Imaging Applications of Stochastic Minimal Graphs
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Abstract— This paper presents an overview of some of the recent the- formation method outlined in [6]. However, for unknowg
ory and application of stochastic minimal graphs in the context of entropy - gnd unknownf; the existence of consistent minimal-graph es-

estimation for imaging applications. Stochastic graphs which span a set .. . . .
of extracted image features can be constructed to yield consistent estima- timators OfDa(fl ||f0) is an open problem. This paper will be

tors of Jensen’s entropy difference for between pairs of images. Unlike concerned with an alternative dissimilarity function, called the
traditional plug-in entropy estimates based on density estimation, stochas- o-Jensen difference, which is a function of the joint entropy of

tic graph methods provide direct estimates of these quantities. We review : . . .
the stochastic graph approach to entropy estimation, compare convergence Zo andZ;. As will be shown below, this function can be esti

rates to that of plug-in estimators, and discuss a geo-registration applica- Mated using minimal graph entropy estimation techniques and
tion. An extended version of this paper is the technical report [4]. behaves similarly to tha-divergence.

l. INTRODUCTION Il. ENTROPY ESTIMATION

Let 7 be a stochastic image and let feature vectors L€t Z be a feature vector in Rwith j.p.d.f f(Z). Assume that

ZM ... (" pe extracted from this image. We focus on thé Nas bounded support. Theentropy, also known aseRyi
case that the feature vectors are i.i.d. realizations of a randBRITOPY is defined as

variableZ generated by a feature densjty”). This is appro- 1

priate for piecewise homogeneous images from which repeated Ho(f) = —a In /z fe(z)dz. 1)

feature vectors can be sampled from a homogeneous region of )
the image. Examples of such a feature vector are: the positiHS €ntropy function converges to the Shannon entropy
and orientation of an edge; a vector of samples in a textured red f(2)In f(z)dz asa — 1.

gion; the output vector of a spatial innovations filter; etc. This \,st non-parametric entropy estimation techniques are based
paper is concerned with estimating the jairentropy (see (1)) gn estimation of the density function followed by substitution

of the feqture vector density based on feature samples extragiefiese estimates into the entropy functional (1). For example,
from the images. when this plug-in technique is applieddeentropy it yields

Entropy estimation is of interest for pattern analysis, image _ 1 —
complexity assessment, model identification, tests of indepen- Ho(f*) = —— ln/f“(z)dz (2)
dence, and other applications where invariance to scale, trans-
lation and other invertible transformations is desired in the diwhere]; is an empirical estimate of*. For the special case
criminant. It was shown earlier [7] that minimal graphs such as$ estimation of Shannon entropy recent non-parametric esti-
the minimal spanning tree (MST) could be used to come up withiation proposals have included: histogram estimation plug-in
direct estimates ak-entropy without requiring the difficult step kernel density estimation plug-in and sample-spacing density
of density estimation. This paper expands on this approach watitimator plug-in. The reader is referred to [3] for a compre-
special emphasis on imaging applications. hensive overview of previous work in non-parametric estimation

of Shannon entropy. The main difficulties with non-parametric

: The results presented here can also be 'applled tq Indﬁ%&éthods are due to the infinite dimension of the spaces in which
ing and co.ntent-based retrieval of 'mages using entropic Meas | nconstrained densities lie. Specifically: density estimator
Sures of distance between a query image having feature d Siformance is poor without stringent smoothness conditions;
sity fo and a database Of images having feature densit 5 unbiased density estimators generally exist; density estima-
{fi}. For example then-divergenceDy(f1lfo) = (a — tors have high variance and are sensitive to outliers; the high

—1 e l—«a i
1)~'In [ f{'(2) fo " (2)dz converges to the Kullback-Liebler ;o ncionay integration required to evaluate the entropy might
(KL) divergence asx — 1, which has been proposed for rédpe difficult

istration and indexing of images [10]. Whefg is known the
a-divergence can be directly estimated by minimal graph meth-The problems with the above methods can be summarized by
ods similar to those presented below using the measure traing basic observation: on the one hand parameterizing the scalar
I This work was supported in part by Veridian-ERIM International, a NATC_?ntrOpy functional with an _mﬂr_“te d|m_en3|onal density functlo_n_
Collaborative Linkage Grant, and AFOSR MURI Grant F49620-97-0028. IS @ costly over-parameterization, while on the other hand artifi-
cially enforcing lower dimensional density parametrizations can




produce significant bias in the estimates. This observation haterpoint distance measure used to compute the weight of the
motivated us to develop direct methods which accurately estinimal graph. On the other hand, the need for combinatorial
mate the entropy without the need for performing artificial lowptimization is a bottleneck for large number of feature sam-
dimensional parameterizations or non-parametric density egties. This has motivated the development of greedy minimal
mation [5], [7], [6]. These methods are based on constructiggaph approximations that preserve advantages such as robust-
minimal graphs spanning the feature vectors in the feature spagess against outliers [7].

The overlall length of these minimal graphs can be used to con-

struct a strongly consistent estimator of entropy for Lebesgug, EnTrROPY ESTIMATOR CONVERGENCECOMPARISONS
continuous densities. In particular, &t" = {z(1) ...z}

and define Here we compare asymptotic convergence rates of the direct
I = (2™ = mi y 3 m|n|rr_1al—graph entr_opy estimator (4) and the indirect density
" ( ) Ielgze: el 3) plug-in entropy estimator (2) as a function of the numbef

i.i.d. samples oZ. Let Z € R? have joint Lebesgue densify
the overall length of a graph spanning.i.d. vectorsZ(® in Define the class of blder continuous function(x, ¢) over
R? each with densityf. Herey € (0,d) is real,e are edges R?
in a graph connecting pairs &f%)’s, |e| denotes Euclideari) Ln] .
norm of the edge, and the minimization is over some suitable Za(k,c) = {f(m) HIf (@) = p" (2 < e |z — =] }
subsetsy, e.g. spanning trees, of thjg) edges of the complete el .
graph. Examples include the minimal spanning tree (MS herep;,(z) IS the Taylor polynomial of of orderk expanded
Steiner tree (ST), minimal matching bipartite graph, travelirf?°ut the poinz. As x becomes large the cla&(x, c) con-
salesman problem (TSP). The asymptotic behaviak pbver tains functions which are increasingly non-smooth.

random pointsZ (™) has been studied for over half a decade [2], For the indirect estimator (2) it makes sense to consider a min-
[11]. When the graply” is “quasi-additive” we showed in [7] imax optimal density estimation strategy which minimizes the
that worst case estimator mean integrated square error (MISE) over
N n o the densities lying irE;(k, ¢) [8]. The minimax estimator can
Ho(2™) =lnLy/n® ~Infp, (4) be implemented as a Ejieczawise polynomial with bin size that
is an asymptotically unbiased and almost surely consistent edicreases in at a specified optimal rate. The resultant MISE
mator of the un-normalizeg-entropy off wherea = (d—~)/d hasthe fastest possible rate of convergence overél, c) and
and ;- is a constant bias correction depending on the grapiie rates of convergence of the squared bias and the variance are
minimization criterion, e.g. MST, ST or TSP, butindependent #fentical.

f. Consistency (4) also holds when the power exponentfunctior\Droposition 1: Assume that the Lebesgue densftys sup-
le|” in (3) is replaced by a positive functiait|e|) which locally ported on the unitd-dimensional cubel0,1]¢ and fo ¢

behaves ag|” as|e|] — 0[11]. The fact that (4) holds for any T . . .
guasi-additive graph construction opens the possibility of maf?y(ﬁ’ ¢)- Then, if f is a minimax MISE density estimator

different types of consistent graph-based entropy estimation al- 12 =~ 2 e/ (2ntd)
gorithms. However, among the currently known quasi-additive ESEUIZN B} E “Ha(f ) — Ha(f)‘ } = O(n )
algorithms the MST is the fastest (with polynomial run time o
and as such it has been adopted for all of our entropy estimatiofror the direct minimal-graph estimator (4) convergence rates
applications. are more difficult to establish. The convergence of quasi-
) . L ] additive minimal graphs has been studied for a large number of
Optimal pruning of these minimal graphs can robustify the,plems including minimal spanning trees, Steiner trees, and

entropy estimator against outliers from contaminating distribye traveling salesman problem [11] The following specifoes the
tions. Divergenc®,(f1]|fo) between the observed feature derEonvergence rate of such estimators

sity f and a reference feature densftycan be estimated sim-
ilarly via performing a preprocessing step before implementing Proposition 2: Assume that the Lebesgue densftys sup-
the minimal-graph entropy estimator. This preprocessing steprted on the unig-dimensional cub@, 1] and f* € S4(«, c)
applies a measure transformation on the feature space wHi@hsomex > 1. Then fora € [1/2,(d — 1)/d] andd > 2
converts the reference density to a uniform density over the unit
cube as explained in [6]. sup E'Y? {
feeXq(k,c)

As contrasted with density estimation techniques of entrop ) )
estimation minimal graph entropy estimators enjoy the follo2Pserve that for any. > 1 if f* € X(x,c) then f* is
ing properties: they have faster asymptotic convergence raf@sPounded variation. A comparison between the convergence
especially for non-smooth densities and for low dimension&t€S in Propositions 2 and 1 of the direct and indirect entropy
feature spaces; they completely bypass the complication &fimators, respectively, indicates that the direct estimator con-
chosing and fine tuning parameters such as histogram bin si¢/ges with faster asymptotic ratesnwhen:
density kernel width, complexity, and adaptation speed;dahe d
parameter in thex-entropy function is varied by varying the k< 1-1

Hy(Z2M) - Ha(f)ﬂ < O(n~/(#+D)



In particular whenxs = 1, i.e. f% is in the class of Lip- IV. GEO-REGISTRATIONAPPLICATION

schitz functions, the convergence rate of the direct estimator

is O(n—1/(4+1)) while that of the indirect estimator is only The objective is to register two types of images — a set of
O(n~'/(¢+2))  This performance advantage can be even greatectro-optical (EO) images and a terrain height map. For this
when f¢ is in the less smooth class of bounded variation funmultisensor image registration problem, there usually exist dis-
tions since this class contaild%;(1,¢). In this case the resul- tortions between the two types of images. The distortions are
tant rateO(n~1/(4+2)) in Proposition 1 becomes a lower boundiue to difference acquisition conditions of the images such as
which is not achievable by any linear plug-in estimation procehadowing, diffraction, terrain changes over time, clouds block-
dure such as a kernel density estimator. ing the illumination sources, seasonal variations, etc. Existence
of such differences between the images to be registered requires
that the registration algorithms to be robust to noise and other
small perturbations in intensity values.

A. Estimation ofx-Jensen Difference

Let fo and f, be two densities and € [0,1] be a mixture  For this image registration problem the set of EO images are
parameter. _They-Jensen_ difference is the difference betweeébnerated from tha priori digital elevation model (DEM) of
the a-entropies of the mixtur¢ = (fo + (1 — 5)f1 and the 3 terrain patch (the terrain height map) at different look angles
mixture of thea-entropies offy and f; [1]: (determined by the sensor’s location) and with different lighting

positions.
AHa (B, o, f1) ©) Geo-registration of a EO reference image to DEM’s in an im
Ho(Bfo+ (1= B)f1) = [BHa(fo) + (1 = B)Ha(f1)], age database is accomplished by selecting a candidate DEM

Fora € [0,1] the a-Jensen difference is a measure of dissim{age from the database and projecting it into the EO image
larity betweenf, andf; : as thea-entropyHa (f) is concave in p_lan(_e of the reference image. The objec_:tlve is t_o find the correct
f itis clear from Jensen’s inequality thAtH, (3, fo, f1) > 0 viewing angle such that the_correspo_ndlng EO image is the best
with equality iff fo = f1 a.e. match fco the EO reference image. Flgl_Jre _1 shows an DEM pro-
jected into the EO image plane with viewing angles (290, -20,
The a-Jensen difference can be motivated as an index furk30) and the reference EO image. Clearly they are not aligned.

tion for content-based retrieval and image registration as fol-
lows. Assume that two sets of labeled feature vectfys=
{ZSM iy, mp and 2, = {2}, ., are extracted from
imagesZ, and Z,, respectively. Assume that each of these s
sets consist of independent realizations from densjfieand 100
f1, respectively. Define the uniof = Z, U Z; containing 150
n = ng + n; unlabeled feature vectors. Any consistent entropy 2o
estimator constructed on the unlabelgt’s will converge to

=

Image at 290,-20,130 rotation Reference image

H,(Bfo + (1 — B)f1) asn — oo wheres = lim,_, o no/n. 300
This motivates the following consistent minimal-graph estima- ¥
tor of Jensen dlﬁ:erence (5) fd: no/n 50 100 150 200 250 300 50 100 150 200 250 300
AH, (B, fo f1) 2 (6) @ ®
Ha(Zo Uz — [ﬂHa(ZO) +(1- ﬂ)Ha(Zl)} , Fig. 1. Misaligned EO and reference images

whereH, (2, U Z,) is the minimal-graph entropy estimator (4) For matching criterion we implemented theJensen differ-
constructed on the point union of both sets of feature vector§NCe applied to grey level features extracted from the refer-
andH,(Z,), H,(Z:) are constructed on the individual sets ofNCe images and candidate EO images derived from the DEM
no andn; feature vectors, respectively. We can similarly defifd@tabase. The parametewas chosen arbitrarily &5, cor-

the density-based estimator of Jensen difference based on'&§Ponding to a MST construction minimizing the Euclidean

tropy estimates of the form (2) constructed&nU 2, Z, and Norm in (3) without any power weighting/(= 1). Forillus-
z,. tration purposes we selected a very simple set of features via

stratified sampling of the grey levels with centroid refinements.
For some indexing problems the marginal entropieshis sampling method produces a setrothree dimensional
{H,(f:)}K, over the database are all identical so that the ifeature vectorsZ; = (z4,yi, F(x;,1;)) whereF (z,y) is a sam-
dexing function{H, (8fo + (1 — B)fi)}£, is equivalent to ple of the grey level at planar positiany and wherex is fixed
AH(B, fo, fi)}£,. The problem of registering a query imagen advance. The point§(z;, y;)}"_, approximate the centroids
to a database of images which are generated by rigid transfgf\oronoi cells and{ F'(z;,;)}, correspond to the set of
mations of a reference image is an important example of thigmples of the image from which we could reconstruct the orig-
simplifying situation. inal image with minimum mean square error. For more details
see [9]. When the union of features from reference and target



images are rendered as points in three dimensions we obtain a

point cloud of features over which the MST can be constructed
and the Jensen difference estimated. Simgce= ng = n we
have used® = 1/2 in the Jensen difference (6).

Figure 2 illustrates the MST-based registration procedure over

the union of the reference and candidate image features for mis-

aligned images, while Figure 3 shows the same for aligned im-
ages. From Figures 2(a) and 3(a) we see that for misaligned
images, the representation points “x” and “0” are at larger dis-

tances, giving corresponding larger MST weight, than those for
aligned images.

We repeat this MST construction process over the union of

reference features and features derived from each of the images

in the DEM database. The MST length can then be plotted in
Figure 4. The x-axis stands for the image index, which corre-
sponds to the viewing angles from the aircraft. The minimum
MST length indicates the best matching of the EO image and

the reference image, which corresponds to the registered pair in °

Figure 5.
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Fig. 2. MST demonstration for misaligned images
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Fig. 3. MST demonstration for aligned images. “x” denotes reference while
“0” denotes a candidate image in the DEM database.
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