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ABSTRACT ranking Pareto front analysigPFA). As pointed out in [3]

the PFA approach is related to the notion of data depths and
contours of depth in a multivariate sample [4]. In an analo-
gous manner we will refer to thiéareto depttof a gene as
. : . : the Pareto front on which the gene lies. Here we introduce
determined according to the ordinal theory of multiple ob- . O

9 y P the Pareto depth sampling distribution (PDSD) as a tool to

jective optimization. Furthermore, the distribution of each . y . -
gene’s rank, called Pareto depth, is determined by resam_both select high ranked genes and to visualize the stability

pling over the microarray replicates. This distribution is of the gene rankings as an image. Gene microarray data

called the Pareto depth sampling distribution (PDSD) and II‘:r)omt tw;)oexrp])tirlTenlts per{ct)rr]m%d .Wlth .(t:olla;t?\jl).ragprs n t.:';e
it is used to assess the stability of each ranking. Graphical ept. oriupnihaimology at the niversity ot Michigan wi

representation of the PDSD as an image communicates in—be used to illustrate our analysis.

formation about the stability of each gene’s rank. We illus- Mouse Retinal Aging Study The experiment consists of

trate on data from a mouse retina microarray experifhent hybridizing 2‘.1 retinal tissue ;amplgs take_n from egch of24
age-sorted mice at 6 ages (time points) with 4 replicates per

time point. These 6 time points consisted of 2 early de-
1. INTRODUCTION velopment (Pn2, Pn10) and 4 late development (M2, M6,
M16, M21) samples. RNA from each sample of retinal tis-
Multicriteria gene filtering seeks to find genes whose ex- sue was amplified and hybridized to the 12,422 probes on
pression profiles strike an optimal compromise between maxene of 24 Affymetrix U74Av2 Mouse GeneChip microar-
imizing (or minimizing) several criteria. Itis often easier for rays. The data arrays from the GeneChips were processed
amolecular biologist to specify several criteria than a single by Affymetrix MAS5 software to yield log2 probe response
criterion. For example the biologist might be interested in data.
aging genes, which he might define as those genes havingiuman Retinal Aging Study. The experiment consists of
expression profiles that are increasing over time, have lowhybridizing 16 retinal tissue samples taken from 8 young
curvature over time, and whose total increase from initial human donors and 8 old human donors. The ages of the
time to final time is large. Or one may have to deal with two young donors ranged from 16 to 21 years and the ages of
biologists who each have different criteria for what features the old donors ranged from 70 to 85 years old. The 16 tis-
constitute an interesting aging gene. sue samples were hybridized to 16 Affymetrix U95A Hu-
In this paper we present a general method for rank or- man GeneChip microarrays each containig= 12, 642
dering of genes based on a statistical version of the Paretgrobes.
front partial order in multicriteria optimization. As a linear
ordering of multiple criteria does not generally exist, an ab- 2. GENE SCREENING AND RANKING
solute ranking of the selected genes is generally impossible
However a partial ordering is often possible when formu-

lated as a multicriterion optimization problem. This idea samples we assume an independent microarray hybridiza-

B e out DL WOtk 2, 3140 ot SN o experimen s percmed yiking’gene proe e
King 9 P S y sponses extracted from the microarray. Define the measured
periments. We called our multiobjective approach to gene

response of the-th probe on then-th microarray acquired
OThis research was partially supported by National Institutes of Health at timet

grant NIH-EY11115 (including microarray supplements), Macula Vision
Research Foundation, and Elmer and Sylvia Sramek Foundation. Ym(n), n=1,...,Nym=1,....M, t=1,...,T.

In this paper we propose a method for gene ranking
from microarray experiments using multiple discriminants.
The novelty of our approach is that a gene’s relative rank is

We assume that there dfgpopulations (time samples) each
consisting ofM; replicates¢ = 1,...,7. For each of the




Consider the common problem of finding a set of genesin going from D to A to B corresponds to degradation of
whose mean expression levels are significantly different be-the other criterion. All the genes which are non-dominated
tween a pair of time pointd{ = 2) [5]. The measured probe constitute a curve which is called the Pareto front. A sec-
responses from such genes should exhibit small variability ond Pareto front is obtained by stripping off points on the
over population (intra-class dispersion) and high variabil- first front and computing the Pareto front of the remaining
ity over time (inter-class dispersion). Two natural measures points (see Fig. 2). This process can be repeated to define
of intra-class dispersiod; and inter-class dispersiafy, a third front and so on. A gene that lies on th¢h Pareto
respectively, are the (scaled) absolute difference betweerfront will be said to be at "Pareto depthk”

sample means:
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ple standard deviation: | |
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Fig. 2. Left: A, B, D are non-dominated genes and form the Pareto

whereo2(n) = (M, — 1) M (g (n) — 50.(n))” . front in the dual criteria plane wherg; is to be minimized ang.

The simple paired t-test can be used to separate the popuis to be maximized. Right: successive Pareto fronts in dual criteria
lations by thresholding the ratiB,(n) = & (n)/&(n) of plane (o : first Pareto front, * : second Pareto front, + : third
the two dispersion measures and this could be used to raniareto front).

the genes in decreasing orderigf, or, equivalently, in in-

creasing p-value.

In practical cases there are multiple Pareto fronts each con-
sisting of many genes. We illustrate in Figs. 3 and Fig. 4

& o ~— Opimum & o ° wherg we show the scatterplots,_ (_:alled_sa_mple mean multi-
0 ° criteria scattergrams, of the empirical critefig@; (n), £&2(n)) }2_;
% o defined in (1) and (2) for all gene probe responses extracted
% o from microarrays in the mouse retina aging experiment and
o4 o E : : the human retina aging experiment, respectively.
1 1

Fig. 1. Left: a linear ordering exists and a single gene (optimum) o
dominates the others.Right: No non-trivial partial ordering exists.
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* e

Multiple objective optimization captures the intrinsic com-
promises among possibly conflicting objectives. To illus-
trate, in the present context we consider the pair of crite- ©
ria £&2(n) (1) and&;(n) (2). A gene that maximize$, and
minimizes¢; over all genes would be a very attractive gene 07 S ‘
indeed (Fig. 1.a). Unfortunately, such an extreme of op- SN 10°
timality is seldom attained with multiple criteria. In rare '

cases there exists no non-trivial partial ordering and no SeNFig. 3, The sample meamulticriterion scattergram for the
sible ranking is possible (see Fig. 1.b). However, in most g se retina aging experiment when comparing the populations

cases, illustrated in Fig. 2.a, a partial ordering is possible. at two time points M21 and M2. The first three Pareto fronts are
In the left panel of Fig. 2 gene A dominates gene C becauseindicated by circles, squares, and asterisks, respectively.

both criteria are higher for A than for C. D, A and B are said

to be non-dominated because improvement of one criterion

22 (inter class: MAX)
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Fig. 4. The sample mean multicriterion scattergram for the 1 3 5 7 9 11 0 0 2 a0 a0
human retina aging experiment (analog to Fig. 3) when Pareto front number Pareto front number

comparing young to old populations.
Fig. 5. Unormalized PDSDs for four different genes taken

from human retina experiment. These PDSDs are indexed
3. PARETO DEPTH SAMPLING DISTRIBUTION by the Pareto depth, which is equivalent to Pareto front num-

To account for sample variation we applied a simple leave-

one-out cross-validation procedure to evaluate the sensitiv-

ity of the Pareto fronts to resampling the available samples.were ranked in order of increasing second PDSD moment
For each time point a sample is omitted leavirl sets of >+, k2Pdsd,, (k). The PDSD images provide graphic in-
(M — 1)? pairs to be tested (here we sefy = M, corre- dication of the Pareto variability of the human and mouse
sponding to the two data sets presented above). For eacllata sets. We note that even though the human data set has
of these resampled set of genes the Pareto fronts are combigher variance than the mouse data set, thestopuman
puted. The most resistant genes are those which remain ofgenes have lower Pareto variability since the human Pareto
the top Pareto fronts throughout the resampling process. Tdronts are broader and contain more genes (compare Figs. 3
quantify the movement of a given gene across the Paretoand 4).

fronts as we resample, we introduce the Pareto depth sam-

pling distribution (PDSD). For each gene this distribution
corresponds to the empirical distribution of the Pareto front i o =
indexes visited during the resampling process: s =i £ ]
Mesamp i =_ ;m
Pdsd,, (k) = M;lamp 1.(j, k), k=1,...,N i
j=1 i 2

2 4 6 8 10 12 14 16 18 2 2 4 6 8 10 12 14 16 18
Pareto front number Par imber

where Mesamp = 2 is the number of resampling trials,

and1,(j, k) is an indicator function of the event;-th re- : .
sampling ofa-th gene is ork-th Pareto front” If is the to- Fig. 6. Left: An image of the PDSDs of the 50 top Pareto ranked

. human genes. Right: An image of the PDSDs of the 50 top Pareto
tal number of Par_eto fronts n the scattergrig(n), £2(n) fy:l ranked mouse genes. The magnitude of the PDSD is encoded in
then, by convention, we defiriédsd, (k) = 0 for k > K. the false color range of black (PDSD=1) to whit€ DSD = 0).

As the PDSD is a probability distributioRdsd,,(k) > 0

and), Pdsd, (k) = 1.

4. RANKING RATE COMPARISONS
Figure 5 corresponds to the (un-normalized) PDSDs over
the first 40 Pareto depths for four different genes taken from We investigated the ranking performance of the second mo-
the human data set under the dual crité€ig &>) of (1) and ment PDSD gene ranking procedure to the ranking perfor-
(2). The left and right panels of Fig. 6 show the PDSDs mance of the paired t-test. Three hundréd £ 300) dif-
of the top50 genes for the human retina data and mouse ferent probe responses were simulated. Eight & )
data, respectively. In each of these figures thestbgenes replicates of thei-th gene probe response were generated
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Fig. 7. Left: ensemble mean scattergram (ground truth) for simu-
lation study. Right: sample mean scattergram formed from a ran-

dom realization. 102 ‘ ‘ ‘
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according to an i.i.d. Gaussian distribution with means and

variances given bym (n), o3 (n)) and(mz(n), o3(n)) for Fig. 8. Three first Pareto fronts (circle, square and asterisk)
populations 1 and 2, respectively. The variances were madeand boundaries of paired t-test acceptance ragions.

equalo?(n) = o2(n) = o%(n) over both populations. The

means and variances were set by the following formula: I Iil

o(n) = &(n), mi(n) =0, ma(n) = &i1(n)&(n)/2.

The values of; (n), £&2(n) are illustrated in the ground truth
scattergram in the left panel of Fig. 7. We designatedthe
genes on the first fronts of this figure (depth increasing = H—H
along—45° diagonal) aground-truth-optimabenes.

The right panel of Fig. 7 shows a realization of the em-
pirical scattergram obtained from sample mean and variancerig. 9, Correct discovery rate (left) and false discovery rate
estimates derived from the replicates. Figure 8 shows the(right) as a function of the number of replicates for paired t-test
three first Pareto fronts and the boundaries of two accep-(solid) versus Pareto depth test (dashed).
tance regions for the paired t-test applied to the empirical
scattergram of Fig. 7. The first three Pareto fronts do not
capture all of the ground-truth-optimal genes but they have
a very low (0%) false discovery rate (proportion of genes
found which are not ground-truth-optimal). The solid line
boundary of the paired t-test discovers thiegenes with
lowest p-value. Use of this acceptance region would result
in discovery of more ground-truth-optimal genes than dis-
covered by the first three Pareto fronts, but with a false dis-
covery rate of approximateli5%. The dashed line bound- 6. REFERENCES
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