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Abstract—DNA microarray technology is a very powerful technique used
in modern biology which is extensively used for identification of sequence
(gene/gene mutation) and determination of gene expression. A typical gene
microarray image consists of a few hundred to several thousand spots and
the extent of hybridization of these spots determines the level of gene ex-
pression (abundance) in the sample. The massive scale and variability of
gene microarray data creates new challenging problems of gene clustering,
feature extraction and data mining. A major issue in gene microarray data
analysis is to accurately quantify spot shapes and intensities of microarray
image. In this paper we propose a method for performing accurate spot
segmentation of a microarray image, using morphological image analysis
techniques, followed by quantification of the shapes of the segmented spots
using B-Splines.
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I. I NTRODUCTION

Gene microarrays, or chips, have revolutionized the field of
experimental genetics because they permit estimation of the rel-
ative expression levels of thousands of genes simultaneously.
Typically, a gene microarray consists of large number of known
DNA probe sequences that are placed on distinct locations on a
slide. The level of hybridization of an unknown target to probe
gives estimate of the abundance of the probes in the unknown
target [1].

In spotted arrays two mRNA (messenger RNA) samples,
namely the control sample and the treatment sample, are reverse
transcribed into cDNA (complementary DNA) samples and then
tagged with two different dyes. Then these two samples are
mixed and scanned to produce a spotted image depicting the
variations in fluorescent intensities at each probe position. A
sample microarray image is shown in Fig.1. The integrated in-
tensity within each spot is a measure of the level of gene expres-
sion or equivalently the mRNA abundance in the sample [1]. As
gene microarrays can suffer from a high-level background noise
level, accurate spot segmentation is essential for quantifying this
intensity. Mathematical morphology methods can be employed
for lossless spot segmentation and to quantify spot shape vari-
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ability. The main focus of this paper is the extraction of spot
features from a gene microarray image, which along with the
spot intensity can be used for statistical analysis of spot shape
and intensity variations. For this purpose we have to segment
the microarray image, which is just an intensity image and can
be characterized by connected pixels of similar intensity values.
For the segmentation of intensity images there are four main
approaches: 1) Threshold techniques, which are based on the
principle that all pixels whose value lie within a certain range
belong to a specific class of hybrid levels, 2) Boundary-based
techniques [2], which keep track of rapidly changing pixel val-
ues at the boundary between two regions, 3) Region-based meth-
ods [3], which are based on comparison of one pixel with its
neighbor and if they all have similar values they are said to be-
long to the same class (an important special case is the algorithm
called Seeded Region Growing (SRG) and 4) Hybrid techniques,
which are a combination of boundary and region-based meth-
ods, and are very reliable in producing closed boundaries [13]
(Morphological Watershed Segmentation belongs to this class).
There is a variety of software available to perform segmenta-
tion of spotted microarray images e.g. Spot [15], which uses
Seeded Region Growing. Here we propose Morphological Wa-
tershed Segmentation which has the advantages: 1) no seeding
within spot boundaries is necessary, 2) the watershed region pro-
vide partition which is used to isolate local noise background for
each spots, and 3)the implementation is fully automatic, elimi-
nation need for gridding or other manual pre-processing. The
problem at hand can be viewed as reducing a database of genes
X = {Xi}K

i=1 to X = {Xi}L
i=1 whereL ≤ K are spots with

strong responses and then applying further gene filtering tech-
niques like Posterior Pareto Front Analysis [5] to find the most
prominent genes.

The outline of the paper is as follows. In Sec. II we pro-
vide a brief overview of mathematical morphology, in Sec.III
we provide experimental results of application of morphologi-
cal techniques for microarray segmentation and finally in Sec.
IV we describe applications to spot shape and intensity charac-
terization over a population from microarray experiments.



Fig. 1. A sample gene microarray image

II. M ORPHOLOGICALMETHODSFOR SPOT

SEGMENTATION

In this section we briefly present the basic principles, def-
initions and notations used in mathematical morphology, for
further details see [7], [11]. Letf be function which defines a
grayscale image defined on<2 → <, B be a planar structuring
element such thatB ⊆ <2 andψ be an image operator which
transforms a grayscale imagef into another image according to
some specific task .

An important morphological operator erosion (dilation) is
defined as,

ψerosion(f) =
∧

(ε,η)εB

f(x + ε, y + η) = (f ªB) (1)

ψdilation(f) =
∨

(ε,η)εB

f(x− ε, y − η) = (f ⊕B) (2)

Erosion (dilation) replaces the value of the imagef at a pixel
(x, y) by the infimum (supremum) of the values off over a
structuring elementB (B′ - reflection ofB around the origin),
which results in ”shrinkage” (”expansion”) of the image. An-
other very important morphological operation which is used ex-
tensively is called structural opening (structural closing) and is
defined as,

f ◦ b = (f ª b)⊕ b (3)

f • b = (f ⊕ b)ª b (4)

and is used to undo the effect of erosion (dilation) by applying
the associated dilation (erosion).

Another useful operator is the so-called area opening, which
is used to remove grains having area below a given value from
the image. Mathematically it is defined as,

ψaopn(f, a) =
∧

tε<
{(x, y)ε

⋃
{Fs(t) : |Fs(t)| ≥ a}} (5)

where,Fs(t) is a cross-section of the image intensityf and
Fs(t)|s = 1, 2, 3 are grains of the cross-sectionF (t) of the im-
agefanda is the threshold level [12]. On the other hand area
closing is used to fill in the holes in the image, whose area is
smaller than a given value. It is important to note that openings
(closings) are increasing, anti-extensive (extensive) and idempo-
tent. They both are smoothing filters and are used for smoothing

contours of an image, suppressing small islands and cutting nar-
row isthmuses. The amount of smoothening is determined by
the size and shape of the structuring element used. Note that
supremum of openings is also an opening and infimum of clos-
ings is also a closing. This becomes very useful in practice since
it allows us to develop larger openings (closings) using elemen-
tary openings (closings).

The opening (closing) of an imagef removes peaks (hol-
lows) and ridges (ravines) from the topographic surface of the
imagef . Another operator, which produces such peaks (hol-
lows) and ridges (ravines), called the opening top-hat operator
(closing top-hat operator) is defined as,

ψopnth(f) = f − f ◦ b (6)

ψcloseth(f) = f − f • b (7)

A morphological operatorψ is said to be a morphological fil-
ter, if it is increasing and idempotent. The combination of dif-
ferent morphological filters also results in a morphological filter.
Alternating filters are combination of closings and openings and
are defined as,

πk(f) = (f ◦ kB) • kB (8)

ρk(f) = (f • kB) ◦ kB (9)

wherekB represents(k − 1) dilations andk is the size of the
filter.

We can combine alternating filters to form an alternating se-
quential filter (ASF). This is combination of multiple closings
and opening with decreasing number of dilations and it is given
by,

µk(f) = πkπk−1 . . . π1(f) (10)

υk(f) = ρkρk−1 . . . ρ1(f) (11)

These filters can be used to reduce noise or simplify variations
in gene microarray images.

The distance functiond(•, •) is a map from<2x<2 into the
set<+. If d(q, r) is defined as the distance betweenq andr,
then the distance transform has the properties thatd(u, u) =
d(v, v) = 0, d(u, v) = d(v, u) andd(u,w) ≤ d(u, v) + d(v, w)
for everyu, v, w ε<2. Using the distance function we can define
the distance transformDu(f) of f at pointu ε <2 as,

Du(f) =
∧

vε<2

d(u, v) (12)

The non-zero values ofDu(f) (distance transform of the fore-
ground) gives the minimum distance of a pixel in background
from the foreground boundary, while the non-zero values of
D
′
u(f) (distance transform of the background) gives the min-

imum distance of a pixel in foreground from the foreground
boundary. This transform aggregates the distance informa-
tion from a continuum of erosions and dilations into a single
grayscale function.

A regional minimum (regional maximum), Minreg

(Maxreg), of an image f is a connected component of



pixels in f with a given valuea, such that every pixel in the
neighborhood ofMinreg (Maxreg) has a value strictly larger
(smaller) thana. Every regional minimumMinreg has a
catchment basinC(Minreg) associated with it, which is a
collection of all points of the topographic surface off , such
that a drop of water falling at any point slides along the surface
until it reachesMinreg [10], [13].

Now, by flooding the topographic surface of an image from its
regional minimum and preventing the merging of water coming
from different sources, we partition the image into two differ-
ent sets; the catchment basins and the watershed lines, where
each catchment basin contains one and only one regional mini-
mum [12]. Using the above analogy we can define the watershed
transform as,

W (f) = D
⋂

(
⋃

sε<
C(Minregs

))
′

(13)

where,D represents connected domain of the imagef , see [13]
for further details. In the next section we apply these morpho-
logical techniques to spot segmentation in gene microarray im-
ages.

III. SPOT SEGMENTATION OF GENE M ICROARRAY IMAGE

Image Segmentation is defined as the process of isolating ob-
jects in the image from the background i.e., partitioning the im-
age into disjointed regions, such that each region is homoge-
neous with respect to some property [8]. Therefore, spot seg-
mentation can be defined as the process of extracting the appro-
priate homogenous spots and the noise background, having the
desired homogeneity property, from a microarray image. Esti-
mation of noise background is important since it allows for the
correction of the spot intensities.

In this section we apply morphological techniques, discussed
briefly above, for spot segmentation of a gene microarray image.
A portion of the original image’s grayscale version is shown in
Fig. 2. It can be seen, that there are bright regions inside the
spots, which will cause faulty binarization of the image,but ap-
plying an area opening (5) solves this problem and the result is
a much smoother image, which is depicted in Fig. 3. Threshold-
ing the image in Fig. 3 produces the binary image shown in Fig.
4. The number of spots produced during thresholding is deter-
mined by the threshold level we select and thus can be used to
filter those spots with weak hybridization levels and can also be
used for multi-threshold extraction of spots of varying intensity
levels.

Two iterations of the alternating sequential filter (ASF), char-
acterized by a cross structuring element [12] having unit radius,
are applied to the image in Fig. 4 while using the sequence of
opening followed by closing operators (8),(9),(10),(11). Next
we find the regional maxima of the image in Fig. 4, according
to the connectivity defined by cross structuring element. These
regional maximums act as markers for each cell, and can be seen
as dark regions within spots in Fig. 5.

Now we apply the watershed transform (12) to the negation

of the original image using the markers found previously and
using the box-structuring element to define connectivity. These
watershed lines are used to act as external markers, which mark
the crest lines of the original image Fig. 1. Further we locate the
regional minima of the original image and use them as internal
markers. These external markers and internal markers are com-
bined in to a joint marker, which is shown in Fig. 5 overlaid over
the original image and it can be seen that the spot boundaries are
well constrained between external and internal markers.

The watershed transform is applied to the gradient of the im-
age [4] using the combined marker (Fig. 5) and the cross struc-
turing element of unit radius. The resulting watershed lines are
shown as green boundaries around spots and are overlaid over
the original image in Fig. 6. Generally the gradient operator is
overly sensitive to grayscale variation and noise and it can cause
creation of a large number of irrelevant catchment basins, a
problem called oversegmentaion. However, by using watershed
transform techniques we can avoid overgsegmentation problems
as seen in the final result in Fig. 6, at low computational cost.
Another advantage of watershed segmentation is that we extract
and characterize noise background features since the watershed
provides regions in the neighborhood of each spot. Now by us-
ing boundaries of the extracted spots we can find foreground in-
tensities for each spot and use them for statistical analysis. The
plot of Cy5 vs. Cy3 intensities of the extracted spots is shown
in Fig. 87.

Fig. 2. Grayscale version of original microarray image

Fig. 3. Result after application of area opening

Fig. 4. Result after application of thresholding

IV. QUANTIFICATION OF SPOT SHAPES

Our accurate spot and noise segmentation permits quan-
tification of spot shape and other characteristics e.g. noise,



Fig. 5. Combined internal and external marker

Fig. 6. Watershed lines overlaid over the original image

background averaging and subtraction. Here we illustrate
the utility of segmentation for shape quantification. After
segmentation of the image, the numberL of surviving spots
in the image is determined (in our exampleL=60) and the
co-ordinates of the centroid of each spot are calculated. Using
the centroid ofi-th spot, wherei = 1,2, . . . ,L we calculate
sample values of the boundary, which results in anLxR matrix
for the x and y coordinates of sample points of each spot
boundary, whereR = the number of sample points along the
boundary. Using the matrix of Cartesian coordinates of sample
points of the boundary, we transform the boundary to polar
coordinates with respect to the centroid of thei-th spot.

A. B-Splines for Extracted Spots

To achieve a low dimensional parameterization of the spot
shape we investigated planar curve model fitting based on
the morphological segmentation described above. There are
numerous methods available to represent closed boundaries
as periodic planar curves, such as Fourier descriptors, Bezier
curves, Beta-Splines and B-Splines. In this paper, we adopt a
B-spline boundary model [14]. A B-spline consists of a set of
spline coefficients and basis functions. Each spline coefficient
is associated with one basis function. For a fixed centroid, each
spot’s boundary can be represented by a radial functionr(θ),
continuously indexed by polar angleθ ε (-π, π]. This is given
as,

r(θ) =
∑

k

Bk(θ)ck = BT (θ)C (14)
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Fig. 7. Scatter plot for foreground intensities of extracted spots using morpho-
logical watershed segmentation

where ck = [xk, yk]T is a 2D spline coefficient,Bk(t) are
the associated basis functions andB(θ) = [B1(θ), ..., Bk(θ)]T .
From this we see spline boundary is a weighted combination of
the spline coefficients, where the weights are given by the basis
functions. Furthermore the basis functions are piecewise poly-
nomial curves determined byJ fixed positions, called knots. For
an m-th order B-spline these curves are specified by polynomial
functions of degree m. Making use of the previously computed
centroid matrix, which contains the centroid of each spot and
locations of sample points on the detected spot boundary, we
perform the B-spline fitting procedure to smoothly parameterize
the spot shapes.

In particular, a B-spline is fit to the sample points by first
sorting points by their angle about the centroid. Following this
each sample point,rl, is associated with a curve parametertl,
which is computed using a measure of arc length: the sum of
distances|rj − rj−1| for j = 2l. Givenrl, andtl, we can then
find the control pointsck that best fits the data while forming a
closed loop via linear least squares[15]. Following this we can
alternate between updating thetl, and the control points so that
the fitting error of the spline to the data is minimized. A typical
result of our application of B-Splines for one of theL extracted
spots in the gene microarray image is shown in Fig. 8. Using
this boundary model we can easily compute moments of the spot
boundary, mean and standard deviation of the spot radii etc.
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Fig. 8. Estimated B-Spline around the boundary of one of the extracted spots

B. Circularity Coefficients

After determining the coefficient vectors of the B-splines,
we developed a database of spot shapes in the microarray
image. This database can be used to query for a possible cor-
relation of spot shape to factors such as intensity, background
noise and microarray print-head variation. We also constructed
a databaseΓ of shape statistics including the spot circularity
coefficientτi. The circularity coefficient is defined as the ratio
of first moment squared of the splined boundaryr(θ) to second
moment of the splined boundary, which can be computed
directly from spline coefficients,

τi =
(
∫

θr(θ)dθ)2∫
θ2r(θ)dθ

1∫
r(θ)dθ

=

(∑
k ckB1

k

)2

(∑
k ckB2

k

) (∑
k ckB0

k

) (15)

whereBm
k =

∫
θmBk(θ). This shape statistic tells how close

the spot’s shape is to a perfect circle. Note that the range of
this coefficient is0 ≤ τi ≤ 1, whereτi = 1 for a circular spot
boundary. Since the surface of the microarray print head is disk



shaped the closer theτi for i-th spot is to 1, the higher the con-
fidence in the accuracy of measured probe response. Circularity
coefficients for a few spots are shown in Fig. 9, where columns
of the table represent the column indexes and rows represent the
row indexes of the microarray grid, and blank cells correspond
to spot locations which were were not detected as spots of in-
terest during the analysis. Note that upper left part of table in
Fig. 9 corresponds to circularity coefficients of spots in Region
A of the microarray image in the Fig. 10 and similarly upper
right part,lower left and lower right part of the table corresponds
to spots in Region B, Region C and Region D respectively. Cir-
cularity coefficients for each spot are analyzed with other spot
characteristics, and one of these analysis is shown in Fig. 11,
which depicts that majority of extracted spots have high circu-
larity coefficient, with the exception of those which have very
small radii or those with very large radii.

Fig. 9. Table for Circularity Coefficients,τi, for spots extracted from gene
microarray image at mn-th location on the microarray grid

C. Eigen Analysis of Extracted Spots

Using the shape parameters given by the B-spline, the statistics
of spot shape can be computed and analyzed as a function of
spot intensity level. Any correlation between intensity and
shape can subsequently be used to improve estimates of overall
hybridization levels, possibly leading to more accurate gene
microarray analysis. After extracting the spot boundary for the
i-th spot we normalize the spot’s intensity so that it sums to one
and this normalized intensity can be viewed as a probability
distribution,Qi(x, y) for the i-th spot. Now using the centroid
and the distribution of thei-th spot, the covariance matrix,Ωi,
for that spot is constructed by using the relation,

Ωi = [∆xi, ∆yi]
′
Qi(x, y)[∆xi, ∆yi] (16)

where∆xi = x−mxi and∆yi = x−myi, with mxi andmyi

beingx andy coordinates respectively of the centroid of thei-th
spot. This is followed by eigen-analysis ofΩi of each spot to
find eigen-vectorsζi1 andζi2 for the covariance matrix of the
i-th spot. The first eigen-vectorζi1 lies along the axis that has
the most ’mass’ concentrated and the second eigen-vectorζi2 is
orthogonal to this. Thus we can see that the eigen-vectors line
up with the distribution (intensity) of the spot as depicted in Fig.
10.

V. CONCLUSION

Spot extraction of a gene microarray image has been achieved
using the watershed segmentation and other morphological tech-

REGION A REGION B 

REGION C REGION D 

Fig. 10. A gene microarray image with B-Spline boundaries for each spot and
eigen axis of covariance matrix of each spot
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Fig. 11. The majority of spots have high circularity with the exception of spots
that have very small radii or those with very large radii

niques for image analysis. This method is robust to noise prob-
lems leading to oversegmentation. The computational require-
ments of our procedure are very low. The detected boundaries of
the extracted spots are used to obtain B-spline coefficients of the
shape, which are further stored in a database for quantification
of spot variations. Using morphological segmentation permits
us to perform shape and intensity analysis.
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