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ABSTRACT

The main concern of this paper is to build a method
of characterization and identification of a dynami-
cal system with several degrees of freedom when
only one observation record is available. The anal-
ysis of the number of degrees of freedom provided
by performing a Principal Component Analysis leads
to an eigendecomposition-based method. The link
between the proposed method and the MUSIC al-
gorithm is then drawn. This approach gives a new
insight on the use of this type of methods.

1. INTRODUCTION

Performing single spin detection with Magnetic
Resonance Force Microscopy (MRFM) raises ques-
tions ranging from theoretical to experimental phy-
sics. Apart from the understanding of how quan-
tum and classical mechanics systems interact [5],
an important issue is the characterization of a non-
linear dynamical system from a single observation.
That is the problem this communication proposes
to tackle. A MRFM device consists of coupling
a single electron in resonance in a magnetic field
with a ferromagnetic cantilever. Under hypothesis
H0, no spin is present. The cantilever is a harmonic
oscillator whose natural frequency depends on the
magnetic field gradient. The motion of the can-
tilever is described by a dynamical system with two
degrees of freedom. The introduction of the non-
linear coupling term of the cantilever with a single
spin under hypothesisH1 induces an increasing of
the number of degrees of freedom from two to five.
A detection scheme is proposed in [10] that per-
formes a parallel tracking of the output signal un-
der both hypothesis. This method requires a simu-
lation of the systems of dynamical equations, and
thus the estimation of all the degrees of freedom.
Here the spin detection task is reduced to determin-
ing how many degrees of freedom are necessary to
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describe the system from the only observation of
the output of the cantilever.
We first recall that the Takens Embedding method
provides a phase space reconstructed trajectory of
a dynamical system from a single observation [9].
Under suitable approximations, it can be shown
[1], that the coupling of the single spin with the
cantilever results in a shift of the natural frequency.
Thus, the characterization task turns out to be the
detection and estimation of this shift. Working with
a 5-dimensional phase space, we propose to deter-
mine the actual number of degrees of freedom by
performing a Principal Component Analysis. This
approach gives a new insight on the eigendecompo-
sition-based methods of frequency estimation [4],
[6]. We finally present a comparison of the pro-
posed algorithm with the well-known MUSIC al-
gorithm [3], [7].

2. ANALYSIS OF A DYNAMICAL SYSTEM

Consider a system ofp differential equations
with variablesd1(t), d2(t), . . . , dp(t)




d1(t)
dt = Φ1(d1(t), d2(t), . . . , dp(t)),

d2(t)
dt = Φ2(d1(t), d2(t), . . . , dp(t)),

...
dp(t)

dt = Φp(d1(t), d2(t), . . . , dp(t)).

(1)

Suppose the only observation available is the com-
ponentd1(t). There exists a mapping from the ac-
tual phase space

(d1(t), d2(t), . . . , dp(t)),

to the space spanning the set ofp delayed versions
of the observation [9]

(d1(t), d1(t− τ), . . . , d1(t− (p− 1)τ)).

This space is called the reconstructed phase space.
Parameterτ is called the embedding delay. Fraser
shows in [2] that an optimal choice ofτ in terms



of information redundancy is the first zero of the
auto-correlation function ofd1(t). That is how we
defineτ here. The actual numberp of degrees of
freedom of the dynamical system is the dimension
of the trajectory. If unknown, it can be estimated
from the Principal Component Analysis (PCA) of
the reconstructed phase space. The estimation ofp
is then given by the number of non-null eigenval-
ues of the covariance matrix of the reconstructed
phase space.
Consider that the available observation is the dis-
crete signal

x[n] = d1(nTs) + ν[n], n = 0 . . . N − 1 (2)

whereTs is the sampling period andν[n] is the
measurement white Gaussian noise with variance
σ2. Note

xl
n = [x[n], x[n + l], . . . , x[n + (p− 1)l]]T , (3)

thel-times under-sampled segment of the observa-
tion. Performing PCA of the phase space consists
of deriving the eigendecomposition of thep × p
covariance matrix

Cl =
1
P

P−1∑
n=0

xl
nxlT

n , (4)

whereP = N − l(p − 1) is the number of under-
sampled segments. The under-sampling ratel is
related to the embedding delayτ by

lTs = τ + εTs, (5)

whereε ∈ (−1/2, 1/2) is the error to the estima-
tion of the embedding delay, due to the discretiza-
tion of the observation. AsP tends to infinity,Cl

tends to the matrixΓl = E{xl
nxlT

n }. Assuming
wide sense stationary dynamics, this matrix is of
Toeplitz form with the element in thekth diagonal
Γl

i,k = Γ1
1+(i−1)l,1+(k−1)l.

3. THE PHASE-SPACE TRAJECTORY OF
THE MRFM DEVICE

The dynamics of a cantilever in a MRFM de-
vice is described by a system ofp = 5 equations
which variables are the position and speed of the
cantilever tip and the three components of the spin
[1], [10]. The available observationd1 is the posi-
tion of the cantilever measured by a laser interfer-
ometer. Under hypothesisH0 (no spin), the can-
tilever is an harmonic oscillator and the number of
degrees of freedom reduces top = 2. The vari-
abled1 is, in this case, a sinusoid with frequency
f0 equal to the natural frequency of the oscillator:

H0 : d1[n] = A sin(2πf0nTs + ψ). (6)
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Fig. 1. Projection of the phase space trajectory on
the three first eigenvector space. The central fre-
quency isf0 = 7000 Hz and the shift isδf0 = 30
Hz.

In MRFM, the amplitudeA of the signal and phase
ψ are parameters controlled by the user. We as-
sume they are known with valuesA = 1 andψ =
0. Thus the frequency is the only parameter to be
estimated. The trajectory in the 5-dimensional re-
constructed phase space is an ellipsoid with radii
and orientation depending onf0. This trajectory
lies on a two-dimensional subspace.
The cantilever is driven by an external force which
produces a cyclic adiabatic inversion (CAI) of the
spin moment. It is shown in [1] that the effect of
the CAI on the spin-cantilever coupling can be ap-
proximated as cyclically alternating positive and
negative shiftδf0 of the natural frequency of the
cantilever:

f = f0 ± δf0. (7)

Thus, underH1, the trajectory in the phase space is
composed of two ellipsoids with different radii and
different orientations (see figure 1). UnderH1, the
trajectory spans more than two dimensions.

4. THE EIGENDECOMPOSITION-BASED
METHOD

The detection scheme we develop consists of
tracking the orientation of the trajectory over a mov-
ing time window. This orientation is provided by
the eigenvectors of the covariance matrixCl rather
than by the eigenvalues. As the output of the can-
tilever is a sinusoid, its period is approximately4l
where l is the discrete embedding delay defined
by expression (5). We propose to perform a PCA
of the reconstructed trajectory on successive se-
quences[xl

n, xl
n+1, . . . , x

l
n+M−1]. The eigenvec-

tors of Cl are asymptotically unbiased estimators
of the eigenvectorsγl

1, γ
l
2, . . . , γ

l
p of Γl [3]. The

eigenvectorγl
1 corresponding to the highest eigen-



value is expressible as:

γl
1 = [e(f0)4, e(f0)3, e(f0)2, e(f0), 1]T , (8)

wheree(f0) = exp{−i2πf0lTs}. The PCA of
the phase space provides an unbiased estimation of
ê(f0). The estimated frequencŷf0 is the angular
position ofê(f0):

f̂0 =
1

2πlTs
={log{ê(f0)}}, (9)

where={x} is the imaginary part of the complex
valuex.

5. COMPARISON WITH MUSIC

The frequency estimation method described in
the previous section is based on the eigendecom-
position of the covariance matrixΓl. It can be seen
as a member of the class of subspace methods [6].
One of the most popular method belonging to this
class is the well-known MUSIC algorithm intro-
duced first by Pisarenko in [4] for frequency esti-
mation and extended to the problem of direction
of arrival estimation (see for example [3] or [7] for
analysis of performances of MUSIC and related al-
gorithms).
Unlike our proposed method, MUSIC is based on
the eigendecomposition of the entire covariance ma-
trix Γ1 of the data following model (2) with

d1[n] =
k∑

j=1

Aj exp{i2πfjnTs + ψj}, (10)

sum ofk cisoids. The estimateŝfj of the frequen-
cies are solution of

a∗(f)G1G1∗a(f) = 0, (11)

where

a(f) = [1, . . . , exp{i2πf(m− 1)Ts}]T (12)

andG1 is the matrix of the noise subspace eigen-
vectors:

G1 = [γ1
k+1, . . . , γ

1
m], (13)

namely, the eigenvectors with eigenvaluesλk+1 =
. . . = λm = σ2.

For a comparison with the MUSIC algorithm,
a sinusoid off0 = 7000 Hz embedded in an addi-
tive white Gaussian noise of varianceσ2 = 1 has
been simulated. Figure 2 presents the projection of
the trajectory of the signal on the span of the three
first eigenvectors(γl

1, γ
l
2, γ

l
3) of the under-sampled

covariance matrix. Subsequently, the signal is pro-
jected on the signal subspace estimated by the MU-
SIC algorithm. The phase space trajectory of this
filtered signal is projected on the space(γl

1, γ
l
2, γ

l
3).

One can observe that the projections of the two sig-
nals on the span of the two first eigenvectors space
are similar. However, the trajectory of the filtered
signal is nearly orthogonal toe3. The same obser-
vation can be made for the two last eigenvectors.
This shows that the signal-space derived from the
eigendecomposition of the under-sampled covari-
ance matrix is bi-dimensional, as predicted by the
analysis of the dynamical system.
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Fig. 2. Projections of the phase space trajectories
on the three first eigenvector space of a sinusoid
(top) and of its projection on the MUSIC signal
space (bottom). The frequency isf0 = 7000 Hz.

A comparative study of the performances of
MUSIC and our proposed method is presented on
figure 3. The frequency of a cisoid embedded in
a white Gaussian noise of varianceσ2 = 1 is es-
timated by both methods usingCl for several un-
der sampling ratesl. The proposed method is ap-
plied with a constant length of snapshotm and de-
creasing dimensionp asl increases such thatm =
(p− 1)l + 1.
The bias of the MUSIC frequency estimator is al-
most constant over the delayl. However, the vari-
ance of MUSIC increases asl increases. This is
due to the decreasing of the dimensionp, given that
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Fig. 3. Comparison between frequency estimates
from MUSIC (plain lines) and from the proposed
estimator (dashed lines) in terms of the delayl. The
signal is a cisoid of normalized frequencyf0 =
0.05 with lengthN = 200 points. Each snapshot
is of lengthm = 21 points before sub-sampling.
The signal to noise ratio isSNR = 0 dB.

the variance of MUSIC does not depend on the nor-
malized frequency [8]. Note that the performance
of the method derived from the Takens embedding
improves whenl increases. The bias of Takens
embedding is similar to the bias of MUSIC when
l > 4, while the variance is still slightly higher.
However one can see that the variance of the pro-
posed method reaches a minimum value whenl =
5. This delay is the value suggested by Fraser in
[2].

6. CONCLUSION

The analysis of the phase space of a dynamical
system has led us to the formulation of an eigendec-
omposition-based method of frequency estimation.
This approach gives a new insight into the use of
this type of method. The proposed one is directly
derived from dynamical system analysis. The out-
put signal model is non-stationary. Therefore, a
straight application of MUSIC or related estima-
tors is not valid. The use of the under-sampled
covariance matrix suggested by the Takens embed-
ding approach is better suited to non-stationary sig-
nal analysis and more specifically, estimation of
shift in frequency.

7. REFERENCES

[1] G. P. Berman, D. I. Kamenev, and V. I.
Tsifrinovich. Stationary cantilever vibrations
in the oscillating cantilever-driven adia-
batic reversals - magnetic resonance force
microscopy technique. Quantum physics,
http://arxiv.org/list/quant-ph/0203, March
2002.

[2] A. M. Fraser. Information and entropy in
strange attractors.IEEE trans. on informa-
tion theory, 35(2):245–262, March 1989.

[3] M. Kaveh and A. J. Barabell. The sta-
tistical performance of the MUSIC and the
minimum-norm algorithms in resolving plane
waves in noise. IEEE trans. on acous-
tics, speech and signal proc., 34(2):331–341,
April 1986.

[4] V. F. Pisarenko. The retrieval of harmonics
from a covariance function.Geophys. J. R.
astr. Soc., 33:347–366, 1973.

[5] J. Sidles. Path integrals over measurement
amplitudes: Practical quantum founda-
tions for signal processing and control.
arXiv:quant-ph, http://arxiv.org/list/quant-
ph/0211?100, November 2002.

[6] P. Stoica and R. Moses.Introduction to Spec-
tral Analysis. Prentice Hall, 1997.

[7] P. Stoica and A. Nehorai. MUSIC, maxi-
mum likelihood and cramer-rao bound.IEEE
trans. on acoustics, speech and signal proc.,
37(5):720–741, May 1989.

[8] P. Stoica and T. Söderström. Statistical anal-
ysis of MUSIC and subspace rotation esti-
mates of sinusoidal frequencies.IEEE trans.
on signal proc., 39(8):1836–1847, August
1991.

[9] F. Takens. Detecting strange attractors in tur-
bulence. InProceedings of the Symposion on
Dynamical Systems and Turbulence, Univer-
sity of Warwick, 1979-1980, volume1, pages
366–381. Springer, Berlin., 1981.

[10] M. Ting and A. Hero. Piece-wise kalman fil-
tering for estimation of a MRFM cantilever
signal. InProceedings of SSP03, Saint-Louis,
Mo., USA, October 2003.

.


