarray hybridiza-
tion experiment is performed yieldingN gene probe re-
sponses extracted from the microarray. Define the measured
response of then-th probe on them-th microarray acquired
at timet

ytm(n), n = 1, . . . , N, m = 1, . . . ,M, t = 1, . . . , T.



Consider the common problem of finding a set of genes
whose mean expression levels are significantly different be-
tween a pair of time points (T = 2) [5]. The measured probe
responses from such genes should exhibit small variability
over population (intra-class dispersion) and high variabil-
ity over time (inter-class dispersion). Two natural measures
of intra-class dispersionξ1 and inter-class dispersionξ2,
respectively, are the (scaled) absolute difference between
sample means:

ξ2(n) =
1√

1
M1

+ 1
M2

|ȳ1.(n)− ȳ2.(n)| , (1)

whereȳt.(n) = M−1
t

∑Mt

m=1 ytm(n), and the pooled sam-
ple standard deviation:

ξ1(n) =

√
(M1 − 1)σ2

1(n) + (M2 − 1)σ2
2(n)

(M1 − 1) + (M2 − 1)
(2)

whereσ2
t (n) = (Mt − 1)−1

∑Mt

m=1 (ytm(n)− ȳt.(n))2 .
The simple paired t-test can be used to separate the popu-
lations by thresholding the ratioTpt(n) = ξ2(n)/ξ1(n) of
the two dispersion measures and this could be used to rank
the genes in decreasing order ofTpt, or, equivalently, in in-
creasing p-value.
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Fig. 1. Left: a linear ordering exists and a single gene (optimum)
dominates the others.Right: No non-trivial partial ordering exists.

Multiple objective optimization captures the intrinsic com-
promises among possibly conflicting objectives. To illus-
trate, in the present context we consider the pair of crite-
ria ξ2(n) (1) andξ1(n) (2). A gene that maximizesξ2 and
minimizesξ1 over all genes would be a very attractive gene
indeed (Fig. 1.a). Unfortunately, such an extreme of op-
timality is seldom attained with multiple criteria. In rare
cases there exists no non-trivial partial ordering and no sen-
sible ranking is possible (see Fig. 1.b). However, in most
cases, illustrated in Fig. 2.a, a partial ordering is possible.
In the left panel of Fig. 2 gene A dominates gene C because
both criteria are higher for A than for C. D, A and B are said
to be non-dominated because improvement of one criterion

in going from D to A to B corresponds to degradation of
the other criterion. All the genes which are non-dominated
constitute a curve which is called the Pareto front. A sec-
ond Pareto front is obtained by stripping off points on the
first front and computing the Pareto front of the remaining
points (see Fig. 2). This process can be repeated to define
a third front and so on. A gene that lies on thek-th Pareto
front will be said to be at ”Pareto depth”k.
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Fig. 2. Left: A, B, D are non-dominated genes and form the Pareto
front in the dual criteria plane whereξ1 is to be minimized andξ2

is to be maximized. Right: successive Pareto fronts in dual criteria
plane (o : first Pareto front, * : second Pareto front, + : third
Pareto front).

In practical cases there are multiple Pareto fronts each con-
sisting of many genes. We illustrate in Figs. 3 and Fig. 4
where we show the scatterplots, called sample mean multi-
criteria scattergrams, of the empirical criteria{(ξ1(n), ξ2(n))}N

n=1

defined in (1) and (2) for all gene probe responses extracted
from microarrays in the mouse retina aging experiment and
the human retina aging experiment, respectively.
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Fig. 3. The sample meanmulticriterion scattergram for the
mouse retina aging experiment when comparing the populations
at two time points M21 and M2. The first three Pareto fronts are
indicated by circles, squares, and asterisks, respectively.
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Fig. 4. The sample mean multicriterion scattergram for the
human retina aging experiment (analog to Fig. 3) when
comparing young to old populations.

3. PARETO DEPTH SAMPLING DISTRIBUTION

To account for sample variation we applied a simple leave-
one-out cross-validation procedure to evaluate the sensitiv-
ity of the Pareto fronts to resampling the available samples.
For each time point a sample is omitted leaving2M sets of
(M − 1)2 pairs to be tested (here we setMt = M , corre-
sponding to the two data sets presented above). For each
of these resampled set of genes the Pareto fronts are com-
puted. The most resistant genes are those which remain on
the top Pareto fronts throughout the resampling process. To
quantify the movement of a given gene across the Pareto
fronts as we resample, we introduce the Pareto depth sam-
pling distribution (PDSD). For each gene this distribution
corresponds to the empirical distribution of the Pareto front
indexes visited during the resampling process:

Pdsdn(k) = M−1
resamp

Mresamp∑

j=1

1n(j, k), k = 1, . . . , N

whereMresamp = 2M is the number of resampling trials,
and1n(j, k) is an indicator function of the event: ”j-th re-
sampling ofn-th gene is onk-th Pareto front.” IfK is the to-
tal number of Pareto fronts in the scattergram(ξ1(n), ξ2(n)}N

n=1

then, by convention, we definePdsdn(k) = 0 for k > K.
As the PDSD is a probability distributionPdsdn(k) ≥ 0
and

∑
k Pdsdn(k) = 1.

Figure 5 corresponds to the (un-normalized) PDSDs over
the first 40 Pareto depths for four different genes taken from
the human data set under the dual criteria(ξ1, ξ2) of (1) and
(2). The left and right panels of Fig. 6 show the PDSDs
of the top50 genes for the human retina data and mouse
data, respectively. In each of these figures the top50 genes
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Fig. 5. Unormalized PDSDs for four different genes taken
from human retina experiment. These PDSDs are indexed
by the Pareto depth, which is equivalent to Pareto front num-
ber.

were ranked in order of increasing second PDSD moment∑K
k=1 k2Pdsdn(k). The PDSD images provide graphic in-

dication of the Pareto variability of the human and mouse
data sets. We note that even though the human data set has
higher variance than the mouse data set, the top50 human
genes have lower Pareto variability since the human Pareto
fronts are broader and contain more genes (compare Figs. 3
and 4).
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Fig. 6. Left: An image of the PDSDs of the 50 top Pareto ranked
human genes. Right: An image of the PDSDs of the 50 top Pareto
ranked mouse genes. The magnitude of the PDSD is encoded in
the false color range of black (PDSD=1) to white(PDSD = 0).

4. RANKING RATE COMPARISONS

We investigated the ranking performance of the second mo-
ment PDSD gene ranking procedure to the ranking perfor-
mance of the paired t-test. Three hundred (N = 300) dif-
ferent probe responses were simulated. Eight (M = 8)
replicates of then-th gene probe response were generated
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Fig. 7. Left: ensemble mean scattergram (ground truth) for simu-
lation study. Right: sample mean scattergram formed from a ran-
dom realization.

according to an i.i.d. Gaussian distribution with means and
variances given by(m1(n), σ2

1(n)) and(m2(n), σ2
2(n)) for

populations 1 and 2, respectively. The variances were made
equalσ2

1(n) = σ2
2(n) = σ2(n) over both populations. The

means and variances were set by the following formula:

σ(n) = ξ2(n), m1(n) = 0, m2(n) = ξ1(n)ξ2(n)/2.

The values ofξ1(n), ξ2(n) are illustrated in the ground truth
scattergram in the left panel of Fig. 7. We designate the90
genes on the first3 fronts of this figure (depth increasing
along−45o diagonal) asground-truth-optimalgenes.

The right panel of Fig. 7 shows a realization of the em-
pirical scattergram obtained from sample mean and variance
estimates derived from the replicates. Figure 8 shows the
three first Pareto fronts and the boundaries of two accep-
tance regions for the paired t-test applied to the empirical
scattergram of Fig. 7. The first three Pareto fronts do not
capture all of the ground-truth-optimal genes but they have
a very low (0%) false discovery rate (proportion of genes
found which are not ground-truth-optimal). The solid line
boundary of the paired t-test discovers the90 genes with
lowest p-value. Use of this acceptance region would result
in discovery of more ground-truth-optimal genes than dis-
covered by the first three Pareto fronts, but with a false dis-
covery rate of approximately15%. The dashed line bound-
ary corresponds to a paired t-test threshold which would
lead to discovery of all of the90 ground-truth-optimal genes,
however, the false discovery rate of this acceptance region
is quite high (> 40%).

In Fig.9 we plot the correct discovery rate and the false dis-
covery rate, respectively, for the paired t-test ranking and
the second moment PDSD ranking procedures. The latter
Pareto depth test performed significantly better (higher cor-
rect discovery rate and lower false discovery rate) than the
paired t-test for allM investigated.

5. CONCLUSION

This paper has presented a new method of Pareto analysis
that can identify and rank genes that have both stable and
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Fig. 8. Three first Pareto fronts (circle, square and asterisk)
and boundaries of paired t-test acceptance ragions.
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Fig. 9. Correct discovery rate (left) and false discovery rate
(right) as a function of the number of replicates for paired t-test
(solid) versus Pareto depth test (dashed).

low Pareto depths relative to the remaining genes. Addi-
tional genes discovered using this algorithm are now being
validated by RT-PCR methods. The developed method has
been implemented in Matlab and C and is sufficiently fast
to be part of an interactive tool for gene screening, ranking,
and clustering.
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