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Abstract— Many high-dimensional data sets of practical inter-

est exhibit a varying complexity in different parts of the data

space. This is the case, for example, of databases of images

containing many samples of a few textures of different complexity.

Such phenomena can be modeled by assuming that the data

lies on a collection of manifolds with different intrinsic dimen-

sionalities. In this extended abstract, we introduce a method to

estimate the local dimensionality associated with each point in

a data set, without any prior information about the manifolds,

their quantity and their sampling distributions. The proposed

method uses a global dimensionality estimator based on k-

nearest neighbor (k-NN) graphs, together with an algorithm for

computing neighborhoods in the data with similar topological

properties.

Index Terms— Manifold learning, Intrinsic dimension, Nearest

neighbor graph.

I. INTRODUCTION

Continuing technological advances in both sensing and

media storage capabilities are enabling the development of sys-

tems that generate massive amounts of new types of data and

information. Today’s medical information systems or video

surveillance applications, for example, are producing signals

that are high-dimensional in their nature and thus appear to be

very complex. However, such signals often contain fundamen-

tal features that are concentrated on lower dimensional subsets

– curves, surfaces or, more generally, lower-dimensional man-

ifolds – thus permitting substantial dimension reduction with

little or no loss of content information. In the recent past, this

subject has received substantial attention from researchers in

machine learning, computer vision and statistics, leading to

the introduction of several manifold learning algorithms (see

webpage [1] for an extensive list of references).

Playing a central role in the analysis of high-dimensional

data is its intrinsic dimensionality, given by the the dimension

of the manifold supporting the data. Intuitively, this quantity

describes how many “degrees of freedom” are necessary to

describe the data set. When the intrinsic dimension is assumed

constant over the data set, several algorithms have been

proposed recently to estimate it directly from only a finite

sampling of the manifold. These range from fractal dimension

[2], estimating packing numbers [3], entropic graphs [4], [5]

or maximum likelihood approach [6]. However, in several
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problems of practical interest, data will exhibit varying di-

mensionality across the observed data set. For example, in the

protein docking problem [7], the degrees of freedom associated

with the allowed movements of the reacting molecules will

change during the reaction time.

In this paper, we introduce a method to estimate the local

dimensionality associated with each point in a data set. If the

data set is sampled from a union of disjoint manifolds, with

possible different intrinsic dimensionalities, then the algorithm

estimates, for each sample point, the dimension of the local

manifold where it is supported. The proposed method uses

a previously introduced global dimensionality estimator [5]

based on k-nearest neighbor (k-NN) graphs, together with

an algorithm for computing neighborhoods in the data with

similar topological properties.

II. THE k-NEAREST NEIGHBOR GRAPH AND GLOBAL

DIMENSION ESTIMATION

Let Yn = {Y 1, . . . ,Y n} be n independent and identically

distributed (i.i.d.) random vectors with values in a compact

subset of R
d. The (1-)nearest neighbor of Y i in Yn is given

by

arg min
Y ∈Yn\{Y i}

|Y − Y i| ,

where |Y − Y i| is the usual Euclidean (L2) distance in R
d

between vector Y and Y i. For general integer k ≥ 1, the

k-nearest neighbor of a point is defined in a similar way. The

k-NN graph puts an edge between each point in Yn and its

k-nearest neighbors. Let Nk,i = Nk,i(Yn) be the set of k-

nearest neighbors of Y i in Yn. The total edge length of the

k-NN graph is defined as:

Lγ,k(Yn) =

n
∑

i=1

∑

Y ∈Nk,i

|Y − Y i|
γ , (1)

where γ > 0 is a power weighting constant.

For many data sets of interest, the random vectors Yn

are constrained to lie on a m-dimensional Riemannian

submanifold M of R
d (m < d). A Riemann manifold has

an associated metric g [8], which endows M with both a

notion of distance via geodesics and also a measure µg via

the differential volume element. Under this framework, the

asymptotic behavior of (1) is given by the following theorem

[5]:
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Theorem 1: Let (M, g) be a compact Riemann m-

dimensional submanifold of R
d. Suppose Y 1, . . . ,Y n are i.i.d.

random vectors of M with bounded density f relative to µg .

Assume m ≥ 2, 1 ≤ γ < m and define α = (m − γ)/m.

Then, with probability 1,

lim
n→∞

Lγ,k(Yn)

n(d′−γ)/d′
= (2)







∞, d′ < m

βm,γ,k

∫

M
fα(y)µg(dy), d′ = m

0, d′ > m

,

where βm,γ,k is a constant independent of f and (M, g).
Furthermore, the mean length E [Lγ,k(Yn)] /nα converges to

the same limit.

Theorem 1 provides the basis for developing a consistent

estimator of the intrinsic dimensionality m of data set Yn.

On the one hand, the growth rate of the length functional

is strongly dependent on m. In particular, the only way to

obtain a nonzero finite limit in (2) is by normalizing the length

functional by the right power α of n, i.e., α = (m − γ)/m
when d′ = m. On the other hand, that nonzero finite limit is

determined by the intrinsic Rényi α-entropy of the multivariate

density f on M:

H(M,g)

α (f) =
1

1 − α
log

∫

M

fα(y)µg(dy) . (3)

These observations motivate the following estimator for m.

Define ln = log Lγ,k(Yn). According to (2), ln has the

following approximation

ln = a log n + b + ǫn , (4)

where

a = (m − γ)/m ,

b = log βm,γ,k + γ/m H(M,g)

α (f) ,
(5)

and ǫn is an error residual that goes to zero w.p.1 as n → ∞.

Using the additive model (4), a simple nonparametric least

squares strategy based on subsampling from the population Yn

of points in M can be adopted. Specifically, let p1, . . . , pQ,

1 ≤ p1 < . . . , < pQ ≤ n, be Q integers and let N

be an integer that satisfies N/n = ρ for some fixed ρ ∈
(0, 1]. For each value of p ∈ {p1, . . . , pQ} randomly draw

N bootstrap datasets Yj
p , j = 1, . . . , N , with replacement,

where the p data points within each Yj
p are chosen from the

entire data set Yn independently. From these samples compute

the empirical mean of the k-NN length functionals L̄p =

N−1
∑N

j=1
Lγ,k(Yj

p). Defining l̄ = [log L̄p1
, . . . , log L̄p1

]T ,

write down the linear vector model

l̄ = A

[

a

b

]

+ ǫ (6)

where

A =

[

log p1 . . . log pQ

1 . . . 1

]T

.

Now, taking a method-of-moments (MOM) approach, in which

(6) is used to solve for the linear least squares (LLS) estimates

Fig. 1. Building local neighborhoods. From left to right: start with point
y

i
; fi nd its 3-NN points; for each of the NN points just found, compute their

3-NN points.

â, b̂ of a, b, m̂ and Ĥ can be determined by inversion of the

relations (5). After making a simple large n approximation,

this approach yields the following estimates:

m̂ = round{γ/(1 − â)}

Ĥ
(M,g)

α̂ =
m̂

γ

(

b̂ − log βm̂,γ,k

)

.
(7)

III. LOCAL INTRINSIC DIMENSION ESTIMATION

Let {M1, . . . ,MP } be a collection of disjoint compact

Riemann submanifolds of R
d and define M = ∪P

j=1
Mj . Each

manifold Mj has unknown intrinsic dimension mj ≥ 2, which

may be different from manifold to manifold. Let fi be the

density (with respect to µgi
) of the samples on each manifold.

Given a set of n samples Yn ∈ M, the goal is to estimate

the local dimension associated with each sample Y i, i.e.,

the dimension of manifold Mj where Y i lies. Of course,

this has to be accomplished without any prior knowledge

on the number of different manifolds, intrinsic dimensions,

sampling distribution or segmentation of the data. If the

segmentation of the data set according to local manifolds was

known in advance, then repeated applications of Theorem 1

to each manifold segment would yield consistent estimates for

each point. However, such information is not available and

local neighborhoods with similar geometric structure have to

be automatically determined from the data. We propose the

following general algorithm (see Figure 1):

for i = 1 to n do

1. Grow a local k-NN graph for yi:

a) initialize N = {yi},

b) for all y ∈ N compute the set of its k-nearest

neighbors, Nk,y(Yn).
N ← ∪y∈NNk,y(Yn);

c) goto b) until stopping criterion is met.

2. Apply the estimation algorithm described in Section II

to the graph built in step 1, and obtain a local dimen-

sion estimate m̂ (yi).

end.

The challenging part of the algorithm described above is

the selection of a criterion that stops the growing of the local

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 5, 2009 at 16:28 from IEEE Xplore.  Restrictions apply.



419

k-NN graph. On the one hand, the graph should be small

enough so that only the geometry of the local manifold where

sample point yi lies is captured by the graph. On the other

hand, the graph should include enough samples so that the

asymptotic regime described by Theorem 1 is valid, resulting

in statistically consistent estimates. Any stopping rule should

take into account this tradeoff between local geometry and

asymptotic consistency. We propose an heuristic rule based

on the geometric and asymptotic properties of k-NN graphs.

The k-NN graph satisfies certain geometric properties, like

subadditivity and superadditivity [9], which imply that the

graph can be approximately computed in a greedy fashion

in the following way. First partition R
d into a finite number

of disjoint sets. Then, build a k-NN graph on the samples

that fall on each disjoint set and compute its total edge length

functional. Summing all contributions from each total edge

length functional provides a good approximation for the global

value of the functional, as long as the number of samples

falling on each individual partition set is significant. According

to [10], the number of samples that minimizes upper bounds

on the convergence rate of (2) to its asymptotic limit is

roughly of order O
(

n1/d
)

. According to this result, a simple

stopping rule can then be to grow the local k-NN graph until

it incorporates a total of O
(

n1/d
)

sample points.

We are currently studying other stopping rules based on

adaptive neighborhood graphs [11] that have provable geo-

metric properties.

IV. RELATED METHODS

The local dimension estimation method proposed here is

conceptually related to the estimation of the following func-

tional of the density of the sample points:

log

∫

B(y
0
,r)

g(f(y))µ(dy) , (8)

where g is a strictly increasing function and B(y
0
, r) is the

ball of radius r centered at y
0
. Under suitable regularity

conditions on f and g, using the mean value theorem results

in:

log

∫

B(y
0
,r)

g(f(y))µ(dy) = my
0

log r + c + o(1) , (9)

where c is a constant depending on f, g and the volume of the

unit sphere and o(1) → 0 when r → 0. Compare equation (9)

to equation (4). By choosing different functions g and radii r

one can develop new estimators for the local dimensionality

my
0
.

For example, by choosing g(u) = 1, then functional (8) can

be estimated by the number of points falling into B(y
0
, r).

This is the motivation behind correlation dimension methods

[3], [12]. If r is chosen adaptively according to the distance

from y
0

to its k-nearest neighbor, Tk(y
0
), then (8) is given

by k/n, the proportion of samples within a radius Tk(y
0
) of

y
0
. This is the starting point for earlier methods for estimating

intrinsic dimension based on k-NN distances [13].

Fig. 2. Estimating the local dimension of the Swiss roll and the sphere.
The estimated local dimension was 2 for the black points and 3 for the blue
points.

In [6], a similar approach is followed, but the (binomial)

number of points falling in B(y
0
, Tk(y

0
)) is approximated

by a Poisson process, for samples uniformly distributed over

the manifold. Then the intrinsic dimension is estimated by

maximum likelihood, resulting in the following local estimate:

m̂y
0

=
1

k − 1

k−1
∑

j=1

log
Tk(y

0
)

Tj(y0
)

.

V. SIMULATIONS

We now illustrate the application of the proposed method

on collections of synthetic manifolds of known dimension.

We compare it to the maximum likelihood (MLE) method

proposed in [6] for dimension estimation.

We first start with simple low-dimensional manifolds em-

bedded in R
3 for the purpose of visualization. Figure 2 shows

the results of applying the proposed algorithm to a three-

dimensional data set composed of two manifolds. This set

consists of 200 hundred points sampled uniformly on the 2-

dimensional ”Swiss roll” and 300 points sampled uniformly on

the 3-dimensional sphere. The black points have an estimated

local dimension of 2, while the blue points have an estimated

local dimension of 3. Figure 3 shows the histogram of the

local dimension estimates. As it can be seen, almost all points

were labeled with the correct dimension, except for a few that

live close to the intersection of both manifolds.

The histogram of local dimension estimates obtained by

the MLE method is also shown is Figure 3, where it can

be observed to have a slightly better performance. This is

due to the fact that that the MLE approach relies on an

approximation of a binomial process by a Poisson process.

This approximation converges at a rate of order O
(

n−1
)

, as

opposed to a much slower rate of order roughly O
(

n−1/d
)

for

the graph based methods. As such, for higher dimensions, the

MLE method will tend to outperform the proposed method.

However, this comes at a cost, as the fast convergence rate of

the MLE method is only valid for the case of sample points

uniformly distributed over the manifold. When the density

of the samples departs from a uniform distribution on the
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(b) MLE method [6]

Fig. 3. Histogram of local dimension estimated for the Swiss roll + Sphere

data set.
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(b) MLE method [6]

Fig. 4. Histogram of local dimension estimated for the non-uniform 6-D

hyper-sphere.

manifold, the effective convergence rate may be less than

order O
(

n−1
)

, as it will be slowed down by the variations of

the distribution. This phenomenon can be observed in Figure

4 that shows the histogram of dimension estimates for a 6-

dimensional hyper-sphere sampled according to a Bingham

distribution [14], whose density with respect to the Lebesgue

measure on the hyper-shere is

f(y)α exp{yT
Ky} ,

where K is a symmetric matrix.

Figure 5 shows similar results to the ones described previ-

ously for a data set consisting of a 3-dimensional sphere and

the 2-dimensional S curve in R
3. As it can be seen, all points

were labeled with the correct dimension.

A. Complexity Segmentation

We now apply the proposed method to a synthetic image

database. The goal is to classify images according to their

complexity, i.e., the intrinsic dimensionality of the model

used to generate them. In our simplified experiment, we

generated gray scale 3 × 3 pixel images according to the

following model. For a d-dimensional database, choose d seed

pixels that will be generated independently from each other.

The remaining pixels are generated according to a linear or

nonlinear function of the seed pixels. For example, Figure

Fig. 5. Estimating the local dimension of the S curve and the sphere. The
estimated local dimension was 2 for the black points and 3 for the blue points.

7(a) shows a 2-D database where the first two columns of

each image are linearly dependent on the seed pixel located

at the uppper rightmost corner, while the last column is a

linear function of the upper leftmost corner pixel. If Iij is the

intensity of pixel ij, then the model is:

{Iij} =





1 c12 1
c21 c22 c23

c31 c32 c33



 ·





I11 0 0
0 I11 0
0 0 I13



 ,

where I11 and I13 are the independent random seeds and

cij are fixed coefficients. Figure 7(b) shows a 3-D database,

where each column is generated independently, according to:

{Iij} =





1 1 1
d21 d22 d23

d31 d32 d33



 ·





I11 0 0
0 I12 0
0 0 I13



 ,

for fixed coefficients dij and independent random seeds I11,

I12 and I13. The aim of these models is to simulate databases

that contain images/textures with different patterns or edges,

for example, which are inherently of different intrinsic dimen-

sionality, and thus complexity.

Figure 7 shows the histograms resulting from applying the

discussed methods to a database consisting of merging 400
samples of 2-D images with 400 samples of 3-D images.

Unlike the MLE method, the proposed method succeeds at

finding the right proportion of samples from each dimension-

ality. However, regarding classification rates, i.e, the number

of samples whose dimensionality was correctly estimated, both

methods behave similarly, with rates of correct classifications

around 75%.

VI. CONCLUSIONS

We have introduced a new method to estimate intrinsic

local dimensionality associated with each data sample. This

represents the first attempt towards developing a robust non-

parametric method that will be able to segment a data set into

regions of different complexities. This complexities can be a

product of, for example, different textures, number of edges,
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Fig. 6. Samples from image databases with different complexities.
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(b) MLE method [6]

Fig. 7. Histogram of local dimension estimated for the 2-D and 3-D image

databases.

etc, that impose nonlinear constraints on the data set. Several

issues have to be addressed before achieving this goal.

The key block behind a local dimensionality estimator is

an algorithm that finds a local adjacency graph that connects

points with similar geometric properties. We are currently

studying adaptive neighborhood graphs that find local neigh-

borhoods of points that lie on the same manifold. We are also

implementing a two step procedure that uses the first com-

plexity segmentation to construct new adjacency graphs using

only the points classified with the same intrinsic dimension.

Another possible improvement to the performance of the

algorithm is the development of a block resampling and

bootstrap procedure that will account for the dependencies

among resamplings when estimating the slope in equation (4).

This method might also prove useful for extending the current

methodology to non i.i.d. samples. Examples of such data

sets include, among others, time series obtained from Internet

traffic traces.

Also of interest are applications to streaming data problems.

This will require developing algorithms to compute k-NN

graph neighborhoods recursively.

Finally, we are developing the asymptotic analysis necessary

to guarantee the statistical consistency of the proposed method.

We remark that the problem of sampling a manifold with

noise was not considered in this paper. That is a subject of

future work.
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