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1 Introduction

In this chapter, we consider the problem of tracking a moving target using
sensor network measurements. We assume no prior knowledge of the sensor
locations and so we refer to this tracking as ‘blind’. We use the distributed
weighted multidimensional scaling (dwMDS) algorithm to obtain estimates of
the sensor positions. Since dwMDS can only find sensor position estimates up
to rotation and translation, there is a need for alignment of sensor positions
from one time frame to another. We introduce a sparsity constraint to dwMDS
to align current time sensor positions estimates with those of the previous time
frame. In the presence of a target, location estimates of sensors in the vicinity
of the target will vary from their initial values. We use this phenomenon to
perform link level tracking relative to the initially estimated sensor locations.

Wireless sensor networks have been deployed for a number of monitoring
and control applications such as target tracking [28], environmental monitor-
ing [29], manufacturing logistics [26], geographic routing, and precision agri-
culture [44]. For many target tracking applications such as anomaly detection
[21, 45], species distribution and taxonomy [19], and surveillance [4], the main
purpose of the sensor network is to locate and track changes in remote en-
vironments. For example, species distribution and classification are currently
documented using sightings, captures, and trap locations, which involve con-
siderable manpower, time, and effort. Deploying mobile sensors with cameras
can improve remote counts of the species as they move around in the environ-
ment. For surveillance applications, the sensors must be able to locate where
the intruders or the vehicles are moving in the network. Another example is
the problem of locating equipment in a warehouse. The sensors that tag the
equipment must register their physical locations and activate an alarm if they
are about to exit the building. As another example, in secure protocol and
network routing it is critical to track anomalies such as worm activity, flash
crowds, outages, and denial of service attacks in the network.
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Automatic self-configuration and self-monitoring of sensor networks is the
key enabling technology for these tracking applications. To respond to changes
in the sensor network, it is critical to know where the changes are occurring.
Data measurements from the sensors must be registered to their physical
locations in the network in order to make optimal decisions. For dense sensor
networks, the large size makes it impractical for humans to manually enter
the physical location of the sensors and it is too expensive to attach the
GPS to every device in the network. The sensors must have the capabilities
to automatically estimate their relative positions and detect changes in the
network at low cost, e.g., with minimum battery power.

Self-localization algorithms can be broadly classified into two categories,
centralized strategies and decentralized strategies. In a centralized approach,
all the data collected by the sensors must be communicated to the fusion center
which then makes a decision based on this information. Algorithms that use
multidimensional scaling (MDS) [40], maximum likelihood estimation [30],
and convex optimization [14] have been proposed for centralized estimation
and have shown to perform well. However, this may be impractical when
the sensors operate with limited power and bandwidth. For networks with
thousands of sensors, transmission of sensor data to a fusion center overwhelm
the low-bandwidth capacity of sensor networks. Furthermore, remote sensors
are frequently battery operated and battery replacement may be infeasible or
expensive.

The need to conserve power and bandwidth has set the stage for more effi-
cient decentralized strategies for localization. Among the popular approaches
are adaptive trilateration [32, 39] and successive refinement [9, 23] algorithms.
In trilateration, each sensor gathers information about its location with re-
spect to anchor nodes, also referred to as seeds [31], through a shortest path.
Using the range estimates from the seeds, a sensor uses trilateration to es-
timate its location in the network. In successive refinement algorithms, each
sensor localizes its position in its own coordinate system based on the infor-
mation communicated from only its neighbors. Sensors refine their location
estimates iteratively using updates from neighboring sensors and finally merge
their local coordinates systems, effectively finding the solution to the local-
ization problem. Recently, there has been research emphasis on localization
based on a moving target, called a mobile in [6, 34, 42]. The mobile moves
randomly in the network while transmitting signals thereby allowing the sen-
sors to calibrate their range to the mobile. This provides a large number of
measurements with greater diversity which helps overcome environmental ob-
stacles and enables improved estimation of the sensor node locations.

Most localization algorithms assume the presence of anchor nodes, i.e., cer-
tain sensors which have knowledge of their positions in the network. In the
absence of anchor nodes, the sensor location estimates are only accurate up
to a rotation and translation. The intuition behind this result is the follow-
ing: consider an ad-hoc network of N sensors. The objective is to find the N
sensor locations given the N(N − 1)/2 inter-sensor distance measurements.
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The distance information depends only on the differences in the sensor loca-
tions so that the positions of the N sensors in the network can be rotated
and translated without changing these distances. In this chapter, we present
a sparsity constrained dwMDS algorithm, which can localize the relative po-
sitions of the sensor nodes even in the absence of anchor nodes. The dwMDS
algorithm proposed in [9] is a successive refinement method, where a global
cost function is divided into multiple local cost functions at each sensor lo-
cation and the computational load involved in finding the sensor location
estimates is divided among the sensors in a distributed fashion. The alloca-
tion of non-negative continuous weights to the measured data overcomes the
problem of combining local maps to one global map, a problem that is com-
mon to other decentralized methods [23]. We call our new algorithm sparsity
penalized dwMDS. More importantly, we explain how the anchorless sparse
dwMDS algorithm can efficiently track changes in the network.

Sensor localization is frequently viewed as an essential prelude to the mon-
itoring and tracking of active phenomena. Target tracking and detection has
been one such motivating application of sensor networks [24, 43, 1]. Most
target tracking applications assume known sensor locations or estimate the
location of sensor nodes separately before employing the tracking algorithm.
The standard model used for describing the state dynamics of a moving target
is the linear Gaussian model [37]. When the measurement model is also Gaus-
sian, the optimal tracker is given by the Kalman filter. For nonlinear state
space and measurement models, other techniques such as Extended Kalman
Filter (EKF) [24], unscented Kalman Filter (UKF) [43], and Gaussian sum
approximation [1] have been proposed. Particle filtering algorithms were then
formulated for target tracking, where the probability density of the state is
approximated by a point mass function on a set of discrete points [13]. The
discrete points are chosen through importance sampling. The advantage of
particle filtering is its applicability to a large range of densities, noise pro-
cesses, and measurement models. More recently, researchers have looked at
the simpler problem of tracking in a binary sensing modality [2, 25]. The sen-
sor outputs a high, when the target is within a sensing range and outputs a
low, when the target falls outside its range. Based on the fusion of the sensor
outputs, an approximate link level trajectory can be realized to track the tar-
get. Such a binary sensing modality has limited accuracy but requires minimal
power consumption and has the advantage of analytical tractability [41]. This
procedure can also be interpreted as a target detection problem implemented
for multiple time steps.

Distributed target detection methods have been proposed in the literature
[33] in the context of designing an optimal decision statistics at the sensor
fusion center. The detection problem has also been addressed for under com-
munication constraints, where the sensor transmitting the information needs
to send an optimal summary of the gathered information to the fusion center
[7]. In the context of anomaly detection in internet data, approximate density
of incoming traffic is constructed for each location. Distance between densities
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is then used as a similarity measure in the MDS algorithm to form a map of
the internet network. By performing MDS over time, it is shown that anoma-
lies such as network scans, worm attacks, and denial of service attacks can
be identified and classified [36, 16]. For wormhole detection in ad hoc sensor
networks, most research efforts require mobile nodes equipped with special
hardware or GPS devices [22, 5] to localize the wormhole.

In contrast to the methods proposed in the literature, we present the spar-
sity penalized dwMDS algorithm which localizes the sensor nodes in the ab-
sence of anchors and tracks multiple targets amongst the sensor links. The
principle behind our proposed algorithm is the following: in the ‘acquisition
phase’ or initialization, an initial estimate of sensor locations is acquired. Once
the sensors have been initially localized, it is only the network topology that
is critical to the problem of tracking. Hence, during the tracking phase, we
introduce a sparsity constraint to the dwMDS problem formulation, which
attempts to fix the alignment of the sensor network with respect to the align-
ment of the localized network at the previous time instance. By doing so,
we keep monitoring the network with respect to a fixed geometry obtained
by the localization algorithm at the first time instance (t = 1). The sparsity
constraint only reassigns a small fraction of the sensor locations, while main-
taining the locations of remaining sensors close to their previous estimates.
When the sensor network is then used for tracking, only the sensors affected
by the presence of a target are perturbed, while the rest of the location es-
timates remain unchanged. Based on the differences in the sensor location
estimates between two time-frames, we propose a novel perturbation based
link level tracking algorithm, which accurately localizes a target to within a
small set of sensor links. Figure 1 shows the localization process in the absence
of targets. The actual sensor locations are marked as circles and the anchor
nodes are highlighted using squares. The sensors communicate among them-
selves and the anchor nodes to obtain location estimates indicated as crossed
circles. Figure 2 shows the localization process in the presence of a target.
The measurements of the sensor nodes closest to the target are affected and
the sensors appear further apart than they are in reality. This change in the
sensor location estimates can be used to perform link level tracking.

Link level tracking has many attractive features, the most important of
which is that it does not require a physical model for the target, which is fun-
damental to most tracking algorithms in the literature [3]. Moreover, the goal
of certain sensor networks is to obtain an estimate of the location of the tar-
gets, or detect changes in the network. For example, in military applications,
the sensors can locate a target relative to the network and the network can
activate the appropriate sensors to identify the target. For animal tracking in
biological research, it is sufficient to have a low resolution tracking algorithm
to monitor animal behavior and interactions with their own clan and with
other species.

We introduce the sparsity constrained dwMDS algorithm for simultaneous
sensor localization and link level tracking in this chapter. We give a flavor of
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Fig. 1. Localization in the absence of target. Anchor nodes (square), true sensor
locations (circle), estimated sensor coordinates (crossed circle).

xxxx
xxxx
xxxx
xxxx
xxxx

xxxx
xxxx
xxxx
xxxx
xxxx

xxxx
xxxx
xxxx
xxxx

xxxx
xxxx
xxxx
xxxx

xxxx
xxxx
xxxx
xxxx

Fig. 2. Link level tracking based on localization in the presence of target.

how the algorithm can be extended to estimate actual target coordinates using
standard tracking algorithms. Furthermore, the algorithm we present here can
be used to design optimal sensor scheduling strategies for tracking to limit
power consumption in sensor networks. We incorporate the sparsity constraint
such that the localization algorithm is still distributed in its implementation
to minimize communication and computational costs.

This chapter is organized as follows: Section 2 formally introduces the
problem of sensor localization. Section 3 introduces the classical MDS al-
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gorithm and its variations. We then present our sparsity penalized dwMDS
algorithm in Section 4. In Section 5, we explain how this algorithm can be
applied for link level tracking. Finally, Section 6 concludes this chapter by
discussing the extensions of this formulation for model-based multiple target
tracking and sensor management strategies.

2 Problem formulation

We begin by introducing the nomenclature used in this chapter. We denote
vectors inRM by boldface lowercase letters and matrices inRM×N by boldface
uppercase letters. The identity matrix is denoted by I. We use (·)T to denote
the transpose operator. We denote the l2-norm of a vector by ‖ · ‖, i.e., ‖x‖ =√

xT x. A Gaussian random vector with mean µ and covariance matrix C is
denoted as N (µ,C).

The purpose of the sparsity constrained MDS algorithm is to simultane-
ously localize and track targets. We first formally state the sensor localization
problem. Consider a network of N = n+m nodes in d dimensional space. The
localization algorithms can be applied to arbitrary d (d < N) dimensional
spaces. Since applications for localization typically occur in physical space,
we will restrict our attention to d = 2, 3 dimensions. Let {xi}N

i=1,xi ∈ Rd

be the true location of the n sensors. The m sensor nodes {xi}n+m
i=n+1 are an-

chor nodes, i.e., whose locations are known. We introduce the anchor nodes
to keep the formulation as general as possible. Later, we set m = 0 for anchor
free localization. Denote X = [x1,x2, . . . ,xN ] as the d × N matrix of actual
sensor locations. Let D = (di,j)

N
i,j=1 be the matrix of the true inter-sensor

distances, where di,j denotes the distance between sensor i and sensor j. It
is common that some wireless sensor networks may have imperfect a priori
knowledge about the locations of certain sensor nodes. This information is
encoded through parameters ri and x̄i, where x̄i is the sensor location and ri

is the corresponding confidence weight. If x̄i is unavailable, then we set ri = 0.
The problem setting is explained through an illustration of a sensor network
in Fig. 3. We assign weights wi,j for measurements between sensors i and j
to indicate the accuracy of the distance estimate. In this sensor network, each
sensor communicates to its three nearest neighbors and hence, the weights
corresponding to links between non neighboring sensors are zero.

Sensor localization is the process of estimating the location of the n sensor
nodes {xi}n

i=1 given {xi}n+m
i=n+1, {ri}, {x̄i} and pairwise range measurements

{δt
i,j} taken over time t = 1, 2, . . . , K. The indices (i, j) run over a subset

of {1, 2, . . . , N} × {1, 2, . . . , N}. The range measurements can be obtained
by sensing modalities such as time-of-arrival (TOA), received signal strength
(RSS), or proximity.
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Fig. 3. Sensor localization setup: Anchor nodes (square), sensor nodes (circle), a
priori sensor locations (blocked circle). The communicating sensors are connected
using solid lines. The non neighboring sensor links have zero weight.

3 Classical MDS and variations

Multidimensional scaling (MDS) is a methodology for recovering underlying
low dimensional structure in high dimensional data. The measured data can
come from confusion matrices, group data, or any other (dis)similarity mea-
sures. MDS has found numerous applications in cognitive science, marketing,
ecology, information science, and manifold learning [11, 12]. In the context of
sensor localization, the goal in MDS is to discover the sensor locations (lower
dimensional embedding) from the inter-sensor distances obtained by a given
sensing method (high dimensional data).

Classical MDS [18] provides a closed-form solution to the sensor loca-
tions when the inter-sensor measurements are the inter-sensor Euclidean dis-
tances, i.e., in the absence of noise or nonlinear effects. We assume all pairwise
range measurements are available, and so we can compute the complete matrix
of distances:

di,j = ‖xi − xj‖ =
√

(xi − xj)T (xi − xj). (1)

Denote by D(2) the matrix of squared distances, i.e., D(2) = (d2
i,j)

N
i,j=1. Then

D(2) can be rewritten as

D(2) = ψ1T − 2XTX + 1ψT , (2)
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where 1 is an N -element vector of ones and ψ = [xT
1 x1,x

T
2 x2, . . . ,x

T
NxN ]T .

Let H = I − (1/N)11T . Multiplying on the left of D(2) by −1/2H and the
right by H, we obtain

A = −1

2
HD(2)H = HXTXH. (3)

Given A, one can discover the matrix X to a rotation and translation by
solving the following variational problem

min
Y

‖A− YT Y‖2
F , (4)

where ‖ · ‖F indicates the Frobenius norm and the search space is over all full
rank d × N matrices. The solution to X is then given by

X = diag(λ
1/2
1 , . . . , λ

1/2
d )VT

1 , (5)

where the singular value decomposition (SVD) of A is given by

A = [V1 V2] diag(λ1, . . . , λd, λd+1, . . . , λN ) [V1 V2]
T . (6)

The matrix V1 consists of the eigenvectors of the first d eigenvalues λ1, . . . , λd,
while the rest of the N − d eigenvectors are represented as V2. The term
diag(λ1, . . . , λN ) refers to a N ×N diagonal matrix with λi as its ith diagonal
element. Though the solution to the classical MDS is obtained in closed-form,
the algorithm has the following deficiencies:

1. MDS requires knowledge of all inter-sensor distances. Obtaining all pair-
wise range measurements is prohibitive due to the size of the sensor net-
work and the limited power of the sensors. In our problem formulation,
this implies that wi,j 6= 0, ∀i, j, which makes MDS fall under the category
of a centralized approach, i.e., all the information needs to be transmit-
ted to the fusion center which then performs the MDS algorithm. Due to
power and bandwidth limitations in the sensor network, this process is
infeasible.

2. The inter-sensor range measurements δi,j are corrupted by environment
and receiver noise which further degrades the quality of the measure-
ments, i.e., δi,j is only an estimate of the inter-sensor distance di,j .

3. MDS uses the squared distance matrix which tends to amplify the mea-
surement noise, resulting in poor performance.

As mentioned in Section 1, there has been significant effort directed towards
designing decentralized strategies for sensor localization. However, consistent
reconstruction of the sensor locations is attainable only in the presence of an-
chor nodes. If the current localization algorithms are implemented for anchor
free localization, the geometry of the sensor network assumes different align-
ments as localization is performed over various time instants. This makes it
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(a) t=1 (b) t=2

(c) t=3 (d) t=4

Fig. 4. Anchor free sensor localization by dwMDS. True sensor locations (circle),
estimated sensor locations (cross).

impossible to locate where the changes are occurring in the network. To il-
lustrate this phenomenon, we implement the dwMDS algorithm for sensor
localization in the absence of anchor nodes and in the absence of target. We
provide snapshots of the sensor location estimates (cross) along with their
actual locations (circle) in Fig. 4 as a function of time. Observe that the ge-
ometry of the network is maintained, while the true locations are subject to
rotation and translation. Now consider a target moving through this network.
In this scenario, the localization process is affected by two factors: the lack of
anchor nodes and some inaccurate inter-sensor measurements in the vicinity
of the target. With anchor free localization, the process of tracking a tar-
get becomes extremely difficult. To overcome this problem, we propose our
sparsity constrained dwMDS algorithm that aligns the current sensor location
estimates to those of previous time frames.

4 Sparsity penalized MDS

Consider using the MDS algorithm independently to obtain the sensor location
estimates at time t and at time t − 1. Alignment between these two sets of
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points can be performed in various ways. For example, in Procrustes analysis
[17] alignment is performed by finding the optimal affine transformation of one
set of nodes that yields the set closest to the second set of points in the least
squares sense. However, this procedure cannot guarantee that many sensor
locations estimates will remain unchanged from their previously estimated
values. The errors in the sensor location estimates between two time steps may
accumulate over time resulting in alignment errors. In contrast, we introduce
a sparseness penalty on the distances between the sensor location estimates

at time t (xi) and at time t − 1 (x
(t−1)
i ) directly to the sensor localization

algorithm. Construct a vector of Euclidean distances between the location
estimates at time t and at time t − 1

g(t) =
[

‖x1 − x
(t−1)
1 ‖, . . . , ‖xn − x(t−1)

n ‖
]T

. (7)

Define the l0-measure of a vector v = [v1, v2, . . . , vn] as the number of nonzero
elements given by

‖v‖0 ,
n
∑

i=1

I (vi 6= 0), (8)

where I(·) is the indicator function. Using an l0-constraint on the distance
vector g(t) of the form ‖g(t)‖0 ≤ q, we guarantee that no more than q of the
location estimates will vary from their previous time frame values. Minimizing
a cost function under the l0-constraint requires a combinatorial search which
is computationally infeasible. Define the lp-measure of a vector v as

‖v‖p ,
(

n
∑

i=1

|vi|p
)1/p

. (9)

For a quadratic cost function, an lp-constraint (0 < p ≤ 1) induces a sparse
solution. Among all lp sparsifying constraints, only p = 1 offers a convex
relaxation to the l0-constraint [15]. To promote sparsity, we next advocate
the use of the lp-constraint as a penalty term via the Lagrange multiplier in
the dwMDS algorithm to solve for the sensor location estimates. Hence the
term sparsity penalized MDS.

The cost function of the dwMDS algorithm [9] is motivated by the varia-
tional formulation of the classical MDS, which attempts to find sensor loca-
tion estimates that minimize the inter-sensor distance errors. Keeping in mind
that it is the geometry of the sensor network which is crucial for tracking, we
present a novel extension of the dwMDS algorithm through the addition of
the sparseness inducing lp-constraint. At any time t, we seek to minimize the
overall cost function C(t) given by

C(t) =
∑

1≤i≤n

∑

i≤j≤n+m

∑

1≤l≤M

w
(t),l
i,j

(

δ
(t),l
i,j − di,j(X)

)2

+
n
∑

i=1

ri‖x̄i − xi‖2

+λ‖g(t)‖p
p. (10)
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The Euclidean distance di,j(X) is defined in (1). For each time t, there are M

range measurements δ
(t),l
i,j for each sensor link i, j. As in [9], the weights w

(t),l
i,j

can be chosen to quantify the accuracy of the predicted distances. When no

measurement is made between sensor i and sensor j, w
(t),l
i,j = 0. Furthermore,

the weights are symmetric, i.e., w
(t),l
i,j = w

(t),l
j,i , and w

(t),l
i,i = 0. If available,

the a priori information of sensor locations is encoded through the penalty
terms {ri‖x̄i − xi‖2}. Finally, we introduce an lp-constraint (0 ≤ p ≤ 1) on
the distances between the sensor locations at time t and the estimated sensor
locations at time t − 1. The Lagrange multiplier of the sparseness penalty is
denoted as λ. We can tune the value of λ to yield the desired sparsity level in
g(t). Later, when we apply the algorithm for tracking, the sparseness will be
advantageous as only those sensors which are highly affected by the target will
vary from their initial positions, thereby allowing for a detection of the target
through the process of relative sensor localization. To solve this optimization
problem, we propose to use the successive refinement technique, where each
sensor node i updates its location estimate by minimizing the global cost
function C(t), after observing range measurements at node i and receiving
position estimates from its neighboring nodes.

4.1 Minimizing cost function by optimization transfer

Unlike classical MDS for which we could obtain a closed-form expression for
the estimates, there is no closed-form solution to minimizing C(t). There-
fore, we solve the local nonlinear least squares problem iteratively using a
quadratic majorization function similar to SMACOF (Scaling by MAjoriz-
ing a COmplicated Function [20]). This procedure can be viewed as a special
case of optimization transfer algorithms through surrogate objective functions
[27], e.g., the popular EM algorithm.

A majorizing function T (x,y) of C(x) is a function T : Rd × Rd → R,
which satisfies the following properties: T (x,y) ≥ C(x), ∀y and T (x,x) =
C(x). In other words, the majorizing function upper bounds the original cost
function. Using this property, we can formulate an iterative minimization
procedure as follows: denote the initial condition as x0. Starting from n = 1,
obtain xn by solving

xn = argmin
x

T (x,xn−1),

until a convergence criterion for C(x) is met. We can easily observe that this
iterative scheme always produces a non increasing sequence of cost functions,
i.e.,

C(xn+1) ≤ T (xn+1,xn) ≤ T (xn,xn) = C(xn).

The first and last relations follows from the properties of majorizing func-
tions while the middle inequality follows from the fact that xn+1 minimizes
T (x,xn). Now the trick is to choose a majorizing function that can be
minimized analytically, e.g., a linear or quadratic function. We propose a
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quadratic majorizing function T (t)(X,Y) for the global cost C(t)(X). Min-
imizing C(t)(X) through the majorization algorithm is the simple task of
minimizing the quadratic function T (t)(X,Y), i.e.,

∂T (t)(X,Y)

∂xi
= 0, i = 1, 2, . . . , n. (11)

If we denote the estimates of the sensor nodes at iteration k as Xk, the re-
cursion for the update of location estimates for node i from (11) is given
by

xk
i =

1

ai

(

ci + Xk−1bk−1
i

)

, (12)

where bk−1
i , ai, and ci are defined in (32)-(35) respectively. The details of the

derivation of the sparsity penalized MDS algorithm can be found in Section
8. For each sensor i, the jth element of the vector bk−1

i depends on the weight
wi,j . Since the weights of the nodes not in the neighborhood of the sensor are
zero, the corresponding elements in the vector bk−1

i are also zero; therefore the
update rule for node i in (12) will depend only on the location of its nearest
neighbors and not on the entire matrix Xk−1. This facilitates the distributed
implementation of the algorithm. The proposed algorithm is summarized in
Fig. 5. We illustrate the majorization procedure in Fig. 6. The original cost
function (solid) and the corresponding surrogate (dotted) is presented for ev-
ery iteration, along with the track of the estimates at iteration k (circle). Our

Inputs: {w̄
(t)
i,j}, {δ̄

(t)
i,j }, {ri}, {x̄i}, {x

(t−1)
i }, ǫ, X0 (initial condition for itera-

tions).
Set k = 0, compute cost function C(t),0 and ai from equations (10) and (34)
respectively
repeat
– k=k+1
– for i = 1 to n

· compute bk−1
i from equation (32)

· xk
i = 1

ai

(

ci + Xk−1bk−1
i

)

· compute C
(t),k
i

· update C(t),k to C(t),k − C
(t),k−1
i + C

(t),k
i

· communicate xk
i to neighbors of sensor i (nodes for which wi,j > 0)

· communicate C(t),k to next node ((i + 1) mod n)
– end for
until C(t),k − C(t),k−1 < ǫ

Fig. 5. Description of the sparsity constrained MDS algorithm.

proposed algorithm introduces a sparseness penalty on the distance between
estimate at time t− 1 and the current estimate. If the sparsity regularization
parameter λ is not chosen properly, many sensor positions estimates might
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Fig. 6. Majorization procedure: cost function (solid curve), surrogate function (dot-
ted curve), optimal location estimate at each iteration (circle). Only a single coor-
dinate is updated in this picture.

slowly vary with time, thereby creating cumulative error in the sensor local-
ization. An interesting way to counteract this problem would be to penalize
the distance between the current estimate and the initial estimate at t = 1.
Using such a constraint would mean that the sensors are always compared to
the fixed initial frame and errors do not accumulate over time. The implemen-
tation of this algorithm would be straightforward as it would simply involve
changing the index t − 1 to 1 in the original algorithm presented in Fig. 5.
However, using the estimate from time t− 1 has the property that it is easily
adapted to the case of mobile sensors.

4.2 Implementation

Weights: When RSS measurements are used to compute distance estimates,
the weights are set using the locally weighted regression methods (LOESS)
scheme [8] similar to one used in the dwMDS algorithm [9]. The weight as-
signment is given by

wi,j =

{

exp (−δ2
i,j/h2

i,j), if i and j are neighbors
0, otherwise,

where hi,j is the maximum distance measured by either sensor i or j. A naive
equal weight assignment to all measurements is also shown to work well with
our algorithm.

Initialization: For the successive refinement procedure, the sensor locations
estimates must be initialized for every time frame. Though several initializa-
tion algorithms have been proposed in the literature, we use a naive random
initialization. We would like to point out that the initialization is not a criti-
cal component to our algorithm, as we are solely interested in the alignment
of sensors in the network and not on the exact locations. Irrespective of the
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initial estimates, the sparseness penalty will ensure that the estimated sensor
locations are relatively close to those of previous time frames. Our algorithm
is found to be robust with respect to the initial estimates.

Neighborhood selection: Traditionally, the neighbors are chosen based on the
distance measure obtained from the RSS measurements, i.e., select all sensors
within a distance R as your neighbors. When the RSS measurements are noisy,
there is a significant bias in the neighborhood selection rule. This method has
a tendency to select sensors which are, on average, less than the actual dis-
tances ‖xi − xj‖. A simple two-stage adaptive neighborhood selection rule is
proposed in [9] to overcome the effect of this bias. We use this selection rule
in our algorithm.

Range measurement models: The inter-sensor measurements can be obtained
by RSS, TOA, or proximity. Any one of these approaches can be used in our
algorithm. Our sparsity constrained MDS algorithm is fairly robust to either
of these measurement models. For the simulations in this chapter, we use the
RSS to obtain a range measurement between two sensors. It can be shown
through the central limit theorem (CLT) that the RSS is log-normal in its
distribution [10], i.e., if Pi,j is the measured power by sensor i transmitted by
sensor j in milliWatts, then 10 log10(Pi,j) is Gaussian. Thus Pi,j in dBm is
typically modeled as

Pi,j = N (P̄i,j , σ
2
0) (13)

P̄i,j = P0 − 10np log

(

di,j

d0

)

,

where P̄i,j is the mean received power at distance di,j , σ0 is the standard
deviation of the received power in dBm, and P0 is received power in dBm at
a reference distance d0. np is referred to as the path-loss exponent that de-
pends on the multipath in the environment. Given the received power, we use
maximum likelihood estimation to compute the range, i.e., distance between
the sensor nodes i and j. The maximum likelihood estimator of di,j is given
by

δi,j = 10((P0−Pi,j)/10np). (14)

Simulation of tracker without a target

The simulation parameters are chosen as follows: we deploy a 10×10 uniform
grid of sensors in a network. We consider anchor free localization, i.e., m = 0
and we assume we make a single inter-sensor measurement (M = 1). We set
the sparseness parameter λ to produce a change in the location estimates for
only a small portion of the sensors. The value of λ will depend on the size of the
network and the noise in the measurements. If the RSS measurements are very
noisy, then range estimates become inaccurate which tend to vary the sensor
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(a) t=1 (b) t=2

(c) t=3 (d) t=4

Fig. 7. Anchor free sensor localization by sparsity penalized MDS. True sensor
locations (circle), sensor position estimates (cross).

location estimates. Hence λ is selected to ensure that sensor location estimates
remain aligned with the previous time frame estimates. In this simulation, we
set λ = 0.1 and the noise variance σ0 = 0.15. Each sensor communicates with
its 15 nearest neighbors. The weights of the RSS measurements were chosen
based on the LOESS scheme described earlier. The weights of links for non
communicating sensors were set to zero. We demonstrate the performance of
the sparsity constrained MDS algorithm on this sensor network as a function
of time in Fig. 7. The true locations are denoted as circles and the estimated
locations as crosses.

5 Tracking using sparse MDS

Here we present an algorithm for performing link level tracking using the
sparsity constrained MDS algorithm. By link level tracking, we refer to lo-
calization of targets to within a set of inter-sensor links. Link level tracking
is attractive in the sense that there is no need to assume a physical model
for a target. However, it is important to know the effect of the target on the
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inter-sensor measurements. Researchers have proposed various models for the
signal strength measurements ranging from the traditional linear Gaussian
model to the binary sensing model. These are approximate statistical models
and the distribution of the measurements in the presence of a target remains
an open question.

To model the statistics under the setting of vehicle tracking, we conducted
experiments using RF sensors hardware in the presence of a target. We con-
structed a fine grid of locations, where the target was placed and RSS mea-
surements were recorded between two static sensors for positions on the grid.
Upon gathering the data, we fit the following statistical model in the presence
of target. The RSS measurements at sensor link i, j are distributed as

P k
i,j |P̂i,j ∼ N (P̂i,j , σ

2
0), i.i.d, k = 1, 2, . . . , M

P̂i,j ∼ N (P̄i,j , σ
2
1), (15)

where P k
i,j is the kth inter-sensor measurement when the target is in the

neighborhood of the sensors. The M sensor link measurements are correlated
through the random variable P̂i,j . The values obtained from our actual ex-
periments were σ0 ≈ 0.1463dBm and σ1 ≈ 1.5dBm. The noise variance in the
measurements σ1 was roughly an order of 10 times larger than σ0. In other
words, RSS measurements tend to have a larger variance due to scattering
and attenuation of the signals in the presence of a target. A confidence mea-
sure for such a log-normal distribution of the RSS data is obtained using the
Kolmogorov-Smirnov (KS) test in [35] and the model is shown to work well
for sensor localization. We assume this statistical model for the RSS mea-
surements, when the target is within a specified distance R of the sensor link
i, j. The distance R depends on the reflectivity of the object. If the object is
highly reflective, then the variation in the RSS measurements is detected by
more links.

Given the measurement model, we formulate the optimal decision statistic
to detect a presence of a target in a particular sensor link using the likelihood
ratio test (LRT). For a fixed false alarm level α, the LRT for each link i, j is
given by

∣

∣

∣

∣

∣

1

M

M
∑

l=1

P
(t),l
i,j − P

′

i,j

∣

∣

∣

∣

∣

H1

≷
H0

γ, (16)

where γ = (σ0/
√

M)Q−1(α/2) and P
′

i,j is the mean received power in the

sensor link estimated using an initial set of range measurements. {P (t),l
i,j }M

l=1

is the set of inter-sensor measurements made by link i, j at time t. We assume
that the sensor network is in its steady state operation mode. We do not
consider the transient effects in the measured data when it is obtained in the
absence of any target. This most powerful test of level α yields the probability
of correct detection
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β = 2Q

(

Q−1(α/2)

√

σ2
0

σ2
0 + Mσ2

1

)

. (17)

A derivation of the decision rule and its performance is given in Section 9.
The performance of the optimal detector is clearly dependent on the number
of samples available for the inter-sensor measurements. As the number of
measurements M becomes very large, β in (17) tends to 1. However, if only
few samples are available, β may not approach 1 and misdetect type errors
may become non negligible. In such a case, instead of using LRT, we can
use a test on the variation of the sensor location estimates at time t from
their estimates at a previous time. In other words, we can perform a simple
hypothesis test for each link of the form,

‖dt
i,j − dT

i,j‖
H1

≷
H0

γi,j , (18)

where T = 1 or T = t − 1 depending on whether the sensors are static or
mobile.

Simulation of tracker in the presence of target

We present our results by simulating moving targets in a uniform 10×10 grid of
sensors. We set m = 0, i.e., no anchor nodes. We assume no a priori knowledge
of the sensor coordinates, i.e., ri = 0. Each sensor communicates only to its 15
nearest neighbors and the weights for those links were chosen by the LOESS
strategy. The rest of the weights were set to zero. We obtain M = 50 data
measurements for each communicating sensor link in the network. We set the
sparseness parameter λ to produce a change in the location estimates for only
a small portion of the sensors. We allow any number of targets to appear
in a sensor network with probability 0.4. Though our algorithm is robust to
randomly moving targets in the network, we consider a state-space model for
the purposes of this simulation to produce a visually pleasing target trajectory.
We apply the sparsity constrained MDS algorithm as multiple targets move
through the sensor network.

The results are shown in Fig. 8. The true sensor locations are shown as
circles and the estimated sensor locations are indicated using crosses. The
sensors corresponding to those sensor links that declared a target present
using the distance based target localization algorithm (DBT) in (18) are shown
in filled circles. The target trajectories are shown as inverted triangles. We
observe that as the targets move, the sparsity constrained MDS algorithm
reconstructs sensor location estimates with the majority of them unchanged
from the previous time step. Thus, in conjunction with sparse dwMDS, the
DBT is able to localize the targets to within a small set of sensor links.
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(a) t=1 (b) t=2

(c) t=3 (d) t=4

(e) t=5 (f) t=6

Fig. 8. Anchor free sensor localization by sparsity constrained MDS in the presence
of targets. True sensor locations (circle), estimated sensor locations (cross), sensors
localizing the target (blocked circle), target trajectory (inverted triangle).

5.1 Numerical Study

We analyze the performance of the localization algorithms using ROC curves.
We consider the following setup: we deploy a 10 × 10 uniform grid of sensors
in a network (see Fig. 11). We consider anchor free localization, i.e., m = 0
and make a single inter-sensor measurement (M = 1) at each time frame.
We assume no a priori knowledge of the sensor coordinates, i.e., ri = 0. Each
sensor communicates only to its 8 nearest neighbors and the weights for those
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links were chosen by the LOESS strategy [9]. The rest of the weights were set
to zero. Furthermore, we set noise variances σ0 and σ1 defined in (13) and
(15), respectively as σ0 = 1 and σ1 = 5σ0 = 5. Sensor links within a radius
R = 1.5 indicate the presence of a target, i.e., follow the H1 hypothesis. We
set the reference distance d0 defined below (13) to be d0 = 1 and the path
loss exponent η = 2. We set the sparseness parameters λ = 2.5 and p = 1 to
produce a change in the location estimates for only a small portion (< 10%)
of the sensors.

We begin by considering the case of random appearance of targets in the
sensor network, i.e., targets appear at different locations every time instant.
For the DBT, we set τ = 0 in (18), i.e., we compare our distance estimates
to a fixed initial frame. For every time instant, the DBT and the LRT are
performed on each active sensor link and the process is repeated for 5000
target locations. The resulting ROC curve is presented in Fig. 9. The ROC
for the LRT using simulations is indicated using circles and the corresponding
theoretical curve obtained from (17) is shown as a solid line. We observe that
the simulation and the theoretical curves match for the LRT. The ROC for
the DBT is shown using a dashed line. The DBT algorithm yields higher
probability of correct detection than the LRT for most false alarm levels. For
example, at false alarm level α = 0.3, β for the DBT is approximately 0.89
which is 5% more than that of the LRT, which yields β ≈ 0.84.

The intuition for this result is as follows: in the presence of a target, the
RSS measurements of the sensor links are spatially-correlated. The presence of
a target in a given link implies that with high probability the target is present
in neighboring sensor links. However, the RSS model in (15) specifies only the
distribution of the measurements independently on each link. The LRT makes
complete use of the RSS measurements but is limited in its performance as
the optimal decision statistic for each sensor link i, j is independent of other
sensor link measurements. On the other hand, the DBT finds the active sensor
links only based on the estimated distances through sparsity penalized MDS.
However, since the inter-sensor distances are computed at each sensor using
information from its nearest neighbors, this method makes an implicit use
of the spatial correlation of the measurements in its decision statistic, which
results in an improvement in performance.

Next, we consider the case of a moving target, where we assume a standard
state-space target motion model (for the purpose of a visually pleasing trajec-
tory). We repeated the same algorithms for 5000 such trajectories. The LRT
based algorithm yields the same performance curve as the test is independent
of whether the target is moving or not. The resulting ROC curve for the DBT
is presented as a dotted line in Fig. 9. Since we continue to base our decision
rule on the fixed initial frame (τ = 0), we observe that the performance of the
DBT is also similar to the case of random target appearances.

In the case of a moving target, the RSS measurements are also temporally-
correlated. Given a set of sensors indicating a presence of a target at a par-
ticular time, there is a high probability that the target is in the vicinity of
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Fig. 9. ROC curve for the LRT and the DBT link level tracking algorithm. LRT
(solid line), DBT for a random target with τ = 0 (dashed), DBT for a moving target
with τ = 0 (dotted), and DBT for a moving target with τ = t − 1 (dashed dotted).

these sensors at the next time frame. To examine the effect of the temporal
correlation, we can compare the current estimated distances to the estimated
distances from the previous time-frame rather than the initial frame, i.e., set
τ = t−1 instead of τ = 0. The temporal correlation of the RSS measurements
is captured in the DBT through the sparsity constraint used for aligning the
sensors locations estimates. In other words, with high probability the sensor
location estimates that are perturbed in the previous time-frame will also
be perturbed in the current time-frame, thereby increasing the probability of
detection.

The results for τ = t−1 are presented in Fig. 9 using a dashed dotted line.
We observe that the performance gains for DBT with τ = t− 1 are higher as
compared to DBT with τ = 0 as such a decision rule incorporates both spatial
and temporal correlations of the target dynamics. For example, for α = 0.1,
β for the LRT is 0.75. The result of spatial smoothing alone yields β ≈ 0.79.
By performing both spatial and temporal smoothing, we can obtain β ≈ 0.86
through our algorithm, which corresponds to a 15% increase in performance.

We make the following observations for the two proposed tests:

• The DBT for link level tracking outperforms the LRT as it can account
for the spatial and the temporal correlations in the target motion.

• The LRT outperforms DBT for low false alarm levels (α < 0.01) for the
following reasons: first, the DBT we considered is suboptimal as we did not
optimize the performance over the choice of sparsity (p, λ). Furthermore,
the LRT uses an optimal decision statistic and the exact measurements
to perform the test. Currently, we are in pursuit of finding the optimal
sparsity that can yield further improvement in performance.
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• The issue of space-time sampling is key to the performance of the DBT.
Any scenario that exhibits high spatial correlations (e.g., highly reflective
targets or more sensors/unit area) can yield further improvement in per-
formance of the DBT. For example, Fig. 10 illustrates the performance
of the DBT for τ = 0 when the number of sensors is increased to 300.
By comparing the perturbation to the fixed initial frame, we only per-
form spatial smoothing of the sensor location estimates. We observe that
the denser sampling of sensors have resulted in better spatial smoothing,
which eliminates more false alarms resulting in an improved performance.
For example, at a false alarm level α = 0.01, the DBT with 100 sensors
yields β ≈ 0.48, while the DBT with 300 sensors yields β ≈ 0.66. If the
sampling time for the sensors and the computation time of the DBT al-
gorithm is much faster than the target motion, the DBT can yield better
performance by taking advantage of more temporal correlations.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

α

β

 

 

DBT, τ=0, 100 sensors
DBT, τ=0, 300 sensors
LRT

Fig. 10. ROC curve for the LRT and the DBT link level tracking algorithm with
τ = 0 for different spatial sampling. LRT (solid line), DBT for a moving target
using 10×10 grid of sensors (dotted), and DBT using 300 randomly located sensors
(dashed dotted).

• The disadvantage of LRT in this setting is that the test is performed
independently on each sensor link. Further improvements in the probability
of detection can be achieved when the LRT is derived for the full spatio-
temporal model.

• In the performance analysis, we assumed steady state operation, i.e., per-
fect knowledge of the inter-sensor distances are obtained a priori in the
absence of target. If such knowledge is unavailable and distances need to
be estimated, the LRT tracker must be modified to a generalized likeli-
hood ratio test (GLRT). The DBT can estimate the initial set of distances
more accurately from the RSS measurements by taking advantage of spa-
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tial correlations and hence can yield a higher probability of detection than
the GLRT.

Spatial localization from link level localization

Our objective is to approximately locate the target relative to the location
of the sensors. There are a number of ways in which this link level estimate
can be translated into estimated target coordinates in space. For example,
one could use as an estimate the midpoint of the convex hull generated by
the positions of those sensors that detect the target according to the LRT
or the DBT. An example of the midpoint tracking algorithm is shown in
Fig. 11. Another estimate can be found by the intersection of convex regions

Fig. 11. A simple tracking algorithm based on link level tracking. True sensor loca-
tions (circle), true trajectory of the target (diamond), estimated trajectory (plus).

corresponding to the sensor links that show the presence of the target through
the optimal decision rule. These estimates do not require a physical model of
the target trajectory. However, given a target motion model, standard filtering
techniques such as the Kalman filter or particle filter (PF) can be used to
obtain refined target position estimates from the link level data.

Future work

Given the set of tagged sensors, i.e., sensor links with high output in the LRT,
we have reduced the problem to that of binary sensing, where the knowledge
of the presence of the target is stored as the decisions made on each of the
links. For accurate estimation of targets positions, we can now use the popular
particle filtering techniques proposed on binary sensing models to perform
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multi-target tracking given a small set of anchor nodes. Moreover, most sensor
networks are remotely operated and limited in power. We can pose a power
constraint by limiting the number of inter-sensor measurements to a small
s of the n(n − 1) (s ≪ n(n − 1)) total sensor links at each time step. The
problem of choosing s from n(n− 1) links is a combinatorially hard problem.
So we propose a convex relaxation to the problem, which chooses the set of
active links by minimizing the predicated mean square error of the state of the
target. This approach has been shown to achieve near optimal performance
in our earlier work [38].

6 Conclusions

In this chapter, we presented the sparsity penalized MDS algorithm for simul-
taneous localization and tracking. We are interested in tracking a target rela-
tive to the sensor coordinates. The subset selection capability of our proposed
sparsity constraint allows the algorithm to find only those which have changed
their location estimate due to the presence of a target. We use these sensors
to perform link level tracking. We formulate a model for the inter-sensor RSS
measurements in the presence and absence of a target by conducting actual
experiments in free space. Using this model, we illustrated the performance
of our algorithm for link level target tracking. Currently, we are in pursuit of
optimal sensor scheduling strategies for physical level tracking.
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8 Appendix: Derivation of sparsity penalized dwMDS

To simplify our derivation, we divide the global cost function into multiple
local cost functions as follows:

C(t) =

n
∑

i=1

C
(t)
i + c(t), (19)

where c(t) is a constant independent of the sensor locations X and the local
cost function at each sensor node i is

C
(t)
i =

n
∑

j=1,j 6=i

w̄
(t)
i,j (δ̄

(t)
i,j − di,j(X))2 + 2

n+m
∑

j=n+1

w̄
(t)
i,j (δ̄

(t)
i,j − di,j(X))2

+ri‖x̄i − xi‖2 + λ‖xi − x
(t−1)
i ‖p, (20)



24 R. Rangarajan, R. Raich, and A. O. Hero III

where w̄
(t)
i,j =

∑M
l=1 w

(t),l
i,j and δ̄

(t)
i,j =

∑M
l=1 w

(t),l
i,j δ

(t),l
i,j /w̄

(t)
i,j . The cost function

C
(t)
i depends only the measurements made by sensor node i and the positions

of the neighboring nodes, i.e., nodes for which w
(t),l
i,j > 0; C

(t)
i is local to node

i [9]. The local cost function in (20) can be rewritten as

C
(t)
i (X) = c

(t)
1 + c

(t)
2 (X) − c

(t)
3 (X) + c

(t)
4 (X), (21)

where

c
(t)
1 =

n
∑

j=1,j 6=i

w̄
(t)
i,j (δ̄

(t)
i,j )2 + 2

n+m
∑

j=n+1

w̄
(t)
i,j (δ̄

(t)
i,j )2

c
(t)
2 (X) =

n
∑

j=1,j 6=i

w̄
(t)
i,j d2

i,j(X) + 2

n+m
∑

j=n+1

w̄
(t)
i,j d2

i,j(X) + ri‖x̄i − xi‖2

c
(t)
3 (X) = 2

n
∑

j=1,j 6=i

w̄
(t)
i,j δ̄

(t)
i,j di,j(X) + 4

n+m
∑

j=n+1

w̄
(t)
i,j δ̄

(t)
i,j di,j(X)

c
(t)
4 (X) = λ‖xi − x

(t−1)
i ‖p. (22)

The term c
(t)
1 is independent of xi. The term c

(t)
2 is quadratic in xi. Terms

c
(t)
3 and c

(t)
4 are neither affine nor quadratic functions of xi. A majorizing

function for the term c
(t)
3 is motivated by the following Cauchy-Schwarz in-

equality,

di,j(X) = ‖xi − xj‖ ≥ (xi − xj)
T (yi − yj)

di,j(Y)
, ∀Y, (23)

where Y = [y1, . . . ,yn]. For c
(t)
4 , we present a quadratic majorizing function,

which can be obtained from the following relation

αp/2 ≤ α
p/2
0 +

p

2
(α − α0)(α0)

( p

2
−1), ∀α, α0 > 0. (24)

The above inequality follows from a linear approximation to the concave func-
tion f(α) = αp/2 via Taylor series expansion. Choosing α = ‖xi −xt−1

i ‖2 and
α0 = ‖yi − xt−1

i ‖2 yields

‖xi − xt−1
i ‖p ≤ ‖yi − xt−1

i ‖p +
p

2

‖xi − xt−1
i ‖2 − ‖yi − xt−1

i ‖2

‖yi − xt−1
i ‖2−p

, (25)

the majorizing function for the c
(t)
4 term. Substituting the inequalities from

(23) and (25) in (21), we obtain the majorizing function for the local cost
function as
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T
(t)
i (X,Y) = c

(t)
1 +

n
∑

j=1,j 6=i

w̄
(t)
i,j d2

i,j(X) + 2
n+m
∑

j=n+1

w̄
(t)
i,j d2

i,j(X) + ri‖x̄i − xi‖2

+2

n
∑
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i,j δ̄

(t)
i,j

(xi − xj)
T (yi − yj)

di,j(Y)

+4

n+m
∑

j=n+1

w̄
(t)
i,j δ̄

(t)
i,j

(xi − xj)
T (yi − yj)

di,j(Y)

+ λ‖yi − x
(t−1)
i ‖p +

λp

2

‖xi − x
(t−1)
i ‖2 − ‖yi − x

(t−1)
i ‖2

‖yi − x
(t−1)
i ‖2−p

.

(26)

Since T
(t)
i (X,Y) is a majorizing function to C

(t)
i (X), it is easy to verify that

the function T (t)(X,Y) =
∑n

i=1 T
(t)
i (X,Y) is a majorizing function to the

global cost function C(t)(X). The partial derivative of T (t)(X,Y) with respect
to xi is straightforward as all the expressions in (26) are linear or quadratic
in xi. The partial derivative of T (t)(X,Y) with respect to xi is given by

∂T (t)(X,Y)

∂xi
=

∂T
(t)
i (X,Y)

∂xi
+
∑

k 6=i

∂T
(t)
k (X,Y)

∂xi
, (27)

where

∂T
(t)
i (X,Y)

∂xi
= 2

n
∑

j=1,j 6=i
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w̄
(t)
i,j (xi − xj) − w̄
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i,j δ̄

(t)
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)

+4
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
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
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i )
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(28)

and
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)
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Substituting (28) and (29) in (27) yields,

∂T (t)(X,Y)

∂xi
= 4





n+m
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. (30)
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Setting the derivatives to zero yields the following recursive update rule

xk
i =

1

ai

(

ci +
[

x
(k−1)
1 , . . . ,x

(k−1)
N

]

b
(k−1)
i

)

, (31)

where xk
i denotes the location of node i at iteration k. Furthermore, bk

i =
[bk

1 , bk
2 , . . . , b

k
N ] and

bk
i = 4





n+m
∑

j=1,j 6=i

w̄
(t)
i,j δ̄

(t)
i,j

‖xk
i − xk

j ‖



 , (32)

bk
j = 4

(

w̄
(t)
i,j −

w̄
(t)
i,j δ̄

(t)
i,j

‖xk
i − xk

j ‖

)

, j 6= i, (33)

ai = 4

n+m
∑

j=1,j 6=i

w̄
(t)
i,j + 2ri +

λp

‖xk
i − xt−1

i ‖2−p
, (34)

ci = 2rix̄i +
λpx

(t−1)
i

‖xk−1
i − x

(t−1)
i ‖

. (35)

The dwMDS algorithm in [9] obtains a recursive update for location xi by set-

ting the derivatives of the surrogate to the ith local cost function (T
(t)
i (X,Y))

to zero. This is equivalent to minimizing the global cost function only un-
der anchor free localization (m = 0) and no a priori information (ri = 0).
However, in our algorithm, we use the local cost functions only to derive a
majorizing function for the global cost function and not in the minimization.
Moreover, the algorithm is still decentralized in its implementation though we
minimize the global cost function with respect to the sensor locations X.

9 Appendix: Optimal likelihood ratio test

To test the presence of a target on a sensor link i, j, we pose the following
hypotheses testing problem

H0 : P1, . . . , PM ∼ N (P̄ , σ2
0)

H1 : P1, . . . , PM |P̂ ∼ N (P̂ , σ2
0), i.i.d, P̂ ∼ N (P̄ , σ2

1),

where P1, . . . , PM are the measurements made by a particular link i, j. We
leave out the indices i, j in the measurements for brevity. P̄ is the mean
received power in the sensor link i, j. We assume it can be obtained during
the system setup in the absence of targets. Denote the measurements by the
M -element vector p = [P1, P2, . . . , PM ]T . Then the hypotheses can be written
as
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H0 : p ∼ N (P̄1, σ2
0I)

H1 : p ∼ N (P̄1, σ2
111T + σ2

0I).

To construct the LRT, we first compute the log likelihood ratio as

Λ = log

(

f(p|H1)

f(p|H0)

)

=
1

2
(p − P̄1)T (C−1

0 − C−1
1 )(p − P̄1) +

1

2
log

( |C0|
|C1|

)

, (36)

where C0 = σ2
0I, C1 = σ2

111T + σ2
0I and |C| denotes the determinant of a

matrix C. The eigendecompositions of the covariance matrices C0 and C1 can
be written as

C0 = V0D0V
T
0 ,

C1 = V1D1V
T
1 ,

where Di is a diagonal matrix composed of the eigenvalues λi
1, . . . , λ

i
M and Vi

is the matrix of corresponding eigenvectors. The eigenvalues of the covariance
matrix C1 are given by λ1

1 = σ2
1M + σ2

0 and λ1
i = σ2

0 , i = 2, . . . , M . The
corresponding eigenvectors are v1 = 1/

√
M,v2, . . . ,vM , where {vi}M

i=1 are a
set of orthogonal unit norm vectors. The eigenvalues of C0 are all σ2

0 and it
is easy to verify that v1, . . . ,vM are eigenvectors to C0, i.e., V0 = V1. Thus

C−1
0 − C−1

1 = V0diag

(

Mσ2
1

Mσ2
1 + σ2

0

, 0, . . . , 0

)

VT
0 =

σ2
1M

σ2
1M + σ2

0

11T

M
. (37)

Substituting (37) in (36) and collecting constant terms at the right hand side
yields the optimal LRT as

|p̄ − P̄ |
H1

≷
H0

γ, (38)

where p̄ =
∑M

i=1 Pi/M is the minimal sufficient statistics of this test. Under
H0, p̄ is distributed as N (P̄ , σ2

0/M) and under H1, p̄ is N (P̄ , σ2
0/M +σ2

1). We
find γ to satisfy a false alarm of level α, i.e.,

P
(

|p̄ − P̄ | > γ|H0

)

= 2Q

(√
Mγ

σ0

)

= α, (39)

which implies γ = (σ0/
√

M)Q−1(α/2). The probability of correct decision, β
is then given by

β = P
(

|p̄ − P̄ | > γ|H1

)

= 2Q

(

γ
√

σ2
0/M + σ2

1

)

= 2Q

(

Q−1(α/2)

√

σ2
0

σ2
0 + Mσ2

1

)

. (40)
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