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ABSTRACT

We consider the problem of imaging a medium using
an array of sensors. More specifically, we are inter-
ested in optimally designing a sequence of experiments
for probing a medium in order to form an image of the
scatterers present in the medium. In this paper, we
consider the case where the received signal is corrupted
by noise. We derive an expression for the mean square
error for estimating the scatter coefficients and find the
optimal sequence scheme that minimizes this error. Us-
ing the expression for the minimum mean square error,
we show that we can do better than any beamform-
ing approach to imaging. In the process, we also find
the optimal energy allocation between the sequence of
experiments. Closed-form expressions for the optimal
transmission scheme and the minimum mean square
error are provided.

1. INTRODUCTION

The problem of imaging a medium using an array of
transducers has been widely studied in a variety of re-
search areas such as mine detection, ultrasonic medi-
cal imaging, foliage penetrating radar, non-destructive
testing [1], and active audio. A recent approach uses
the concept of time reversal, which works by exploit-
ing the reciprocity of a physical channel, e.g., acoustic,
optical, or radio-frequency. One implication of reci-
procity is that a receiver can reflect back a time re-
versed signal, thereby focusing the signal at the trans-
mitter source [2]. Furthermore, with suitable prefilter-
ing and aperture, the signal energy can also be focused
on an arbitrary spatial location.

In this paper, we set up the problem of optimally de-
signing a sequence of measurements to image a medium
of multiple scatterers using an array of transducers un-
der a near field approximation of the scatterers in the
medium. The probing method uses an array of trans-
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ducers, e.g., antennas, that both illuminate and mea-
sure the backscattered signal field. The method con-
sists of the following four signal processing steps at the
transducer array: (i) transmission of time varying sig-
nals into the medium; (ii) recording of the backscat-
tered field from the medium; (iii) retransmission into
the medium of a spatially filtered version of the recorded
backscatter signals; (iv) measurement and spatial filter-
ing of the backscattered signals.

We address the problem of optimally setting up a
set of experiments [3, 4] that takes advantage of past
measurements in order to improve the performance of
scattering coefficients estimation. After obtaining the
past measurements, we can offer a method of sound-
ing the channel that alters the statistics of the next
measurement to yield an overall reduction in MSE.

In this paper, we systematically study the effect of
receiver noise on the imaging performance. We evalu-
ate the imaging performance through the mean square
error of the maximum likelihood estimates of the scat-
ter coefficients. We obtain a closed-form expression for
the MSE for the optimal transmission scheme for the
single scatterer case. We provide a suboptimal solution,
which outperforms the conventional beamforming solu-
tion. We also find the optimal energy allocation scheme
between the two transmissions involved in steps (i) and
(iii). The case of multiple scatterers has the same for-
mulation but that, unlike the single scatterer case stud-
ied here, a closed-form minimum MSE solution for the
optimal sequence of transmissions appears intractable.

In Section 2, we present the concept of imaging a
medium using an iterative process of array measure-
ments. In Section 3, we formulate the MSE criterion
for maximum likelihood estimation of the scatterer co-
efficients. We also offer an optimal transmission scheme
that minimizes the MSE taking advantage of past mea-
surements. In Section 4, we provide simulation results
to verify the optimal solution and present a suboptimal
scheme that outperforms the conventional beamformer.
We conclude this paper in Section 5.
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Fig. 1. Measurement setup

2. MODEL AND MATHEMATICAL

DESCRIPTION

The block diagram in Fig. 1 provides a high level de-
scription of the system. The signal flow in the block
diagram is read clockwise from the upper left corner of
the diagram. The three blocks surrounded by the box
on the upper left of the diagram incorporate voxel selec-
tion (beam scheduling), spatio-temporal waveform se-
lection and beamsteering followed by transmission into
the medium, denoted as a dispersive spatio-temporal
channel function Hch. The block on the right of the di-
agram processes the received backscattered signal and
reinserts it into the medium Hch. The third block on
the lower left of the diagram can be used to extract
a signal which will enable us to calibrate the sensor
locations when they are unknown.

We have N transducers located at positions {ra
k}N

k=1
,

that transmit narrowband signals with center frequency
ω rad/sec. We assume there is an imaging area (or vol-
ume) divided into V voxels at positions {rv

k}V
k=1

which
we want to image. The channel, denoted hi, between
a candidate voxel i and the N transducers is assumed
to take the form,

hi =

[(

exp(−jω/c‖ra
k − rv

i ‖)
‖ra

k − rv
i ‖

)

k=1...N

]T

. (1)

This channel model is a narrowband near-field approx-
imation, which ignores the effect of multiple scatter-
ing and has been widely adopted in other scattering
studies, e.g., [5]. Each voxel can be characterized by
its scatter coefficient, e.g., radar cross-section (RCS),
{dv}V

v=1, which indicates the proportion of the received
field that is re-radiated. Thus the channel between the
transmitted field and the measured backscattered field
at the transducer array is,

Hch = HDHT

H = [h1,h2, · · · ,hV ]

D = diag(d); d = [d1, . . . , dV ]T .

Note H is N×V , D is V ×V , and Hch is N×N matrix.
The probing mechanism for imaging of the scatter

cross section follows a four step process, generating the
following sequence of noise contaminated signals.
Step 1: The transducers first send x1, in the direction
of the beam steering vector v, i.e., x1 = v.
Step 2: Next, the transducers receive the backscat-
tered signal plus noise n1, after it has traveled through
the channel Hch:

y1 = Hchx1 + n1 = HDHT v + n1. (2)

Step 3: The transducers transmit x2 = s(y1) which in
general, is a function of y1 allowing the system to take
advantage of the knowledge of the received signal.
Step 4: Finally, the transducers receive the second
backscattered signal y2.

y2 = Hchx2 + n2 = HDHT s(y1) + n2. (3)

The noises n1,n2 are i.i.d complex normal random vec-
tors with zero mean and a covariance matrix σ2I.

3. ERROR ANALYSIS AND MSE

MINIMIZATION

Equations (2) and (3) can be rewritten in the form,

y1 = L1d + n1 (4)

y2 = L2d + n2, (5)

where L1 = Hdiag(HT v), L2 = Hdiag (HT s(y1)).
Since the measurements y1 and y2 are linear in d and
Gaussian, the maximum likelihood estimate of d is

d̂ = (LH
1 L1 + LH

2 L2)
−1(LH

1 y1 + LH
2 y2).

The mean square error [6] would then be,

MSE = E
[

‖d̂ − d‖2

]

= Ey1
[MSE|y1]

MSE|y1 = Ey2|y1

[

‖d̂ − d‖2

]

=
{

(LH
1 L1 + LH

2 L2)
−1

(LH
1 n1n

H
1 L1 + LH

2 L2σ
2)(LH

1 L1 + LH
2 L2)

−1
}

,

where L1 and L2 are matrices, and finding the optimal
s(y1) that minimizes the MSE is not straightforward.
To get an idea of the solution minimizing the MSE, let
us consider the single scatterer case.

For the single scatterer case, equations (4) and (5)
can be simplified to

y1 = l1d1 + n1

y2 = l2d1 + n2,

where l1 = h1h
T
1 v and l2 = h1h

T
1 s(y1).



In the case of a monostatic system, we observe only
y2. Since y2 is a non-Gaussian process, the problem
becomes complicated. In a bi-static system, where both
the signals y1 and y2 are observed, the MSE|y1 can be
written as

MSE|y1 = σ2

{

1

(lH1 l1 + lH2 l2)
− lH1 l1(1 − |α|2)

(lH1 l1 + lH2 l2)2

}

= σ2(
1

f
− c

f2
), (6)

where f = (lH1 l1 + lH2 l2), c = lH1 l1(1 − |α|2) and α =
hH

1
y1

‖h1‖σ
− ‖h1‖d1h

T
1
v

σ
is complex Gaussian with zero mean

and unit variance.
Minimizing the MSE with respect to s(y1) is equiv-

alent to minimizing with respect to f . f is a function
of v and s. Since the squared norm of v and s is limited
to E1 and E2 respectively, the support of f is restricted
to [fmin, fmax] obtained by minimizing and maximizing
with respect to s respectively:

fmin = E
′

1‖h1‖4 at s =
h∗

1⊥

‖h1⊥‖
√

E2

fmax = E
′‖h1‖4 at s =

h∗
1

‖h1‖
√

E2,

where E
′

1 = | h1

‖h1‖

T
v|2, E

′

= E
′

1 + E2, and h1⊥ is a

vector in the null space of h1.

MSE

fmin fmax fc 2c

(a) MSE(f) for c > 0

MSE

ffmin fmax

(b) MSE(f) for c ≤ 0.

Fig. 2. Typical plots of the MSE as a function of f .

Note that from Fig. 2, the MSE|y1(f) is either,
monotonically increasing from f = 0 to 2c and decreas-
ing from f = 2c to ∞ for c > 0, or strictly decreasing
for c ≤ 0. Since no local minimum exists, the minimum
MSE will always occur at the end points of the support
of f . Therefore, to minimize the MSE, we simply need
to compare the MSE values at fmin and fmax. The
optimal s is

s(y1) = arg max
s

(f) I (MSE(fmax) ≤ MSE(fmin))

+ arg min
s

(f) I (MSE(fmin) < MSE(fmax))

Since s =
h∗

1

‖h1‖

√
E2 maximizes f , s =

h∗

1⊥

‖h1⊥‖

√
E2 mini-

mizes f , and MSE(fmax) ≤ MSE(fmin) is equivalent to

∣

∣

hH
1

y1

‖h1‖σ
− ‖h1‖d1h

T
1
v

σ

∣

∣

2 ≥ ρ, we conclude that the optimal
s is

s(y1) =
h∗

1

‖h1‖
√

E2I

(

∣

∣

∣

∣

hH
1 y1

‖h1‖σ
− ‖h1‖d1h

T
1 v

σ

∣

∣

∣

∣

2

≥ ρ

)

+

h∗
1⊥

‖h1⊥‖
√

E2I

(

∣

∣

∣

∣

hH
1 y1

‖h1‖σ
− ‖h1‖d1h

T
1 v

σ

∣

∣

∣

∣

2

< ρ

)

,

(7)

where ρ =
E

′

1

2E
′

1
+E2

and I(·) is the indicator function.

This solution implies that when the actual realization
of the noise along h1 in the first transmission is small
enough there is no advantage in using the measurement
from the second step. Therefore, we transmit s ∝ h∗

1⊥,
which makes the overall estimator only a function of
the first measurement. When the actual realization of
the noise along h1 in the first transmission is not small
enough, there is some merit in incorporating the infor-
mation from the second measurement and therefore we
select s ∝ h∗

1.

In the noiseless case,
h∗

1

‖h1‖

√
E2 ∝ y∗

1 which means

that the optimal signal to send at the second transmis-
sion is the noiseless time reversed version of the signal
received at the first stage.

Substituting for s(y1) from (7) into (6), we obtain

MSE|y1 =
σ2

E′‖h1‖4

{

I
(

|α|2 ≥ ρ
)

(

E2

E′
+

E
′

1|α|2
E′

)

+ I
(

|α|2 < ρ
)

(

E
′ |α|2
E

′

1

)}

where α ∼ CN (0, 1). Taking the expectation over α,
the MSE simplifies to

MSE =
σ2

E′‖h1‖4

{

e−ρ 1 − 2ρ

1 − ρ
+

ρ(1 + ρ)

1 − ρ
e−ρ

+
1 − ρ

ρ
(1 − e−ρ(1 + ρ))

}

. (8)

We know that E
′

= | h1

‖h1‖

T
v|2 + E2. MSE is min-

imized when E
′

is maximized which happens when

v =
h∗

1

‖h1‖

√
E1. The value of ρ that minimizes the MSE

is given by ρopt ≈ 0.2831. This implies that the amount
of energy allocated at the first stage is E1 ≈ 0.395E
and the remaining energy, E2 ≈ 0.605E is used at the
second stage. The minimum MSE will be given by,

MSE≈ 1

SNR
(0.9283) (9)

where SNR = σ2

‖h1‖4E
. Note that when ρ = 1/2, i.e.,

we use all of the energy in the first transmission, the



MSE is 1/SNR. This suggests that substantial MSE
improvement can be achieved by making the second
transmission depend on the measured signal y1.

4. SIMULATION RESULTS

We see that it is indeed possible to get a lower MSE
using this model. It is also important to note that the
optimum value of s(y1) in (7) depends on d1 which is
unknown. In other words, it may not be possible to
always achieve this minimum MSE. However, if we are
given some knowledge about the scatter coefficient then
it is possible to incorporate this knowledge in making
the optimal decision for s. Another useful approach to
solving the problem is as follows. Now assume that the
optimal solution to s is of the form,

s(y1) =
h∗

1

‖h1‖
√

E2I

(

| h
H
1 y1

‖h1‖σ
− θ|2 ≥ ρ

)

+
h∗

1⊥

‖h1⊥‖
√

E2I

(

| h
H
1 y1

‖h1‖σ
− θ|2 < ρ

)

, (10)

where θ is an arbitrary chosen number or can be chosen
subject to some given knowledge of the scatter coeffi-
cient.

Figure 3(a) shows the simulation results of SNR ×
MSE for various values of θ with SNR of 18dB, ρ =
0.2831, and 100000 runs. At the optimal θ, which is
‖h1‖2d1

√
E1/σ, the MSE×SNR ≈ 0.9283. We see that

there is a reasonable range of values for θ for which
MSE × SNR < 1. Another interesting observation is
that if θ is far away from its optimal value, the perfor-
mance of the estimator is as good as that of the optimal
scheme for a single transmission, i.e., MSE×SNR = 1.
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Fig. 3. SNR × MSE and Re(bias) vs. θ.

For the same setting as above, we plot the numerical
MSE and the bias as a function of ρ and the exact
MSE(ρ) as given in (8) in Fig. 4(a) and 4(b). It is in fact
easy to show that the bias of optimal estimator is zero.
We observe that the simulation results for the MSE and
the bias agree with their analytical equivalents.
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Fig. 4. SNR × MSE and bias vs. ρ

5. CONCLUSIONS AND FUTURE WORK

We assumed a generalized framework for imaging a
medium using an array of sensors. We obtained the
mean square error for the maximum likelihood estima-
tor of the scattering coefficients. We found the op-
timal transmission scheme minimizing the MSE and
proved that this method can have a distinctive advan-
tage over beamforming methods in a single scatterer
environment. Using the MSE, we also found the opti-
mal energy allocation to the two steps involved. Future
work would extend our results to a multiple scatterer
model. In addition, we intend to generalize this ap-
proach from a two step method to an iterative sequence
of experiments.
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