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Abstract|

The massive scale and variability of microarray gene
data creates new and challenging problems of signal
extraction, gene clustering, and data mining, espe-

cially for temporal studies. Most data mining meth-
ods for �nding interesting gene expression patterns
are based on thresholding a single discriminant, e.g.

a ratio of between-class to within-class variation or
correlation to a template. We introduce a di�erent

approach for extracting information from gene mi-
croarrays which is based on a Bayesian formulation of
multi-objective optimization which we call posterior

Pareto front analysis. We will illustrate our methods
by applying it to Fred Wright's GeneChip study.

I. Introduction

In [3], [4] we introduced a new approach to gene
�ltering, called Pareto gene �ltering, which is based
on multicriterion optimization and cross-validation.
Pareto gene �ltering allows the experimenter to iso-
late genes that achieve a good compromise between
several competing gene-ranking criteria. Such genes
lie on the so called Pareto front and are called non-
dominated genes, see Sec. II for de�nitions. In this
paper we present a Bayes posterior analysis approach
to Pareto gene �ltering which we call the method of
posterior Pareto fronts (PPF). The main advantage
of the PPF approach over the Pareto gene �ltering
approach is that it ranks each gene according to its
posterior probability that it belongs to the Pareto
front. We refer the reader to [7] for a more complete
presentation of the work presented here.

The outline of the paper is as follows. In Sec. II we
brie
y review and introduce our notation for microar-
ray data and we recall elements of the Pareto gene �l-
tering approach. In Sec. III we consider speci�c con-
trast functions for PPF �ltering. Finally in Sec. IV
we apply PPF analysis to Fred Wright's A�ymetrix

mixing data set.

II. Posterior Pareto Gene Filtering

A gene chip consists of a large number N of known
DNA probe sequences that are put in distinct loca-
tions, called wells, on a slide [8], [1], [2]. After hy-
bridization of an unknown tissue sample to the gene
chip, the abundance of each probe present in the
sample can be estimated from the measured levels of
hybridization (responses). The study of di�erential
gene expression between T populations requires hy-
bridizing several (M) samples from each population
to reduce response variability. De�ne the measured
response at the n-th gene chip probe location for the
m-th sample at time t

ytm(n); n = 1; : : : ; N; m = 1; : : : ;M; t = 1; : : : ; T:

When several gene chip experiments are performed
over time they can be combined in order to �lter
out those genes with interesting expression pro�les.
This is a data mining problem for which many meth-
ods have been proposed including: multiple paired
t-tests; linear discriminant analysis; self organizing
(Kohonen) maps (SOM); principal components anal-
ysis (PCA); K-means clustering; hierarchical cluster-
ing (kdb trees, CART, gene shaving); and support
vector machines (SVM) [6]. As contrasted to max-
imizing such scalar criteria, multi-objective gene �l-
tering seeks to simultaneously maximize gene pro�les
[3]. This method is closely related to multi-objective
optimization which has been used for many applica-
tions [10], [11].

Multi-objective gene �ltering can be motivated by
the following simple example. Let there be T = 2
time points and de�ne �(i) = [�1(i); �2(i)]

T the
true unobserved expression levels of the i-th gene at
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each of these times. Let an experimenter have P

gene selection criteria which, when applied to this
gene response, gives the vector criterion: �(i) =

[�1(�(i)); : : : ; �P (�(i))]
T : Gene i is said to be better

than gene j in the p-th criterion if �p(i) > �p(j).
Multi-criterion optimization captures the intrinsic
compromises among these possibly con
icting objec-
tives. Consider Fig. 1 and suppose that �1 and �2
(P = 2) are to be maximized. It is obvious that
genes A, B and C are \better" than genes D and E
because both criteria are higher for the former than
for the latter. Note that no gene among A, B and
C dominates the other in both criteria �1 and �2.
Multi-objective �ltering uses this "non-dominated"
property as a way to establish a preference relation
among genes A, B, C, D and E. More formally, we say
gene i is dominated if there exists some other gene
g 6= i such that for some p = po

�p(i) < �po(g) and �p(i) � �p(g); p 6= po:

All the genes which are non-dominated constitute
a curve which is called the Pareto front. A second
Pareto front can obtained by stripping o� points on
the �rst front and computing the Pareto front of the
remaining points - which for the example in Fig. 1
would be genes D and E.

o  A

o B

o D

o C
o E

ξ

ξ

2

1

Fig. 1. A, B, C are non-dominated genes relative to criteria
�1 and �2.

When the true means are unknown the criteria
�p(i) can be estimated, e.g. by methods of moments,
and the estimated Pareto front can be computed. To
assign statistical con�dence to these estimates cross-
validation methods can be applied. The posterior
Pareto front analysis introduced here casts the cross-
validation procedure of [3] in a Bayesian framework.
Although the theory can be developed for more gen-
eral cases, here we assume an additive model for the

(log) gene pro�le measurement:

ymt(i) = �t(i) + �mt(i)

where �mt(i) are zero mean noise samples and m =
1; : : : ;M , t = 1; : : : ; T and i = 1; : : : ; N . Given a
prior f(�t(i); �t(i)

2) on the mean �t(i) and the vari-
ance �2t (i) of ymt(i) the posterior probability that
gene i belongs to the Pareto front can be computed.
In the sequel we adopt the non-informative prior [5]

f�t(i);�2t (i)(u; s) =
c

sa=2
; u 2 IR; s 2 IR+

where c is a positive normalizing constant and a > 0.

Two special cases are of interest to us: (i) time
varying variances f�2t (i)gt; and (ii) non-time vary-
ing variances �2t (i) = �2� (i), t; � = 1; : : : ; T . For
lack of space we only consider the latter here. As-
sume that: (i) f�t(i)gti and f�

2(i)gi are independent
sets of i.i.d. random variables; (ii) given these ran-
dom variables Y = fytm(i)gti are independent jointly
Gaussian random variables with respective means
f�t(i)gti and variances f�2t (i)gti; (iii) fytm(i)gm are
conditionally i.i.d. Then the joint posterior p.d.f. of
�(i) = [�1(i); : : : ; �T (i)]

T takes the form of a multi-
variate Student-t density. We use a simple approxi-
mation to the associated c.d.f. via a multivariate L1
approximation to obtain

F�(i)jY (u1; : : : ; uT ) �

 
1 +

X
t

(�̂t(i)� ut)
2
+

�̂2(i)

!�(TM�a+2)=2

:

where �̂2(i) = T�1M�1
P

t

P
m(ytm(i) � �̂t(i))

2,
Yi = fytm(i)gtm.

III. Profile Contrasts

Let the vector criterion �(i) = [�1(i); : : : ; �P (i)]
T

be de�ned as a linear function of the vector of pro�le
contrasts for gene i:

�(i) = A�(i);

where A = ((aij)) is a P � T contrast matrix and
P � T . Assume that the components of � are con-
ditionally independent. As the Pareto fronts are in-
variant to monotonic increasing transformations of
the �p's, a suÆcient condition for �(i) to have in-

dependent components is that AAT = diag(aii)= a
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diagonal matrix. Consider the corresponding candi-
date T � T contrast matrices

A2 =

�
�1 1
1 1

�
;

A
0

2 =

�
1 �1
1 1

�
;

A3 =

2
4 �1 0 1

1 �2 1
1 1 1

3
5 ;

A
0

3 =

2
4 �1 1 0
�1 �1 2
1 1 1

3
5 ;

As all of these matrices satisfy AAT = diago-
nal, we can apply the posterior Pareto analysis to
any subset of �p's in the vector � = A� depend-
ing on the problem at hand. Applying the posterior
Pareto front analysis to �(i) = A2�(i) will extract 2
time-point gene pro�les which are monotonic increas-
ing (large �1) and/or have strong average expression
levels (large �2). When applied to �(i) = A

0

2�(i)
the analysis will extract strong monotonic decreas-
ing genes from the 2 time-point pro�les. Applying
the posterior Pareto front analysis to �(i) = A3�(i)
will extract strong 3 time-point gene pro�les which
are end-to-end increasing and have large positive cur-
vature (large �2). If A3 is replaced with A

0

3 then the
analysis will �nd strong pro�les which are monotonic
increasing. Using only the �rst two rows of A

0

3 will
extract both string and weak monotonic increasing
pro�les. If the p.d.f. of �2(i) is truncated to zero
over the range

IV. Experimental Results

We applied PPF analysis to Fred Wright's dataset
described in the paper [9]. This data set is a mixing
experiment which has been designed for empirically
validating and comparing various di�erential gene
expression methods of analysis. Three populations
of genes were hybridized to A�ymetrix HuGeneFL
chips: starved human �broblast cells; stimulated hu-
man �broblast cells; and a 50-50 mixture of these
cells. A total of 18 chips were processed correspond-
ing to 6 replications within each of the three pop-
ulations mentioned above. Each chip contains the

same 7129 gene probes selected by A�ymerix for
the HuGeneFL chip. For each gene probe we arbi-
trarily de�ned the sequence of hybridization abun-
dances from the \stimulated(t=1)," \50-50(t=2),"
and \starved(t=3)," populations, in that order, as
a gene expression pro�le. Note that ideally the pro-
�les are linearly increasing or linearly decreasing over
these three \time points." We �xed the objective of
�nding the most aberrant non-linear pro�les which
display a peak at t = 2 (convex cap). As a prepro-
cessing step a a standard Fisher test was applied to
screen gene pro�les having large residual linear re-
gression errors inconsistent with a linearity hypoth-
esis. Subsequently the posterior Pareto fronts of the
most aberrant convex cap genes were computed using
the contrast matrix:

A =

�
�1 1 0
1 1 �2

�
: (1)
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Fig. 2. Multicriterion scattergram of sample mean contrasts
fA�̂(i)gi with A given in (1) for A�ymetrix Li-Wong re-

duced indices in Fred Wright's HuGeneFL mixture study).
Crosses denote 98 genes that failed the Fisher linearity
test at level p = 0:1.

Throughout this section we used the exponent a =
2 in the prior density input for the PPF analysis. For
this we adopted the contrast matrix

A =

�
�1 1 0
1 1 �2

�
:

Figure 3 shows the results of PPF analysis. The con-
tours around each point in the �gure denotes the
standard error (one standard deviation) circle and
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Fig. 3. Non-linear genes with high posterior probability of be-
longing to the �rst Pareto front along with standard error
constant contours and posterior probabilities. For clarity,
only the �rst 20 top ranking genes are shown.
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Fig. 4. Eight top ranking genes according to the PPF anal-
ysis. P (ijY ) denotes the Bayes posterior probability that
each pro�le is Pareto-optimal according to the two linear
contrast criteria.

the annotation at the centers of the circles is the
computed posterior probability (PPF) that the gene
belongs to the �rst Pareto front. Figure 4 shows the
eight top scoring trajectories under the PPF crite-
rion. In each sub-panel the indicated piecewise linear
line passes through the means of the 6 replicates for
each of the 3 time samples.

V. Conclusion

This paper introduced a new method of Pareto
gene �ltering based on posterior analysis of the
Pareto fronts of the multi-objective vector. This of-
fers an alternative to non-parametric cross-validation
approaches to Pareto �ltering introduced by us in
earlier work. The method is very 
exoble and in-
volves choosing a set of appropriate pro�le contrasts
which display desired characteristics of the expression
pro�les. These techniques also have applicability to
general data mining problems. An issue that must be
addressed is reduction in computational complexity
which will be necessary for these, and other, valida-
tion techniques to be peformed in \real time."
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