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in Segmentation of Normal Organs in Abdominal CT Scans*
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SUMMARY A good abdominal probabilistic atlas can provide impor-
tant information to guide segmentation and registration applications in the
abdomen. Here we build and test probabilistic atlases using 24 abdominal
CT scans with available expert manual segmentations. Atlases are built by
picking a target and mapping other training scans onto that target and then
summing the results into one probabilistic atlas. We improve our previous
abdominal atlas by 1) choosing a least biased target as determined by a
statistical tool, i.e. multidimensional scaling operating on bending energy,
2) using a better set of control points to model the deformation, and 3) using
higher information content CT scans with visible internal liver structures.
One atlas is built in the least biased target space and two atlases are built in
other target spaces for performance comparisons. The value of an atlas is
assessed based on the resulting segmentations; whichever atlas yields the
best segmentation performance is considered the better atlas. We consider
two segmentation methods of abdominal volumes after registration with the
probabilistic atlas: 1) simple segmentation by atlas thresholding and 2) ap-
plication of a Bayesian maximum a posteriori method. Using jackknifing
we measure the atlas-augmented segmentation performance with respect to
manual expert segmentation and show that the atlas built in the least biased
target space yields better segmentation performance than atlases built in
other target spaces.

key words: atlas construction, segmentation, target selection, multidimen-
sional scaling

1. Introduction

The study of scans of a population leads to statistics of
the population, which can be represented in a probabilis-
tic atlas. The atlas typically contains information regard-
ing shape and/or grayscale value variability of the popula-
tion [1]. Probabilistic atlases have applications in segmen-
tation [2]-[4] and registration [5], [6]. Atlases of the brain
have been the most sought [6]. While the methodology to
build a brain atlas can be applied to abdominal organs, few
have actually built an abdominal atlas [7]-[9]. Previously
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we successfully built and published an abdominal proba-
bilistic atlas from CT scans [4] consisting of liver, spinal
cord, left kidney, and right kidney. Here we improve on the
previously built abdominal atlas of CT scans by 1) choosing
a least biased target scan among training scans to build an
atlas, 2) choosing a better set of control points for the regis-
tration process, and 3) using CT scans having higher infor-
mation content. We then apply segmentation algorithms to
assess the quality of the atlas built. The resulting accuracy
of the segmentation algorithm is used to assess the quality
of the atlas. Previously our methodology to choose the tar-
get was tested on 2D simulated MRI[10]. Here we tested
the target selection methodology based on the segmentation
performance of real 3D CT scans.

Traditionally, researchers build their atlas by picking a
target scan and mapping other training scans onto the target.
Statistical processing can be performed on the same spatial
frame after all scans are mapped onto the target. Statistical
processing can be as simple as a grayscale average or some
measure of probability at every voxel location. Methods for
registration in terms of degrees of freedom (DOF) and ge-
ometric interpolant have to be the same for all registration
tasks to ensure consistent construction and use of the atlas.
Unfortunately, the resulting atlas is inherently biased by the
selection of the chosen target scan because the atlas infor-
mation is computed on the target’s spatial frame. One way
the bias towards a specific target may be reduced is by re-
peating the whole process of mapping other scans onto the
target with the target replaced with an average scan from the
previous registrations until the average scan converges [11].
Guimond et al. have shown the convergence rate of such it-
erative an approach [12].

Some researchers construct the atlas by registering all
training scans at the same time [13]-[17]. In this approach,
there is very little bias since the target space is very close
to the mean geometry at the expense of increased compu-
tation complexity. Joshi et al. proposed a target free atlas
construction method, but it has constraints on the geometric
deformation it can handle [11]. Marsland et al. proposed to
construct an atlas on a target scan that is close to the mean
geometry of the training scans [18]. Our method of target se-
lection in this paper shares a similar approach. We assume
that an atlas is built by choosing a target scan and mapping
other training scans onto the target. We choose the target
scan which is the closest (i.e., least biased) to the mean ge-
ometry of the population using a well known statistical tool,
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multidimensional scaling (MDS).

Segmentation assigns labels to grayscale values or a
contour that separates distinct regions. Outcome of a seg-
mentation algorithm is a partitioned scan described by a
small number of labels. Here we have a 5-label model where
a CT scan gets segmented into liver, spinal cord, left kidney,
right kidney, or “none of the above”. Segmentation in itself
is a vast field. We suggest the following review articles for
a good overview of segmentation [19]. Here, we are partic-
ularly interested in segmentation algorithms using an atlas
as side information. Atlas-based segmentation algorithms
use atlas information as prior probabilities in a Bayesian
framework or as a starting guess [20]-[23]. In this manner
atlas information can guide segmentation algorithms where
there is little discriminating grayscale information available.
Since our focus in this paper is the value of atlas information
for segmentation, we test our atlas construction method via
two segmentation algorithms that use the atlas information.
First, we consider a simple segmentation by registration ap-
proach; we register a test scan onto the atlas space and then
threshold the probabilistic atlas to generate the segmentation
of the test scan. Second, we consider a maximum a posteri-
ori (MAP) segmentation where atlas information enters the
formulation as a prior probability, which we implemented in
our last paper [4].

We start with CT oncology scans of the abdomen
whose expert manual segmentations by oncology therapy
planners are available. We choose a target scan and then
register other training scans onto that target. Once all scans
are registered onto the target space, we apply the same map-
pings to the manual segmentations of the CT scans so that
all manual segmentations are mapped onto the same target
space. The organ probabilities in the atlas are computed
from the summation of these mapped manual segmenta-
tions. For every voxel, we compute the probability of a
voxel belonging to a certain organ. Depending on the chosen
target, there may be many atlases constructed from the same
set of training scans. One atlas is computed using the target
space determined to be the best by MDS. Other atlases are
computed using other target spaces. Then the value of an
atlas is assessed based on the results from the atlas-based
segmentation methods; whichever atlas yields the best seg-
mentation performance is considered the best atlas.

The remainder of this paper is organized in the fol-
lowing manner. The first section covers the methods of
atlas construction. The second section covers the methods
of atlas-based segmentation. Finally, we conclude with the
Discussion and Summary. The primary contributions of this
paper are 1) to build a probabilistic atlas of abdominal or-
gans using a least biased target and 2) to show the relative
value of differently constructed atlases in simple atlas-based
segmentation algorithms.
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2. Methods; Atlas Construction
2.1 Registration Framework

Atlas construction involves many tasks of mapping one scan
onto another scan. This task of mapping is called regis-
tration. Registration has been well reviewed in Hill’s pa-
per[24]. Basically two main components need to be ad-
dressed for any registration algorithm

o the similarity measure which measures degree of align-
ment, and

e the geometric interpolant which defines the geometric
transform between two scans.

We choose mutual information (MI) as the similarity mea-
sure and thin-plate splines (TPS) as the geometric inter-
polant [25], [26]. Computing the MI involves calculating
probability density functions of grayscale value distribu-
tions. A simple histogram with fixed bin width is used to
calculate the probability density function. The process of
registration can be formulated as maximizing the chosen
similarity measure (i.e., MI) under a hypothetical geomet-
ric transform,

T = argmax MI(A(s), B(T(e))
TeF

T'; estimate of the transform
F; family of feasible transforms €))]

A simplex optimizer is used to maximize the cost func-
tion [27]. One can choose other combinations of similar-
ity measure (e.g., Normalized MI) and geometric transform
(e.g., B-spline) [28].

The degrees of freedom (DOF) of TPS are determined
by the number and locations of control points. Complex
geometric transforms are modeled by many control points.
TPS based registration requires the user to provide an initial
guess of the transform (i.e., approximately specifying loca-
tions of control points in both scans). Initializing a TPS
for high DOF is cumbersome. Thus, we employ a stan-
dard multi-level approach, where DOF is increased gradu-
ally. First, we start the registration process with 4 control
points, which defines the affine transform, and then increase
DOF (i.e., number of control points). Higher DOF registra-
tion is always initialized with the result from the previous
lower DOF registration. As a result the registration process
is automatic after the initial placement of 4 control points.

2.2 Control Points

With TPS the effect of control points is primarily, though
not strictly, local. For example, control points in liver re-
gion primarily affect geometric transform in the liver region.
This is particularly true for high DOF TPS transforms [4]. If
one is interested in strictly local properties for the geometric
transform, B-splines is a good choice. We employ a total of
43 control points where the liver has 24 control points, both
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kidneys have 6 control points each, and the spinal cord has
7 control points. Within each organ, control points are ap-
proximately uniformly distributed in space similar to Fig. 1
of [4]. The liver is the largest organ among four organs mod-
eled, which primarily drives the registration process. Hence
it is important to allocate most control points to get the liver
registration correct. We justify the use of 24 liver control
points by the following. First, take two scans with available
manual liver segmentations and mask them so that scans in-
clude liver and only its immediate vicinity. Perform registra-
tion of two scans with respect to varying number of control
points of 4, 6, 12, 18, 24, 30, and 36 (uniformly distributed
within the liver). Apply the mappings of the registrations
to manual liver segmentations and compute an overlap mea-
sure. An overlap measure reflects degree of alignment in the
liver region. We observe that the overlap measures gradually
increase from 4 point case and then plateau at 24 points. For
the other organs, we use the same number of control points
from our previous work as they seem to work reasonably
well. Previously we had 36 control points picked by an ex-
pert; 17 points in liver, 6 points each for both kidney, and 7
points for spinal cord. We have improved our previous work
by systematically choosing control points in the liver, which
primarily drives the abdominal registration.

2.3 Scans Used

We have 24 CT scans with available expert manual segmen-
tations. Manual segmentations contain liver, both kidneys,
and spinal cord. Since there is only one manual segmenta-
tion per scan, we cannot compute inter/intra-observer vari-
ability of manual segmentations. A typical CT scan has ma-
trix of 512x512x 100 with 1 x 1 x 3 mm? voxel dimensions.
We only recruited CT scans where internal structures (e.g.,
vessels observed during the arterial and portal venous con-
trast phases) are visible within the liver. Previously, our CT
scans included many scans where no internal structure was
visible within the liver. Control points in regions of limited
information are meaningless because the gradient of the cost
function, i.e., MI, will be very small with respect to defor-
mation resulting from movement of these control points.

2.4 Construction of Atlas

In computing the probabilistic atlas we need to perform
many registrations of pairs of CT scans. Registration of two
abdominal CT scans is primarily driven by liver as the liver
occupies the largest volume in the abdomen. Liver affects
the joint histogram and the resulting MI more than other or-
gans. Thus, smaller organs like kidneys are not accurately
aligned if simultaneously registered with other organs. By
registering each organ separately, better overall registra-
tion accuracy is obtained. For these organ-specific sub-
registrations, the scans are masked so that the masked scan
contains the organ of interest and its immediate vicinity.
This masking ensures that organ-specific sub-registrations
are driven by information of that organ only. Masked liver
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is registered using 24 control points, masked kidneys are
registered using 6 control points each, and masked spinal
cord is registered using 7 control points. After all sub-
registration tasks are finished, one final registration is per-
formed between two CT scans using an initial guess ob-
tained from combining the previous four sub-registrations.
The initial guess of the final registration step may be incon-
sistent as sub-registration tasks are only accurate for their
respective organs. For example, liver registration step is
accurate within liver but it may be erroneous outside the
liver, which might affect kidney registrations when all sub-
registrations are combined. Thus, we need an extra regis-
tration step where all control points are optimized simulta-
neously. For the final registration step, since we are reason-
ably close to the intended solution, search range of the op-
timizer is made smaller than the previous four registration
steps. This last registration step is to rectify any inconsis-
tent control point interactions which might have occurred in
the four previous sub-registrations. Also note that all regis-
tration tasks here are automatic after the user’s initial place-
ment of 4 control points.

2.5 Computation of Atlas

Our approach to atlas building is to pick a target and then
register all the other scans onto the chosen target. Once
all scans are registered onto the target space, we apply the
same mappings to the manual segmentations of the CT scans
so that all manual segmentations are mapped onto the same
target space. The probabilistic atlas is defined on the target
space where one measures a probability of an organ occur-
ring in each voxel. For every voxel, we compute the prob-
ability from the frequency of occurrence of mapped manual
segmentations, e.g. how many times out of the total num-
ber of 24 cases the given voxel is liver. We repeat this pro-
cess for all four organs, thus we have four probability values
per voxel. There is significant remaining space in the ab-
domen CT where a voxel doesn’t belong to any of the four
organs. For this, we introduce a fifth component, “none of
the above”. The probability of the fifth component is com-
puted to be 1 minus the sum of the four probability values
so that all five probability values add up to one, voxel-wise.
Depending on the choice of the target, there may be many
atlases from a set of training scans. Previously, we picked a
target scan which was thought to best represent the training
set by an expert. This time, we introduce a better way to
choose the target space based on multidimensional scaling
(MDS).

2.6 Multidimensional Scaling and Distance Measure

MDS is a classical statistical tool to produce relative
positional locations from a collection of pair-wise dis-
tances [29], [30]. The relative locations are accurate up to
arbitrary rotate-translate transform. We refer to these ref-
erences for more information on MDS [31]-[33]. MDS re-
quires pair-wise distances as its input. We have proposed a
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distance measure based on bending energy to quantify the
distance between two registered scans [10]. The outcome of
registration task is a geometric transform. The displacement
field is computed by evaluating the geometric transform at
every voxel. The geometric distance, hereafter called dis-
tance, between two scans is often measured by the rough-
ness of the geometric transform. We have chosen the dis-
tance to have invariance to affine transforms. For example, if
scans can be registered with an affine transform, then it im-
plies that the scans are essentially composed of the same ob-
jects described in different coordinate spaces; thus a value of
zero is assigned for the distance between the two. We have
chosen bending energy defined by the sum of second partial
derivatives of the geometric transform as the distance,

2
fof(ang;j) (62]‘1)+(%) dxdydz +
AN AN
2zﬂf (axa;) (axajz)+(ayajz) dudydz

fi;displacement in x  f>; displacement in y

f3; displacement in z 2)

Second order derivatives ensure invariance to affine trans-
forms. An analytic formula for calculating bending energy
is available for TPS [34]. For other geometric transforms,
the bending energy may need to be calculated numerically.
The defined distance in (2) is strictly not a metric as it
doesn’t satisfy the first axiom of a metric (i.e., isolation,
d(a,b) = 0iff a = b) since the distance between two differ-
ent scans can be zero if two scans are registered by an affine
transform. The defined distance satisfies the second axiom
(i.e., symmetry, d(a,b) = d(b, a)) as switching the order of
scans to be registered has no effect on the displacement field
in theory. We haven’t able to prove or disprove the third ax-
iom (i.e., triangle inequality, d(a, b) + d(b, c) = d(a,c)) and
leave this to future work. One example of a metric distance
is the viscous fluid model where the distance is invariant to
only an identity transform [35]. If the requirement of invari-
ance to affine transform is dropped, others have proposed a
distance satisfying all three axioms of metric. The distances
used in MDS need not be metric, as non-metric distances
(e.g., ranking or Riemannian distance) can be used [36]-
[38]. Thus, our distance measure can be used in MDS set-
tings.

Given a set of distances in the distance matrix D, where
an element of matrix dij refers to the distance between ob-
jects i and j, MDS outputs a set of coordinates X in a user
specified dimension p that reproduces the distance matrix
best in the least square fashion. A standard way of deter-
mining the MDS dimension, p, is to perform a sequence of
MDS projections, successively increasing the dimension at
each iteration, and detecting a knee in the set of fitting er-
rors. This is equivalent to choosing the dimension by thresh-
olding the scree plot of sorted eigenvalues of the distance
matrix. With TPS based registration, switching the order of
scans in the registration does not yield the inverse transform,
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and thus it may yield a different distance value, but the dis-
crepancy in distance values is quite small provided that the
DOF of TPS is high enough. We take the average value of
dij and dji to achieve a symmetric distance matrix.

2.7 MDS Based Target Selection

The ideal target is the one that resides at the mean geometry
of the training scans as measured by the bending energy dis-
tance. Under this circumstance, the sum of square distances
to other scans from the atlas space (i.e., target space) is min-
imized for the ideal target. Often there may not be a scan at
the mean geometry; thus the best approach in picking a tar-
get which yields the minimum distance to other scans is to
choose the scan that is the closest (i.e., smallest Euclidean
distance in the sub-space of MDS output) to the mean ge-
ometry. The described approach works only if we know all
the relative locations of scans of the training scans so that
the location for the mean geometry can be calculated. MDS
identifies all the relative locations of the scans from the dis-
tance matrix. The mean geometry is computed to be the
sample mean of the Euclidean coordinates of the scans. The
elements of the distance matrix are determined by the dis-
tances of pair-wise registrations. The following is the pro-
cedure for N scans,

1. Perform N(N — 1) pair-wise, forward and inverse reg-
istrations

Calculate bending energies from the registrations
Form distance matrix D

Determine embedding dimension of MDS

Apply MDS and find relative locations of scans
Calculate mean location of the scans

7. Choose target scan that is the closest to the mean.

ARl

Once the best (i.e., the closest to the mean geometry) tar-
get is selected, all other scans can be mapped onto the cho-
sen target with ease; this step is trivial since all pair-wise
registrations have been computed previously to fill the dis-
tance matrix. Pair-wise registration is impacted by the initial
placement of control points and the optimizing algorithm. If
the initial placement is too far away from the intended so-
lution then it fails to converge to the intended solution. An
optimizer with a narrow convergence range has the similar
negative effect. Error in the pair-wise registration may lead
to possibly not choosing the best target for atlas construction
as some of distance measures are erroneous.

3. Results; Atlas Construction
3.1 Variance of Atlas

Our probabilistic atlas is a 5 vector field that resides in the
same space of the chosen target. The 5 vector components
are the probabilities of liver, right kidney, left kidney, spinal
cord, and “none of the above” for each voxel. At a given
voxel, all 5 components add up to one. Each vector com-
ponent measures the probability of an organ presence at that
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voxel. If perfect registrations are possible among all training
scans, there is no need for an atlas, as information (i.e., man-
ual segmentation) can be carried from one scan to another
without error. In that hypothetical situation, the atlas will
be the same as the manually segmented dataset with binary
probability values of either O or 1. In reality, perfect registra-
tion is not achievable due to computational and anatomical
reasons. Most people have left lobes in their livers while
others don’t. No one-to-one (i.e., invertible) transform can
model such existence/absence of organs. Even if the same
structures are present in both scans, it may require many
DOF to model the complex shape difference. Most geo-
metric transforms are capable of supporting such a complex
transform, but registration still requires adequate underlying
grayscale information to support such a high DOF trans-
form. Normally, as the registrations are never perfect, the
probabilistic atlas will have intermediate values between 0
and 1. These intermediate values reflect voxels when the or-
gan is present between 0 and 24 occurrences out of a possi-
ble 24 cases. The atlas has variance coming from anatomical
and computational reasons. Anatomical variance is present
due to underlying differences in the population, but com-
putational variance can be reduced if one uses registrations
with many DOF. Researchers have observed decrease in at-
las variance as one increases DOF of the transform. As the
user traverses through the atlas space, the variance of the
atlas can be visualized as a rising or falling edge of frac-
tional values between 0 and 1 with variable transition zone.
For instance, if one travels from outside the liver into the
liver, one would observe a rising edge from O to 1 regarding
probability of liver presence. The rate of transition reflects
the spatial variance of the atlas, i.e. full transition in a short
distance implies low variance while a slow transition with
respect to distance indicates high variance. An atlas with
low variance is preferred to reduce uncertainty.

3.2 Two Atlases; Best and Worst Determined by MDS

Many different atlases may be built from the same set of
training scans depending on the choice of target space. With
the aid of MDS, we can choose the optimal target. We need
to perform 24 X 23 = 552 pair-wise registrations to fill up
the distance matrix needed for MDS. In essence, we com-
pute all possible pair-wise registration among training scans.
Once the distance matrix is ready, MDS is performed with
3 dimensions. The dimension of MDS is determined from
sorted eigenvalue plots of the distance matrix. MDS result
indicates that the target space closest to the mean geome-
try is the one labeled “68f3” and the target space furthest
from the mean geometry is labeled “1bb1”. In Fig. 1, we
provide two atlases: one built on space “68f3” (Fig. 1 (a))
and one built on “1bb1” (Fig. 1 (b)). By visual inspection
the atlas built on the closest target to the mean, left figure,
has less variance then the atlas built on the furthest target,
right figure. Notable increased variance can be observed in
the right kidney (green hue) and spinal cord (yellow hue)
regions. The right kidney in the right figure appears more
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(a) (b)

Fig.1 Two atlases built from the same 24 training CT scans. A mid-
hepatic slice out of a 3D volume is shown here. Red corresponds to liver
and green, blue, and yellow correspond to right kidney, left kidney, and
spinal cord respectively. LEFT; atlas built on target 68f3 (best target),
RIGHT; atlas built on target 1bb1 (worst target).

dispersed than the left figure. Additionally the left lobe of
the liver is defined more normally in the atlas on the left
using the target “68f3”.

Thus far we have shown a trend that choosing a tar-
get space that is the closest to the mean geometry as deter-
mined by MDS leads to atlas with low variance. This is still
not a validation that MDS based approach chooses the best
available target as we have no ground truth regarding which
target is the closest to the mean geometry from 24 real CT
scans. We have only shown a general trend. However, we
propose an alternative validation of MDS based target selec-
tion via segmentation performance, which can be measured
with respect to manual segmentation. If MDS can find a
least biased target, then whatever atlas was built on that tar-
get should have the least segmentation error among possible
atlases. We will show that the atlas built on the closest tar-
get space determined by MDS leads to better segmentation
performance.

4. Methods; Segmentation

A segmentation algorithm takes a gray scale input scan and
produces an output consisting of a few labels. Here we con-
sider a 5-label model, liver, spinal cord, left kidney, right
kidney, and “none of the above”, which are the same la-
bels as the atlas. In this paper, we are particularly inter-
ested in atlas-based segmentation algorithms where the atlas
provides additional side information to the usual grayscale
scan. We consider two segmentation algorithms. One is
the segmentation by registration method and the other is
the maximum a posteriori (MAP) method. Performance of
each segmentation algorithm is evaluated with respect to the
manual segmentation provided by an expert. We adopt the
standard type I and II error measures, false positive rate and
false negative rate. A voxel is deemed false positive if the
segmentation result indicates presence of an organ while the
manual expert segmentation indicates its absence. Likewise,
a voxel is deemed false negative if the segmentation result
indicates absence of an organ while the manual segmenta-
tion indicates its presence. A segmentation algorithm with
lower false positive and false negative rates, both preferably
closer to zero, is considered better than a segmentation algo-
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rithm with higher lower false positive rate and false negative
rate. True positive rate is defined as 1 - false negative rate. A
pair of values, i.e. the false positive rate and the true positive
rate, makes up a single point in a receiver operating charac-
teristic (ROC) curve. The area under the curve (AUC) of the
ROC curve is a commonly used measure to compare perfor-
mances of segmentation algorithms. A segmentation algo-
rithm that produces higher AUC, preferably closer to one, is
considered better than a segmentation algorithm with lower
AUC.

4.1 Registration Based Segmentation

The first segmentation method we consider is segmentation
by registration. This method propagates information in one
scan to the other scan via registration. Given a perfect regis-
tration between scans, one can carry the manual segmenta-
tion information of one scan to the other scan without error.
With imperfect registrations, there are errors in the prop-
agated information. Here, we register, i.e. map the target
scan into the test scan geometry, and then propagate the at-
las information to the test scan. Multiple segmentations are
obtained by applying thresholds to the atlas. For each or-
gan, regions where atlas of the organ has probability values
above the threshold are taken to be the segmentation of that
organ. We apply 5 threshold values, 0.1, 0.3, 0.5, 0.7, and
0.9. Low threshold values yield larger segmented areas and
possibly lead to aggressive, over-segmented results. High
threshold values yield smaller segmented areas and possibly
lead to conservative, under-segmented results. Depending
on the threshold, we get 5 different segmentations, which
leads to 5 pairs of false positive and false negative rates.
These 5 pairs correspond to 5 operating points on a receiver
operating curve (ROC), which are then used to compute the
AUC. We adopt this simple segmentation method since our
purpose is to show the value of an atlas to segmentation.
With simple segmentation it is easier to observe the differ-
ences in segmentation outcomes depending on the quality of
the atlas. Other more sophisticated segmentation algorithms
may compensate for a bad quality atlas. Thus, difference
in segmentation performance with respect to the quality of
the atlas for sophisticated segmentation algorithms may be
more difficult to observe.

4.2 MAP Segmentation

The other segmentation method we consider is maximum
a posteriori (MAP) segmentation. It is formulated in a
Bayesian framework where the atlas information is consid-
ered to be the a priori probability of segmented labels. We
have proposed this MAP approach combined with Markov
Random Field (MRF) for smoothing the segmented out-
come [4]. Following is a brief description. Assuming that
X is the volumetric label field to be estimated and Y is the
volumetric grayscale observations, MAP tries to maximize
a probability Pr(X|Y) which leads to maximizing the prob-
ability Pr(Yi|Xi)Pr(Xi) exp(—B0i) on a voxel-by-voxel basis,
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where Pr(Yi|Xi), Pr(Xi), 8, and 6i denote voxel-wise con-
ditional probability of grayscale values given a label, voxel-
wise atlas prior information, strength of smoothing for MRF,
and number of different labels in a 6-voxel neighborhood la-
bel field, respectively. Note that we obtain one segmentation
outcome per scan if we fix the strength of smoothing S, and
thus we will get one, not multiple, operating points on the
ROC curve.

Both segmentation methods require the user to register
the test scan to be segmented onto the atlas space so that
the test scan and the atlas reside in the same space. The
registration process is the same one used to construction the
atlas, found in Sect. 2.3, so that the atlas information is con-
sistently applied to the test scan.

5. Results; Segmentation

As there are only 24 CT scans with manual segmentation,
we adopt a leave-one-out approach when applying segmen-
tation algorithms. We build an atlas with 23 scans and use
the atlas information to aid segmentation of the remaining,
left out scan. We repeat this process 24 times choosing a
different scan as the left out scan. Three different atlases
are built for each left out scan to be segmented using the
relative positional information provided by the MDS. We
build an atlas on the target that is the closest, 13th closest,
and furthest from the mean geometry determined by MDS.
These three atlases represent the best, intermediate, and the
worst atlases possible respectively. MDS is performed with
3 dimensions.

5.1 Sample Segmentation Results
In Fig. 2, we provide sample segmentation results using the

best atlas determined by MDS for both segmentation meth-
ods. Here the test scan has been registered on to the atlas

Fig.2  Mid-hepatic sample slice of segmented output. Note that these re-
sults are one slice out of volumetric results. TOP LEFT; CT cross-section
mapped into atlas target geometry, TOP MIDDLE; Corresponding atlas
cross-section, TOP RIGHT; Segmentation of CT using MAP algorithm,
BOTTOM LEFT; Registration-based segmentation using atlas threshold
of 10 %, BOTTOM RIGHT; Registration-based segmentation using atlas
threshold of 90 %.
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space so that segmentation methods can be applied. For the
MAP approach, we use strength of smoothing 8 = 1.5, 6
voxel neighborhood for MRF, and 0.85 threshold for au-
tomatic training. For the registration-based segmentation
method, we use threshold values of 0.1 and 0.9. All three
segmentation results produce reasonable results. They all
eliminate unwanted organs, body wall, bones, intestine and
etc., while delineating four organs of interest (i.e., liver, both
kidneys, and spinal cord). Comparing two segmented results
using registration based approach shows that low threshold
value (i.e., 0.1) leads to over segmentation, and high thresh-
old value (i.e., 0.9) leads to under segmentation as predicted.

Performance measures for three segmentation results
of Fig.2 are computed using the manual segmentation as
the ground truth and are presented in Table 1.

We also compute the performance measure for other
threshold values, 0.3, 0.5, and 0.7, for the registration based
segmentation method. These performance measures for
both MAP and registration-based methods are plotted us-
ing colors in Fig. 3. Registration based segmentation yields
5 operating points on the ROC curve since there are 5 dif-
ferent segmentation results, one for each of the 5 different
segmentation thresholds, while the MAP method only yields

Table 1  Segmentation performance as a function of segmentation
method.
Performance measures
Segmentation method | False positive | False negative
fraction fraction
MAP 0.0027 0.0236
Registration to atlas 0.0001 0.2917
with a threshold of 0.1
Registration to atlas 0.0071 0.0113
with a threshold of 0.9
best atlas - blue, middle - green, worst - red
- 0.6
05~
0.4 ' ' ' ' ! ' :
[+] 0.002 0.004 0.006 0.008 0.01 0.012 0.014

false postive

Fig.3 ROC performance, i.e. true positive fraction vs. false positive frac-
tion, measures of sample segmentation. Blue plots (darkest) are perfor-
mance measures obtained using the best atlas, green plots (less dark) are
performance measures obtained using the intermediate atlas, and the red
plots (least dark) are performance measures for using the worst atlas. Reg-
istration based segmentation yields 5 operating points on the ROC curve
(plotted with “x” and lines) and MAP method only yields one operating
point (plotted with a round dot) on the curve.
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one operating point (plotted with a round dot) on the curve
since there is only one segmentation result. Note that MAP
operating point is located at the upper left to the ROC curve
of registration based method, which indicates that MAP seg-
mentation generally performs better, i.e. more true positives
for the same number of false positives, than the registration-
based segmentation. With MAP method, it is hard to obtain
a ROC curve as changing the parameters of MAP segmenta-
tion yields very small changes in the segmented output and
thus small changes in the performance measure. We repeat
the whole process of computing performance measures for
the sample in Fig. 2 using the atlases built on the 13th clos-
est, i.e. intermediate, target and furthest, i.e. worst, target.
Performance measures using the intermediate atlas are plot-
ted in green and performance measures using the worst atlas
are plotted in red. Note that the blue plots are located at the
upper left to the green plots and the green plots are located at
the upper left to the red plots, which implies that segmenta-
tion using the best atlas is better than segmentation using the
intermediate atlas; additionally segmentation using the in-
termediate atlas is better than segmentation using the worst
atlas. Within using the same atlas the MAP segmentation is
better than the registration-based method as the dots (MAP
operating point) are located above the operating curve of the
registration-based approach). This suggests that additional
complexity of MAP approach yields better performance.

5.2 Segmentation Results of 24 CT Scans

Thus far we have discussed performance measures derived
from one scan using different atlases and different segmen-
tation methods as shown in Fig. 3. Now we move onto ap-
plying the two segmentation methods using three different
atlases for 24 CT scans using the leave-one-out jack-knifing
approach. For registration-based segmentation method, we
observe 24 x 3 = 72 ROC curves from 24 CT scans and us-
ing 3 different atlases. We observe 24 blue, green, and red
curves using the best, intermediate, and the worst atlas, re-
spectively, as shown in the top plot of Fig.4. In the same
fashion, we observe 24 x 3 = 72 operating points for the
MAP approach color coded the same way as shown in the
bottom plot of Fig. 4.

5.2.1 Registration-Based Segmentation Results

For the registration-based segmentation approach, AUC is
computed using a trapezoid approximation for all 72 ROC
curves and then compared. Three groups for comparison
are segmentation using the best atlas, intermediate atlas, and
the worst atlas, denoted group 1, 2, and 3 respectively. The
larger the AUC is, the better the segmentation algorithm is.
The AUC:s for three groups are reported in Table 2.

The mean AUC of group 1 is larger than the mean
of group 2 and the mean of group 2 is larger than mean
of group 3. All stdev values are large enough so that the
differences between groups are not clear cut. We compare
AUCs from using 3 different atlases by standard one-way
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Fig.4  Performance measures of 24 CT scans. Blue (darkest) plots are
performance measures for using the best atlas, green (less dark) plots are
performance measures for using intermediate atlas, and red (least dark)
plots are performance measures for using the worst atlas. The top figure
is the ROC curves for the registration-based segmentation and the bottom
figure is for the MAP approach.

Table 2  Performance measures of registration based segmentation.
Target Atlas mean AUC | stdev AUC
Group 1, best atlas 0.979 0.0159
Group 2, intermediate atlas 0.975 0.0153
Group 3, worst atlas 0.962 0.0294

balanced ANOVA and subsequent multiple comparisons us-
ing Tukey-Kramer’s “honest differences”. The one-way
ANOVA shows a p-value of 0.0021, showing that at least
one group has its mean significantly different from other
groups. Multiple comparisons shows that group 1 is signif-
icantly different from group 3. ANOVA and multiple com-
parisons results are shown in Fig. 5. We observed a similar
trend, group 1’s mean is significantly different from group
3, using a non-parametric analysis, Kruskal-Wallis method,
combined with multiple comparison with a p-value 0.0392.
In summary using the best atlas for segmentation (i.e., group
1) is better than using the worst atlas (i.e., group 3). How-
ever, using the intermediate atlas (i.e., group 2) doesn’t show
a significant difference from groups 1 and 3 for the sample
size of 24 datasets.

5.2.2 MAP Segmentation Results

For MAP segmentation, AUCs are not available. We report
false positive and false negative rates for three groups in Ta-
ble 3.

The mean false positive rate and false negative rate of
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Column Number The means of groups 1 and 3 are significantly different

Fig.5 ANOVA and multiple comparison results of AUCs for registration
based segmentation. Left plot is a boxplot where the boxes have lines at the
lower quartile, median, and upper quartile values. The whiskers are lines
to show the extent of the data. Outliers are marked with red “+”. Column
1, 2, and 3 correspond to group 1 (using the best atlas), group 2 (using the
intermediate atlas), and group 3 (using the worst atlas) respectively. The
right plot is the result of a multiple comparisons analysis. Horizontal bars
are estimated intervals for the groups. If the bars overlap they don’t have
significantly different means. Dots in the center of the bars indicate means
of the groups. Y-axis denotes the groups being compared.

Table 3  Performance Measures of MAP Segmentation.
Atlas Used False positive | False negative
rate rate
mean(stdev) mean(stdev)
Group 1, best atlas 0.0021 (0.0004) | 0.0526 (0.0247)

Group 2, intermediate | 0.0031 (0.0014) | 0.0630 (0.0253)
atlas

Group 3, worst atlas

0.0033 (0.0011) | 0.0744 (0.0370)

group 1 are smaller than the means of group 2 and the means
of group 2 are smaller than means of group 3. All stan-
dard deviation values are large enough so that the differ-
ences among atlas construction groups are not statistically
significant. We compare false positive rates and false neg-
ative rates for 3 different groups using ANOVA and multi-
ple comparisons in the same fashion as in analyzing AUCs.
For false positive rates, ANOVA shows p-value of 0.0003
and multiple comparisons shows that group 1 is significantly
different from group 3, as shown in top row plots of Fig. 6.
For false negative rates, ANOVA shows p-value of 0.0435
and multiple comparisons also shows that group 1 is signifi-
cantly different from group 3, as shown in bottom row plots
of Fig. 6. In result using the best atlas for segmentation (i.e.,
group 1) is better than using the worst atlas (i.e., group 3).
However, using the intermediate atlas (i.e., group 2) doesn’t
show a significant difference from groups 1 and 3 for the
sample size of 24 datasets.

5.2.3 Comparison of Registration Based and MAP Seg-
mentation

Inspecting the top and bottom plots of Fig. 4 shows that dots
in the bottom plot of Fig. 4 reside at the upper left side of
the operating points from registration based segmentation
in the top plot of Fig.4. Note the differences in extents of
x-axis and y-axis of the top and bottom Fig.4. This im-
plies that MAP approach has better performance than reg-
istration based method in general. However with a simple
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Fig.6 ANOVA and multiple comparison results of false positive rates
and false negative rates for MAP segmentation. Top row shows analysis
for false positive rates and bottom row shows analysis for false negative
rate. Same figure notations from Fig. 5 apply.

registration-based segmentation, it is easier to observe dif-
ferences in segmentation outcome depending on the qual-
ity of the atlas. Thus, we observe larger range of operating
points.

6. Discussion

We built an abdominal probabilistic atlas of 24 CT scans
by mapping other training scans onto a chosen target. We
choose a target space that is the least biased determined by
relative positional information of MDS. MDS requires a dis-
tance matrix whose elements are computed from pair-wise
registrations. Many pair-wise registration, 24x23 = 552, are
needed to fill the distance matrix. Each pair-wise registra-
tion took around 4 hours on a Pentium 4 3.0 GHz computer
with 4 Gigabytes of memory. Other atlas construction meth-
ods [13]-[17] register all training scans at the same time,
thus requiring one registration step with huge DOF. It is dif-
ficult to compare the computational costs as it is difficult to
implement the methods in [13]-[17]. Once the atlas is built,
applying the atlas to segment a test scan is less computa-
tionally intensive, as the user only needs to register the test
scan onto the atlas once. However, if the user wants to add
more scans to the training scans, then it requires computing
all possible pair-wise registrations with respect to existing
training scans.

Our method of choosing a target space via MDS can-
not be validated directly as there is no ground truth regard-
ing which target is the closest to the mean geometry from 24
real CT scans. Instead, we provide an alternative validation
by segmentation performance. If MDS can find a least bi-
ased target, then an atlas built on that target should have the
least variance among other atlases constructed using alterna-
tive targets. We provide an alternative validation by showing
that the atlas built on the closest target determined by MDS
leads to better segmentation performance compared to us-
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ing other atlases built on targets of different MDS distances
from the mean. Clearly this performance exists in a con-
tinuum where the best and worst atlas targets as judged by
MDS are extreme opposites. Although the intermediate at-
las seems to show a bias trending worse than the optimal
atlas, we are unable to characterize the intermediate atlas as
significantly different with a population of only 24 patients.

With both segmentation methods, i.e. registration-
based and MAP, there is a significant difference between
using the best atlas and the worst atlas. The quantitative
usefulness of the atlas to segmentation is determined by
the relative positional information of the target in MDS
space. While a sophisticated segmentation method like
MAP has better performance compared to a simple segmen-
tation method like the registration-based approach, the seg-
mentation performance of both methods is improved by the
use of the best atlas. In this paper we demonstrate 1) con-
struction of a probabilistic atlas of abdominal organs using
a least biased target space determined by MDS and 2) that
the use the best atlas leads to the best segmentation perfor-
mance, regardless of whether it is done simply by registra-
tion with the atlas or MAP segmentation.
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