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ABSTRACT

UNICAST INTERNET TOMOGRAPHY

by
Meng-Fu Shih

Chair: Alfred O. Hero III

Inference of network internal characteristics has become an increasingly important
issue for communication network operation. Since it is impractical to directly monitor
the network internal nodes, people use the end-to-end information collected by probe
packets to estimate the statistics of interest. This new area of networking research
is called network tomography. When specialized to the Internet it is called Internet
tomography.

Our work focuses on unicast probing methods, which are supported by much of
today’s Internet. We first deal with the estimation of internal link delay distributions
from end-to-end delay measurements. Unlike the discrete delay models used in previ-
ous work, we focus on continuous distributions of non-zero queueing delays. We send
individual unicast packets throughout the network and develop an estimator for link
delay cumulant generating functions (CGF) based on an over-determined system of

equations. We propose a bias corrected estimator for the CGF which eliminates the

Xiv



nonlinearity effect of the log function. When the network is modelled by a logical
tree we use packet pair probes to collect end-to-end delay information. We propose a
novel hybrid continuous/discrete finite mixture model for the link delay distributions.
A penalized maximum-likelihood expectation-maximization (PML-EM) algorithm is
developed to select the model and estimate its parameters. Since the complexity
of the algorithm grows exponentially with the size of the network, we propose an
accelerated algorithm to obtain a linear reduction in run-time.

The second problem we address is network topology discovery using end-to-end
measurements. Topology estimation can be formulated as a hierarchical clustering
problem of the leaf nodes based on pair-wise correlations as similarity metrics. Unlike
previous work which first assumes the network topology being a binary tree and then
tries to generalize to a non-binary tree, we provide a framework which directly deals
with general logical tree topologies. Based on our proposed finite mixture model
for the set of similarity measurements we develop a penalized hierarchical topology
likelihood that leads to a natural hierarchical clustering algorithm for the leaf nodes.

The performance of our algorithms are evaluated by matlab and ns-2 simulations.

XV



CHAPTER 1

Introduction

1.1 Background

Internet monitoring and diagnosis provides essential information for network op-
eration, such as link delays, packet loss rates, and traffic intensities. Administrators
with those statistics at hand are easily able to make operational decisions such as
bandwidth allocations and upgrade plans. It is also possible to develop more sophis-
ticated routing protocols or admission control schemes based on such information.
End users and service providers can also use monitoring information to verify the
quality-of-service (QoS) delivered across their administered domain. With the in-
creasing threat of malicious activities in the Internet, it is essential to be able to
promptly characterize network conditions for early detection of anomalies.

However, due to the large-scale, distributed, and heterogeneous structure of to-
day’s Internet, problems arise when people try to obtain the internal network in-
formation. Router-based direct monitoring software is usually disabled to avoid
computation and communication overhead. Internal network information is usually

considered confidential and is not shared freely with outsiders. Even when these



direct monitoring and confidentiality problems do not exist, it requires extravgant
bandwidth and coordination efforts to relay data between every collection site and
the processing centers. These factors have hindered efforts at real time optimization
of network performance, e.g., finding the best traffic route, or determining a culprit
for performance degradation such as a bottleneck link.

An emerging research field called network tomography was proposed by Vardi [1] to
circumvent such difficulties. He investigated a type of network tomography problem
in which end-to-end statistics are estimated from the observations inside the network.
He used passive measurements of aggregated traffic rates at internal network devices
to infer data flow intensities between directed source-destination pairs. The name
tomography came from its strong resemblance of the problem formulation in positron
emission tomography (PET) of medical imaging [2]. His work was followed by Tebaldi
and West [3] who tried to solve the problem from a Bayesian perspective. Cao et
al. developed Gaussian models for the link count data with power-law relationship
between the means and the variances, and dealt with the non-stationary nature of
the data by fitting their basic model locally using a moving data window [4].

To collect information from existing traffic flows in the network is called passive
probing. It has the advantage of not generating much overhead and not significantly
purturbing traffic low. However, with passive probing there is no control over the
quality of the collected statistics. For example, the traffic rate of the monitored data
stream may be too low to capture the rapidly changing dynamics. An alternative is
to send probe packets through the network and measure parameters such as packet
loss rates or end-to-end delays; which is called active probing. The statistics collected
by the probes are viewed as samples of true network statistics. To maintain minimal
impact on the network performance one must carefully control the data rate of the

probes.



Active probing schemes were used by Céceres et al. [5] for a second type of
network tomography, in a sense the dual of Vardi’s application, where end-to-end
observations are used to estimate internal statistics or parameters. They focused on
sending probes over multicast networks and formed sample-average estimates for link
packet loss probabilities. In a multicast network a packet can bear multiple desti-
nation addresses. The network automatically replicates the packet at the branching
points of each path and every destination receives one of the copies. The corre-
lation among end-to-end measurements can be used to draw inferences about the
characteristics of the intersecting portion of the paths, without need for coopera-
tion by intermediate network devices. Ziotopoulos et al. presented an estimator for
link loss rates via chaining in multicast trees [6]. An efficient least-square estimator
for link loss probabilities using end-to-end multicast measurements was proposed by
Michailidis et al. [7, §].

Although the performance of the multicast-based algorithms was impressive, the
multicast protocol is not supported by most part of the Internet. Furthermore,
however, the major component of the Internet traffic is unicast. The performance
measured by multicast probes may differ considerably from that encountered by
unicast traffic due to different processing by the routers [9]. Coates and Nowak
proposed a unicast packet pair approach to mimic the behavior of multicast probes
with two destinations [9]. A maximum likelihood estimator (MLE) for link loss rates
was also provided.

Active unicast probing methods were also employed in bottleneck bandwidth es-
timation [10, 11, 12, 13, 14]. Pathchar [12] is a tool designed by Jacobson to infer
the characteristics of individual links along an Internet path by measuring the round
trip time of packets sent from a single host. Downey [13] improved its accuracy and

applied adaptive data collection to reduce the required number of measurements. Lai



and Baker [14] presented a packet-tailgating technique to measure link bandwidths
using packet delays.

Estimation of packet link delay statistics from end-to-end measurements is an-
other research subject of recent interest. The causes of delays along a packet’s path
through the network can be separated as the sum of two types of delays: constant
link transmission delays and time-varying link processing delays. Link transmission
delays are due to the propagation delays through the physical medium, e.g., a wire,
or optical fiber. Link processing delays are due to a combination of router queue-
ing, buffering and servicing delays that depend on factors such as: the amount of
cross-traffic at the router, the number of retransmits required over the link, and the
integrity of router equipment and associated software. While transmission delays
usually remain constant over a probing interval, processing delays are highly vari-
able and commonly modelled as random variables. Thus it is generally impossible to
recover the actual internal link delays that packets encounter along their end-to-end
paths. However, the determination of the statistical distribution of the internal link
delays from multiple end-to-end delay measurements can be formulated as a statisti-
cal inverse problem whose solution yields estimates of the internal delay distributions
(15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. These estimates can be used by an
autonomous system (AS), e.g., an Internet service provider (ISP), to evaluate its
average quality of service or to assess link performance of other, perhaps compet-
ing, AS’s. When acquired over large portions of the network, link delay estimates
can also be used for detecting network anomalies such as imminent link failures or
coordinated denial of service (DoS) attacks.

Lo Presti et al. were the first to estimate link delay distributions from end-to-end
measurements [16]. They uniformly discretized the delays and derived an algorithm

based on empirical histogram estimation. Their method uses multicast probes, which



requires cooperation of the network to run a multicast session such as Real-time
Transport Protocol (RTP) during the probing interval. To overcome this restriction,
Coates and Nowak [17] developed an internal delay histogram estimator based on
an alternative unicast probing scheme in which edge sites exchange a succession of
closely spaced packet pairs. Their estimator is based on a statistical inverse problem
formulation and used an iterative maximum likelihood via expectation maximiza-
tion (ML-EM) approach. In related work these authors also developed a sequential
Monte-Carlo method for tracking changes in non-stationary networks [20]. The prin-
cipal restriction of the approaches in [16, 17, 20] is the requirement of discrete-valued
link delays. Overly coarse discretization, or binning, of the link delays leads to ex-
cessive model approximation error and causes bias in derived estimates such as delay
means and variances. At the opposite extreme, excessively fine discretization leads
to high run-time complexity of these algorithms. Furthermore, the determination
of the appropriate number and size of the bins requires tight bounds on link delay
characteristics, such as maximum and minimum processing delays, which are usually
unknown.

Several alternatives to the fixed and uniform binning scheme have been studied.
Duffield et al. considered a variable bin size model, where smaller bins are used to
describe probability mass concentrations for small delays [19]. Tseng, Coates, and
Nowak proposed a nonparametric algorithm where the number of bins for internal
link delays is adapted to the number of measurements [23]. They used a wavelet-
based penalized maximum likelihood estimator to smooth the estimates.

Network tomography can also be applied to the estimation of the topology. The
topology of the Internet is constantly changing due to devices going online and
offline, and the corresponding routing table updates. Tools such as traceroute are

usually used to obtain information about traffic paths in the network, and these



can be integrated to construct the network topology. However, such tools rely on
the cooperation of internal routers, and have become less attractive as the traffic
load of the Internet grows rapidly. Network tomography on topology discovery was
initially investigated in [27, 28]. They specifically targeted the identification of the
network’s logical tree structures. A logical network structure is an abstraction from
the physical topology which shows only the nodes that differentiate multiple paths.
In other words, a node with a single ingress and single egress link is absorbed into
the link connecting its neighbors. By sending multicast probes from the root node
of the tree to a pair of the leaf nodes, one can estimate the successful transmission
rate on the shared portion of the probe paths based on end-to-end loss. Those
rate estimates were used by the deterministic binary tree classification algorithm
(DBT) [29, 30, 31] to construct a binary logical tree in a bottom-up mannar. This
agglomerative algorithm selects the pair of leaf nodes which suffer the most severe
loss on the shared path, and connects them to a new parent node. The parent node
is then treated as a leaf node which represents the original pair of leaf nodes. The
loss rates on the two newly added links are also computed. This process is repeated
until only one leaf node is left, which becomes the root of the binary tree. To our
knowledge all the agglomerative estimation algorithms for binary trees use similar
methodology to the DBT [32]. The extension to a general tree is basically done
by pruning the links with loss rates less than some heuristically selected threshold.
The multicast algorithm of Lo Presti was also extended to use other metrics such as
packet delays [30, 31].

The fundamental idea of topology inference falls in the framework of metric-
induced network topologies (MINT) [33]. Every path is associated with a metric
function, such as the product of successful transmission rates or the sum of delays

on every link in the path. The identifiability of the topology using DBT is then



guaranteed by the monotonicity of this function. A metric is monotone if for any
path its value is strictly less (such as successful transmission rates) or larger (such as
delays) than that of a subpath. Such monotonicity depends on the probing scheme
which estimates the shared path metric from the edge measurements. For example,
when packet loss is measured from unicast packet pair probes, packet loss rate on
the shared path from root to a pair of leaf nodes can be estimated. The loss rate has
non-decreasing mononicity because it never decreases as the number of links in the
path increases.

Topology estimation in unicast networks was investigated by Castro et al. [32,
34, 35, 36, 37, 38, 39]. They invented a method of probing, called sandwich probes,
in which each probe sends a large packet, destined to one of the two selected leaf
nodes, between two small packets, destined to another. Under a light load assump-
tion, queueing delay for the second small packet behind the large one disappears once
they depart from each other. The corresponding path metric is the delay difference
between the two small packets. They also proposed a binary tree construction algo-
rithm similar to DBT, called the agglomerative tree algorithm (ALT), which modifies
DBT to account for the variability of the measurements through the spread of its
probability density function (pdf) [32]. The special case of Gaussian distributed
measurements was previously called the likelihood-based binary tree algorithm (LBT)
[34]. To compensate for the greedy behavior of the ALT, causing it to reach a local
optimum in many cases, as well as to extend the result to general trees without using
a threshold, they used a Monte-Carlo Markov Chain (MCMC) method to generate
a sequence of tree candidates by birth (node insertion) and death (node deletion)
transitions [32, 39]. The tree candidate which gives the highest likelihood is adopted

as the estimate of the topology.



1.2 Contributions and Dissertation Outline

Our work focuses on the use of unicast probes for delay tomography and topology
discovery. In Chapter 2 we propose a nonparametric estimation method for esti-
mating internal link delay distributions using cumulant generating functions (CGF)
[18]. The sum of link transmission and processing delays over a route can be mea-
sured by end-to-end delays of unicast probes sent over the route. After collecting a
sufficient number of these probes over more different paths than internal links, an
overdetermined system of equations is constructed for the delay CGF’s. Based on
a least-squares approximation, we propose a bias-corrected estimator for each link
delay CGF. We evaluate the performance of the algorithm using the ns-2 [40] net-
work simulator. Several measures of performance are investigated, including overall
mean-square goodness of fit of the estimated CGF to the empirical CGF, bottleneck
localization, and bottleneck detection probability. Our contribution in this chapter

is summarized as follows:

e We develop an estimator for link delay CGFs based on an overdetermined
system of equations formulated by end-to-end measurements, without assuming

the link delays to be discretely distributed as in previous work.

e We propose a method to correct the bias introduced by the non-linearity of
the log function in the link delay CGF estimator and the result achieves closer

match to true link delay CGF's than the original estimator.
e We illustrate an application of link delay CGF's in bottleneck link detection.

In Chapter 3 we move our attention to a more practical situation where the
unicast probes are sent over fewer paths than internal links. The network is modelled

as a logical tree with its root node being the probe source and its leaf nodes being



the receivers. In this case one can only form an underdetermined system of equations
for the link delay CGF’s. We take an alternative approach in which we first define
an approriate link delay model and then estimate the model parameters based on
the incomplete end-to-end observations.

The problem of empirically characterizing Internet link delay distributions has
been investigated by several groups (see, for example, [41, 42, 43, 44]). A common
observation is that when the link is lightly loaded, such as in the early morning, the
link delay scatterplots appear stationary. Furthermore, while much of the scatter
appears spread out over a continuum of delay values, a non-negligable proportion of
the delays appears to concentrate at one or more discrete values, see for example [44,
Figure 4]. This implies the existence of point masses in the time-averaged link delay
distribution. The positions of these point masses vary according to factors such as:
length of packet; incoming and outgoing queue sizes of routers on the link; router
configuration; deployment of firewalls; and the physical distance between routers
[44].

We propose to capture these empirically observed features by fitting hybrid con-
tinuous/discrete finite mixture models to the link delay distributions. While our
algorithms are easily generalizable to multiple discrete point masses, for simplicity
we focus on the case where the discrete component is a single point mass. Unlike
purely continuous models the hybrid continuous/discrete model is identifiable and
is justified under the lightly loaded scenario. In this scenario there is a non-zero
probability that a packet will encounter an empty queue in which case the packet
delay is non-random, being due to fixed propagation and processing delays. While
this is unlikely in a congested network, the model is valid for a number of common
monitoring situations such as service and performance verification and detection of

onset congestion. Moreover, we would like to point out that the delay point mass is



implicit in canonical delay trees, used in discrete delay tomography, for which there
is a non-zero probability that a packet traverses each link without any delay (see,
e.g., [16]).

Herein we propose a method for estimation of internal delay distributions from
unicast end-to-end measurements which is based on packet pair unicast probes and
additive mixture models for the internal link delays. As the end-to-end delay mea-
surement is a sum of the (assumed independent) internal link delays over the probe
path, the densities of the measurements are convolutive mixtures of these additive
mixture models. This makes our estimation problem more challenging than the stan-
dard mixture model estimation problem which has received much attention in both
the statistical and engineering literature [45, 46, 47, 48]. Additional issues which
we address are: 1) the additive mixture model orders are unknown in practice; and
2) the internal link delay distributions are composed of a combination of continu-
ous and a discrete components. As the measurements are end-to-end delays, our
estimation problem becomes the inference of a set of mixture models based on the
realizations of their convoluted density functions, which are also mixture models by
themselves. We handle this convolutive mixture complication by adopting an it-
erative ML-EM formulation of the estimation problem using an enlarged complete
data space. We handle the problem of unknown model order by adapting the un-
supervised minimum-message-length (MML) approach used in Figueiredo and Jain
[48]. Specifically, we add an information theoretic order selection penalty to the
log-likelihood to which a penalized ML-EM (PML-EM) algorithm is applied. We
handle the presence of both discrete and continuous link delay components by the
following simple additive mixture model: the delay density is a (unknown) convex
combination of a point mass positioned at the transmission delay and a (unknown)

number of mixture components with (unknown) means and variances. We adopted
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Gaussian continuous components to simplify the implementation but heavy-tailed
densities can also be easily accommodated in our framework. We illustrate the per-
formance of the ML-EM and PML-EM algorithms on simulated data using matlab
and ns-2 simulators. One of the key observations is that while performance is good,
the run-time is excessively long, due to slow convergence of the PML-EM algorithm.

Our contribution in this chapter is summarized as follows:

e We propose a hybrid finite mixture model for link delay distrbutions with non-
zero continuous mixture density and a point mass modelling empty link queue
events. The proposed model avoids the drawbacks of discrete delay models

used by previous work in network delay tomography.

e For the case when the mixture model order is given for each link in the network,
we develop an ML-EM algorithm to estimate the parameters in link delay

distributions based on end-to-end delay measurements.

e Without any prior information on mixture model orders, we develop an unsu-
pervised PML-EM algorithm using MML-type model order penalty to estimate

link delay distributions based on end-to-end delay measurements.

e Throughout model and ns simulations we demonstrate that our algorithms can
produce accurate estimates for link delay distributions and link delay ranges

without forcing quantization on delay values as in previous work.

In Chapter 4 we address the slow convergence problem in the algorithm based
on the hybrid mixture models presented in Chapter 3. The mixture model order,
i.e., the number of components in a mixture model, for end-to-end delays increases
exponentially as the network size grows. Although it is impossible to diminish the

complexity below the exponential rate because the number of links and probe paths
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grows exponentially with tree depth, a feasible acceleration to reduce the exponen-
tial rate constant can be obtained. By representing the topology as the union of
probe trees, the binary tree composed of the paths from the root to a pair of leaf
nodes, the accelerated algorithm starts from the probe trees with the lowest branch
splitting nodes and estimates the branch link delay distributions using the PML-EM
algorithm. The path in a probe tree shared by both packets in a packet-pair probe
is called the shared path of the probe tree. The key approximation is to consider the
chain of links in the shared path as a single link and assign its delay distribution to a
component number for a single link delay mixture model. This significantly reduces
the end-to-end mixture model orders by sacrificing the number of allowed compo-
nents on the shared paths. Our analysis shows that the exponential rate constant of
the computational complexity approximately becomes independent of the link model
orders for the shared paths. The approximation is justified under the circumstance
that there are insufficient samples collected for resolving the distribution details,
possibly due to the limited probing rates and/or the short time length of the probing
session. These situations are common in practice because the probing rates need to
be restricted to avoid congestion and the probing session length is upper-bounded
by the network stationarity time, which is usually short due to the high variabil-
ity of today’s Internet environment. The accelerated algorithm is tested using the
ns-2 data generated for Chapter 3. The algorithm acceleration saves approximately
40% of the run-time without significant degradation in performance from that of the

original algorithm. Our contribution in this chapter is summarized as follows:

e We propose an accelerated estimation algorithm for network link delay distri-
butions based on end-to-end delay measurements. Our algorithm divides and

conquers the problem in a bottom-up fashion which allows parallel processing
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of the probe trees with branch-splitting nodes having the same depth.

e Through ns simulation we demonstrate the accelerated algorithm produces
accurate estimates for link delay distributions and saves approximately 40%

run-time compared to the original algorithm in Chapter 3.

In Chapter 5 we focus on the topology discovery problem using end-to-end mea-
surements. The purpose of this work is to develop a likelihood-based deterministic
algorithm which directly estimates a general logical tree topology. Estimating the
topology is equivalent to hierarchical clustering of the leaf nodes using end-to-end
data. Every internal node specifies a unique cluster of descendant leaf nodes which
share the internal node as their common ancester. Each leaf node by itself is also
considered as a trivial cluster. The clusters specified by sibling nodes, i.e., nodes
having the same parent, define a partition for the set of leaf nodes specified by their
parent node. Given a partition we call a pair of leaf nodes intra-cluster if they are
in the same cluster, otherwise they are called inter-cluster. The similarities between
every pair of leaf nodes can be described by the path metric function from the root
node to their nearest ancestor in an MINT. In other words, the leaf nodes which have
a deeper nearest common ancestor are always more similar than the shallower ones.
For the binary tree depicted in Figure 1.1 the nearest common ancestors of the leaf
node pairs (4,5) and (4,6) are node 2 and 1, respectively. As node 2 is deeper than
node 1 in the tree, we conclude that node 4 is more similar to node 5 than node 6.

We describe three probing schemes to estimate the similarities: delay difference
measured by the sandwich probes, delay variance measured by the packet pair [49],
and loss rate measured by the packet pair. It is assumed that the estimates for
every leaf node pair can be described by a pdf whose mean equals the true similarity

value. Unlike the likelihood method proposed in previous work [30, 34], we add a

13



4 5 6 7
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Figure 1.1: The four-leaf binary tree network.
prior on the nearest common ancester of the leaf node pairs to the model of the
pair-wise similarities. This prior specifies for every internal node a probability mass
proportional to the number of leaf node pairs who share the internal node as their
nearest ancestor. It results in a finite mixture model in which every component
corresponds to a distinct internal node. We propose an unsupervised PML-EM
algorithm to estimate the finite mixture model with overfitting penalties derived from
the MML criterion. Given the mixture model for the set of descendant leaf nodes
of an internal node, the component with the smallest mean is exactly supported by
the inter-cluster pairs of the leaf nodes for the partition derived from the children of
the internal node. We call this component as inter-cluster component. It motivates
a penalized partition likelihood of leaf nodes which is the product of individual
cluster likelihoods times the inter-cluster likelihood. Each cluster likelihood itself
obeys a finite mixture model and the inter-cluster likelihood is specified by the inter-
cluster component. Then a novel hierarchical topology likelihood can be defined as the
product of the conditional likelihoods for all the partitions of the leaf nodes resulting

from the tree topology.
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Our topology estimation algorithm adopts a greedy strategy to maximize the hi-
erarchical topology likelihood with respect to the leaf node partitions at each level:
it first finds the PML partition of the leaf nodes, then it finds the PML subpartition
for every cluster, and so on, until no further subpartition is found. The estimation
of each individual partition is accomplished by applying graph-theoretic clustering
algorithms to a weighted complete graph derived from the set of leaf nodes to be par-
titioned. The vertices in the graph are the leaf nodes, and the edge weight connecting
node ¢ to j is 1 minus the probability that the similarity measurements for ¢ and j
are contributed by the inter-cluster component. Clustering problems based on graph
connectivity has been widely investigated by the statistical and engineering commu-
nities. Many algorithms have been available in the literature [50, 51, 52, 53, 54].
Although basically any one of them would work in our algorithm, we choose to use
a simple method called the highly connected subgraphs (HCS) algorithm proposed in
[52]. We also develop pre-cluster and post-merge algorithms to improve the topology
estimate. The performance of our topology discovery algorithm is compared with
the DBT and LBT algorithms using matlab model simulations. Our algorithm is
also applied to an ns simulated network and compared for sandwich and packet pair

probing schemes. Our contribution in this chapter is summarized as follows:

e We suggest a finite mixture model for end-to-end similarity measurements of
the leaf nodes in a logical tree network, and develop a PML-EM estimation

algorithm using MML-type model order penalty.

e We propose a hierarchical topology likelihood for logical tree networks based

on finite mixture models of end-to-end measurements.

e We develop a general unsupervised hierarchical estimation algorithm over log-

ical tree network topologies using end-to-end measurements.
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e We introduce packet pair probes in unicast network topology discovery and
suggest two types of similarity metric measured by packet pairs. We compare
the performance of the suggested packet pair probing schemes with that using
sandwich probes through ns simulation under various network load conditions.
Conclusions on the best performance scenario for each probing scheme is pro-

vided.

e Through model simulation we demonstrate that our algorithm outperforms the
DBT and LBT algorithms because our algorithm adopts a less greedy approach

to find the optimal topology.

e For Monte-Carlo experiments on network topology discovery, we define the
median topology and the distribution of topology estimates using graph edit

distance.

Chapter 6 concludes the thesis and discusses possible future directions. Some of

the elements in this dissertation can be found in [18, 22, 24, 49].
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CHAPTER 2

Unicast-Based Inference of Network Link Delay
Distributions Using Cumulant Generating

Functions

2.1 Introduction

Internal link delay statistics provide important information for network operation
and security. The delay distributions can be reconstructed from their cumulant
generating functions (CGF) since the CGF preserves the complete set of moments.
Generally it is not possible to recover link delay CGF’s from end-to-end accumulated
delays. However, when there are more probe paths than internal links, we can
form an over-determined system of equations for the CGF under the assumptions
of a stationary environment and spatial and temporal independence. Although an
estimate for the link delay CGF can be obtained by solving a linear inverse problem
when it is full rank, the estimate is statistically biased due to the non-linearity of the
log function in the CGF. We propose a bias correction using first and second order

terms derived from the Taylor’s expansion. We use ns-2 simulations to demonstrate
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the improvement achieved. An application to bottleneck link identification using the
Chernoff bound is also illustrated.

Our contribution in this chapter is summarized as follows: (1) We develop an es-
timator for link delay CGF's based on an overdetermined system of equations formu-
lated by end-to-end measurements, without assuming the link delays to be discretely
distributed as in previous work; (2) We propose a method to correct the bias intro-
duced by the non-linearity of the log function in the link delay CGF estimator and
the result achieves closer match to true link delay CGF's than the original estimator;
(3) We illustrate an application of link delay CGFs in bottleneck link detection.

The chapter is organized as follows. Section 2.2 introduces the network link and
end-to-end delay model. Section 2.3 describes the proposed bias corrected estimator
for the link delay CGF. Section 2.4 shows the computer experiment results. The bot-
tleneck link identification using link delay CGF is illustrated in Section 2.5. Section

2.6 provides the conclusion and future work.

2.2 Network Delay Model

Let a communication network consist of m internal links. Identical probe packets
are sent through n paths across the network. Suppose we know the routing of each
of the probes which specifies the n x m probe routing matrix A. A has elements
a;; equal to 1 when probe path ¢ intersects link j, and equal to 0 otherwise. Let
M; denote the set of link indices which compose the ith probe path, i = 1,...,n.
Then Y; = ZjeMi X;; is the measured end-to-end delay of a probe transmitted
along the ith path, where Xj; is the delay encountered by probe ¢ across link j
and 7 = 1,...,n. Define the end-to-end probe delay cumulant generating function

Ky, (t) = log E[e"?] and the link delay CGF of the jth link Kx, () = log E[e"4],
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Jj € M;, with CGF parameter ¢, t € (—o00,00). We make the following spatial

independence and stationarity assumptions, respectively:
Al) The link delays X;; are mutually independent, j € M;, i =1,...,n.

A2) If paths of probe i and probe k£ both contain a common link j, then X;; and
Xy; are independently and identically distributed (i.i.d.) and have the same
CGF denoted by Ky;.

Under these assumptions the CGF of Y; can be expressed as

Ky,(t) = logFE [e"]
= loghk [et(zjeMiXU)]

= log{ 11 E [etXif]}

JEM;

= Z log &/ [etX”]

JEM,
= > ay-Kx (1)
j=1

where A(;) denotes the ith row of the routing matrix A and Kx(t) = [Kx,(t),...,
Kx,, (1)]F (¥ denotes transpose). Thus we can express the vector of end-to-end CGF’s

Ky (t) = [Ky, (1), ..., Ky, (t)]" by the linear relation
Ky(t) = A-Kx(b). (2.2)

When A is known, n > m and A is full rank, the relation (2.2) is invertible and thus

Kx (t) can be determined from Ky (¢) by the familiar formula Kx(t) =
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(ATA) *ATKy(t). Let B=(ATA) *AT then we have

Ko (1) = 3 b K1) 2.3

where bj; is the element of B in the jth row and ith column. A full rank matrix A
can be ensured by making n > m, and selecting distinct probe paths which cover
the network, i.e., every link is contained in some path. When A is not full rank,
only linear combinations of link CGF’s lying outside of the null space of A can be

determined from (2.2).

2.3 Estimation of CGF

Let N; be the number of probes collected for a given path ¢,  =1,...,n. Define

N,

. 1 &
My, (t) = N > e, (2.4)

b k=1

where Y, is the measured end-to-end delay of the kth received probe along path «.
We obtain estimates of the vector K (t) from My (t) = [My, (1), ..., My, (t)]” by
the method of least-squares (LS). Note that as My, (t) is an unbiased estimate of
the moment generating function My, (t) = e/¥("), a plausible estimator for K, (¢) in

(2.3) would be the method-of-moments estimate (MOM):

K, = by - log My,(t) (2.5)
=1

Unfortunately, this estimator is biased due to the non-linearity of the log function.
In order to obtain a bias corrected estimator for K, (t), we apply a technique similar

to that of Gibbens [55]. In [55] linearization was used to derive a bias corrected esti-
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mator for effective bandwidth, which is of similar mathematical form to the cumulant

generating function. Observe that as log(1 + u) = u — “72 + H.O.T'; hence we get

Ky () = log H(Wt))"”}

(2.6)

%
4
|
&
g

[T, (My, ()"
v (B[My, (1) )”ji

bias is to use (2.6) with an estimate of wj:

where w; =1 — . This suggests that a reasonable way to correct the

Ew?, (2.7)

Elw,] = 1 o (2.8)
2 H?:1 E y Y; ” ?:1 3 y Y; v
Ew}) = 1- J@4®)]+H EUM@» ] (2.9)
M, (t) M3 (1)

M x;(t) is an estimate of the moment generating function of link delay at link j,

which can be obtained from

it () = T (¥ 0)) ™" (2.10)



. ~ bji
In order to obtain the empirical average E |:<My (t)) ! ], we propose the following

two methods:

1) Sliding Window Method: We define a sliding window with window size W

and step size S < W. Define the number of window shifts as N,, = [ 2] +1.
Then
bl Yo 1 CREW bii
El(:0)" =Y+ | wie | 2.11
(m0)" | -5 (7 X 2.1)
I=1 k=(1-1)S+1

2) Monte Carlo Bootstrap Method: The Monte Carlo bootstrap method [56]
can be used to obtain statistical estimates from a set of i.i.d. observations,

which is described as follows:

(a) Fit the nonparametric maximum likelihood estimate (MLE) of the distri-

bution of Y},

- 1
Fi:massﬁatYik, k=1,...,N;
2
(b) Draw bootstrap samples from E}, Y, Y, - Yy, “ F; and compute
1 &
M (t) = — e'Yin

(c) Independently repeat step (b) L times to obtain bootstrap replicates

M{‘/ (t)1, M{‘/ (t)g,--- ,M{}i (t)1, and calculate the empirical average

i {(Mn(t))b”] _ %Z RO (2.12)

=1
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. ~ 2bj;
The E |:<My (t)) ’ ] can be obtained similarly using either method. The Monte-
Carlo bootstrap method is generally more computationally expensive than the sliding
window method. Therefore the latter is a preferred method when CPU resource is

limited or real-time implementation is required.

2.4 Experimental Results

We use the ns-2 [40] network simulator program to perform a TCP/UDP sim-
ulation of the network in Figure 2.1. Probes are sent through 5 different paths in

order to estimate delay CGF for 4 links. The corresponding routing matrix A is

We set up a similar test environment to that reported in Lo Presti and Duffield
[16]. All the links to be estimated have bandwidth 4Mb/sec with latency 50ms.
Each link is modeled as a Drop-Tail queue (FIFO queue with finite buffer). The
queue buffer sizes are 50 packets. We generate probes as 40 byte UDP packets. The
probe transmissions are generated independently at each source node according to
a Poisson process with mean interarrival time being 16ms and rate 20Kb/sec. The
background traffic consists of both exponential on-off UDP traffic and FTP traffic.

N probes are collected for each path for a total of 5 x N probes. We estimate

each probe queueing delay by substracting the minimum probe delay over the N
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Figure 2.1: Network topology and probe routing paths for the ns experiment. Y;
denotes the end-to-end delay for path ¢, fort =1,...,5.

Table 2.1: MSE of KXj (bias corrected) and KS{, (no bias correction).
Link 1 2 3 4
MSE of K, | 0.0086 | 0.0247 | 0.0483 | 0.0096
MSE of K}Q 0.0060 | 0.0326 | 0.0644 | 0.0325

trials. This provides a biased estimate of queueing delay across the probe path since
the minimum probe delay is a biased estimator of transmission delay plus latency.
However, the bias decreases as 1/N. Here we use the moving window method to
estimate the empirical averages in (2.8) and (2.9). We set the window size W to be
2/3 of N, and the window shift step size S to be 10 probe delay samples.

We compare the proposed bias corrected estimator to the biased estimator (2.5)
for Kx(t). We evaluate the CGF’s over the range ¢t = —200 to ¢t = 200. Comparing
the estimates of CGF of sampled link delays with and without bias correction in Table
2.1, we can see that the proposed estimator achieves lower MSE. The corresponding
estimated CGF for link 2 and 4 are shown in Figure 2.2(a) and 2.2(b) respectively.

These results are obtained by using N = 1500 probes per route.
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Table 2.2: Chernoff bounds P; and empirical estimates of P(X; > 0.02) for each link
delay in the ns simulation.
Link 1 2 3 4
P; 0.7517 | 0.4030 | 0.9620 | 0.9012

P(X; > 6) ] 0.2504 | 0.1921 | 0.3447 | 0.2790

2.5 Applications and Extensions

Each link delay CGF preserves all the statistical information of the delay since
it is the log of the Fourier transform of the link delay probability density function.
We can accurately estimate many features of the delay distribution from the delay
CGF. Here we give results for bottleneck link detection. We define a bottleneck as
the event that the probability of a link delay exceeding some delay threshold 6 > 0

exceeds a prespecified threshold P. Using the Chernoff bound,
P(X;>0) < e E Y] =P (2.13)

for t > 0. By appropriately selecting the threshold ¢ and a threshold P close to 1,
we can detect a bottleneck link by testing whether max;—; _,, P; > P. In Table 2.2,
we show the Chernoff bounds for P(X; > ¢ = 0.02s) which were estimated from the
computer simulation in the previous section. By setting threshold P to be 0.95, we

can identify link 3 as the bottleneck link.

2.6 Conclusion and Future Work

In this chapter we proposed a unicast method to perform inference on internal link
delay characteristics. We derived a bias-corrected estimator for internal link delay

cumulant generating functions based on LS approximation. The proposed estimator
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was evaluated by ns simulations with TCP/UDP background traffic and FIFO finite
buffer link queues. The MSE of the proposed estimator is lower than that of the
direct biased sample mean estimator.

In the future, the following issues can be investigated into. First, our proposed
estimator assumes stationarity of the network over the probing period (Assumption
A2), which may be violated in real applications. Some adaptive estimation must be
done in order to track the true link delay distributions. Furthermore, if the internal
link delays are spatially dependent, a more sophisticated model needs to be used.
Finally the estimator requires the probing matrix A to be known. The topology

discovery methods introduced in Chapter 5 offer one way to estimate A.
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Figure 2.2: Biased and bias-corrected estimates of link delay CGF, compared with
empirical delay CGF for (a) link 2 and (b) link 4.
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CHAPTER 3

Unicast-Based Inference of Network Link Delay

Distributions with Finite Mixture Models

3.1 Introduction

The estimation of internal link delay distributions from end-to-end measurements
is explored from a different perspective in this chapter. Unlike the previous chapter,
here we deal with a more practical situation in which there are fewer probe paths
than internal links. We model the network as a logical tree and assume its topology is
fixed and known. We send packet pairs from the root node to pairs of leaf nodes and
collect their end-to-end delays. To circumvent the problems of using discrete delay
models as explained in Chapter 1, we propose a hybrid finite mixture model for link
delays which consists of a point mass located at the (fixed) minimum latency and a
continuous mixture density. It more precisely captures the nature of queueing delays.
We also show that identifiability holds when there is a positive probability for every
link that a packet experiences the minimum delay. An ML-EM algorithm is developed
to iteratively find the maximum likelihood estimates of the delay distributions when

the model orders are known. In a real network, however, the delay model orders are
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determined by various random factors such as background traffic rates and packet
size distributions, hence they are unlikely to be unknown in advance. This problem is
solved by applying model order penalties derived from the minimum message length
(MML) criterion and use of a PML-EM algorithm to estimate the parameters. The
ML-EM algorithm is evaluated by a model simulation using MATLAB to generate link
delays which truly obey some hybrid mixture models, and the model orders are
provided to the estimator. The PML-EM algorithm is applied to the data generated
by ns-2, and the result is compared to the empirically estimated distributions.

Our contribution in this chapter is summarized as follows: (1) We propose a
hybrid finite mixture model for link delay distrbutions with non-zero continuous
mixture density and a point mass modelling empty link queue events. The proposed
model avoids the drawbacks of discrete delay models used by previous work in net-
work delay tomography; (2) For the case when the mixture model order is given for
each link in the network, we develop an ML-EM algorithm to estimate the parameters
in link delay distributions based on end-to-end delay measurements; (3) Without any
prior information on mixture model orders, we develop an unsupervised PML-EM
algorithm using MML-type model order penalty to estimate link delay distributions
based on end-to-end delay measurements; (4) Throughout model and ns simulations
we demonstrate that our algorithms can produce accurate estimates for link delay
distributions and link delay ranges without forcing quantization on delay values as
in previous work.

The chapter is organized as follows. Section 3.2 provides the network model and
main assumptions. Section 3.3 discusses the discrete and continuous delay models,
and points out the problems to use them in delay tomography. In Section 3.4 we
propose a novel hybrid finite mixture delay model. The ML-EM algorithm for known

model orders is illustrated. Then the MML penalized likelihood is derived for model
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selection when the orders are unknown. We also discuss some details of the algorithm
such as initialization and component-wise implementation. Computer simulations
are illustrated in Section 3.5. Section 3.6 concludes the chapter and discusses some

future directions of research.

3.2 Network Model and Main Assumptions

As in Coates and Nowak [17] we adopt the back-to-back packet pair probing
framework and represent the network topology as a directed logical tree T = (V, E)
where V is the set of nodes, e.g., routers and terminals, and E is the set of links.
The logical tree representation has a single root node 0, serving as a source, a set V;
of internal nodes having a degree at least 2, and a set 'V, of leaf nodes, containing
the receivers. Let there be a total of L nodes in V; UV, numbered by 1,..., L, and
label each link with its child end node number. If there are a total of R leaf nodes,
then there are also R possible paths from the root to the receivers. To collect end-
to-end information at the edge nodes, we send packet pairs from the source to every
pair of the receivers. There are S = (12?“) possible pairs of the receivers. For each of
them the probe path forms a binary subtree, called probe trees. The identification of
every link’s delay distribution requires every pair of links to be seperated on different
branches of some probe tree. This requires at least (%;)_1] distinct probe trees

branching at each internal node v and covering all its child nodes, where deg(v)

denotes the degree of node v and is defined by the number of links connected to it.

deg(v)=17

Therefore the minimum number of probe trees required is N/ = P

Throughout this chapter we assume a total of Ny > N/¥" probe trees which satisfy
the identifiability condition are used and we numbered them as 1, ..., Ny. A network

with ten links is depicted in Figure 3.1 showing a single root node, four internal nodes,
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Figure 3.1: An example of logical tree network. Receivers are the leaf nodes while
the source is the root node.

and six leaf nodes.

In a unicast probing session a pair of leaf nodes is (randomly) selected by the
source and two time stamped packets, called a (unicast) probe pair, are sent to them
respectively. The two packets are transmitted in rapid succession and assumed to
encounter identical delays on the shared links of their paths. Each leaf node records
the time that a packet is received. Subtracting this value from the packet’s time
stamp gives the end-to-end delay of the packet. End-to-end delays of the probe
pairs on the same probe tree are random vectors due to the random ambient cross
traffic through links along their paths. If any packet in a probe pair is dropped by
the network, both packets are considered lost. Unicast probing is repeated until the
session is over or enough packets are received by each leaf node to perform the next
step: network delay tomography. The aim of network delay tomography is to identify
parameters of the packet delay distribution for each individual internal link from the
end-to-end delays observed by the receivers. Network tomography is possible since

the end-to-end delay is a sum of the internal link delays encountered along the probe
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path and any two paths in a probe tree must cross at common links.
Let X; be the packet delay encountered by a probe at link [, [ =1,..., L, and let
Y; be the end-to-end packet delay along the ith path, 7 =1,..., R. As in Chapter 2

we make the following independence and stationarity assumptions:

(A1) Spatial Independence: Packet delays at different links are statistically inde-

pendent, i.e., X; and X; are independent for i # j.

(A2) Temporal Independence and Stationarity: For a given link, the delays
encountered by packets in different probe pairs at that link are statistically

independent and identically distributed.
For each probe pair we make an additional assumption:

(A3) Consistency: The delays encountered by both packets in a probe pair on the

shared links of their paths are the same (with probability 1).

It is important to point out that while (A1) and (A2) are normally not satisfied in
practice (see, e.g., [57]), these are commonly assumed in order to permit tractable
analysis. An example where spatial independence (A1) is violated is when there is
interaction among different data flows along the same path. As for (A2), temporal
independence fails when Internet traffic is bursty or the network has a long latency
time which correlates different packet pairs. Stationarity fails when the unicast
probing session has a longer duration than the stationarity time of the network.
However, experiments have shown that the performance of network tomography is
remarkably insensitive to violations of (A1) and (A2) [5, 15, 16, 17, 20]. In (A3) the
assumption of identical delays experienced by a probe pair on shared links does not
hold when a small discrepancy between the two is observed from real network data
(see, e.g., [23, 59]). Fortunately this random error has mean close to 0 and can be

reduced by random ordering of the two packets [17].
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Figure 3.2: A two-leaf tree network.

Another issue in delay tomography is the synchronization of system clocks among
the edge nodes. One common solution suggested to achieve synchronization is to
deploy Global Positioning System (GPS) systems at the root and leaf nodes of the
network (see, e.g., [16]). Pésztor and Veitch proposed a method using software
clock to achieve precision timing for active network measurements without additional
hardware deployment [58]. However, if the synchronization cannot be afforded but
the clock shift remains fixed during the probing session between the root and each
of the leaf nodes respectively, one can still perform accurate delay tomography as
follows. For each end-to-end path from the root to one of the leaf nodes, we assume
that at least one probe packet following that path encounters no link queueing delays
at all. Then the end-to-end delay of any of those specific probe packets is the
minimum over all the probes along that path, and this delay equals the sum of the
non-random transmission and processing link delays over the path plus the clock
shift between the root node and the leaf node. Since the end-to-end delay of each
probe packet following that path also includes an offset introduced by the clock shift,
substraction of the minimum end-to-end delay cancels the clock shift and results in
an estimate of pure queueing delay over the path. In this case we can assume the

minimum link delays are zero for empty link queues.
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3.3 Unicast Network Delay Tomography

3.3.1 Discrete Delay Model

In the widely adopted discrete link delay model [16, 17, 20] a universal bin size
q is used to discretize link delays X; at each link [ = 1,..., L. The time intervals
(iq, (i+1)g],i=0,...,D, are called the delay bins. Here D is a positive integer and
D = oo can be used to account for lost probe packets or large delays which are out
of range. Discretization produces the discretized delay value ¢ when X, falls in the
ith bin. A probability mass function (pmf), or histogram, P, = {p;4:d =0, ..., D},
is then associated with the discretized delays over link [, where the probability p; 4 =
P (X; € (dg, (d + 1)q]) is an unknown to be estimated and 37 pr4 = 1. For a probe
path containing j links, the discretized end-to-end packet delay varies over the range
0,...,7D -q.

Consider the two-leaf tree network shown in Figure 3.2, and the associated delay
pmf’s P, ={pqs:d=0,...,D} for | =1,2,3. Probe pairs are sent from the source
to receiver nodes 2 and 3. With assumption (A3) the identifiability of P’s from
end-to-end delays can be studied in a similar manner to multicast networks. More
specifically, in multicast each packet is replicated by the network at the branching
points of its paths and all the packets at the receivers again have common delays on
shared links. Proof of identifiability in discrete network delay tomography with mul-
ticast probes is provided in [16] and the use of unicast probe pairs can be considered
as a special case.

The discrete delay model adopted in [16, 17, 19, 20, 23] has two main drawbacks.
First, the proper bin size needs to be carefully selected. Second, a universal bin size
may not be suitable due to large variation of packet delay ranges over different links.

Although it has been proposed to adopt different bin sizes for different links or delay
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ranges [16, 19], those bin sizes still need to be chosen in advance.

3.3.2 Continuous Delay Model

One way to avoid the pitfalls of binning is to use a flexible continuous link delay
model. For example, closed form expressions for the probability density function
of queueing delay have been derived for simple queueing models such as M/M/1.
These expressions could possibly be extended to a network of queues but it is well
known that the M/M/1 model is an inadequate model for Internet traffic [60]. An
alternative is to approximate each link delay density by a finite mixture which, with
sufficiently large number of components, can describe a wide range of continuous
density functions [61]. Let f;(x) be the link delay pdf at link {. A finite mixture

model for this pdf is

ki
file) = rmd(@;Oim), 1=1,...,L (3.1)
m=1
where £; denotes the number of components, «;,,, m =1, ..., k;, denotes the mixing

parameter for the mth component (O < apm <1, ijb:l QU = 1), and ¢(x;0,,,) is

a density function over the z-domain parameterized by the parameter vector ;.
Many different choices for ¢(x; #) are possible including: Gaussian; generalized Gaus-
sian; exponential; or uniform. For the case of a Gaussian mixture 6, = [f4,m, UzZ,m]
is the vector specifying the position (mean) and width (sqrt(variance)) of the mth
mixture component at the /th link.

However, the use of pure continuous mixture density functions can cause serious
identifiability problems. To illustrate consider again the simple two-leaf tree of Figure
3.2. Assume that all link delays are Gaussian, i.e., k1, ko, k3 = 1 (single component

mixtures), and ¢(z;0) = exp(—(x — p)?/(20%))/(v/2n0). The end-to-end delays
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(Y1,Y5) has the following joint pdf:

F(¥i,¥s) = 1 e .

27\/020% + 0202 + 0202 oto3 + 0703 + 030%)
(02(Vs = (i + 12))? + 02(Ya — (s + 113))+ 02(Vs — Y2) — (sp — u3>>2)}

(3.2)

If we look at the mean parameters, they are completely described by the 3 pa-
rameters 1, = pg + 1, N2 = o+ fo, and n3 = g — pe. This gives only two equations
for the three unknowns parameters [, p2, pi3] so the simple Gaussian model is not
identifiable for any value of the mean parameters. An example is shown in Figure
3.3 where (a) and (b) are two different sets of internal link delay distributions for
the network in Figure 3.2.

One can also consider the packet-stripe schemes suggested in [59], in which a
stripe of several closely spaced unicast packets with distinct destinations are sent
back-to-back from the root node. Similarly to packet pair probes, these packets are
assumed to encounter virtually the same delays on shared links along their paths.
As shown in [15], packet-stripe probing allows identification of higher order moments
of internal link delays when the branching ratio is larger than two. However, under
the Gaussian mixture link delay model, the link delay means still cannot be uniquely

identified from end-to-end delays.
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Figure 3.3: Example of two sets (a) and (b) of Gaussian internal link delay densities
along the two probe paths in the network in Figure 3.2. The two end-to-end delays
of each received packet pair obeys a Gaussian bivariate density shown in (c). This bi-
variate density is parameterized by only two location parameters which is insufficient
to recover the three location parameters in (a) and (b).
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3.4 Hybrid Finite Mixture Approach

3.4.1 Hybrid Finite Mixture Model

In analysis of a queueing system, the utilization factor p is an important parame-
ter for describing system behavior. The parameter p denotes the probability that the
system is busy serving customers and, for a stable system, p must satisfy 0 < p <1
[62]. A lightly loaded link satisfies p << 1, i.e., there is a non-negligible probability
that a packet encounters an empty queue, i.e., an idle router, and passes without
delay. This suggests placing a point mass component with weight 1 — p in the link
delay mixture model. If this point mass is included in addition to the continuous
components the link delay pdf becomes a hybrid discrete/continuous finite mixture

model. Hence, similar to (3.1), we obtain

ky

filx) = a6 (x — x10) + Z am®(x;0,) =1,... L. (3.3)
m=1
Here oo = 1 — p;, 6(z) is a point mass (Dirac impulse) at zero and ;0 is the

known pure (non-random) transmission delay experienced by the packet. All other
parameters are defined as in (3.1), except now the a’s must satisfy Zfﬁ:o Q= 1,
aym > 0. The discrete mass component §(z) not only makes the delay distribution
more precisely model the behavior of a link queue, but as shown below also buys us
identifiability of all the link delay distribution parameters.

For any probe pair the distributions of the end-to-end probe delay densities will
be the convolution of the link distributions, which are also hybrid mixtures. Now,
similarly to the previous section, let’s assume that the continuous mixture component
is a single Gaussian pdf. Let the point masses oo = o and assume that they are all

concentrated at zero delay, i.e., 7,0 = 0. Figure 3.4 shows the end-to-end joint delay
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distribution in the two-leaf tree network of Figure 3.2, whose mathematical form is

F(Y1,Ys) = BibaBsf(Y1,Ya) + arasasd(¥1)0(Ya) + arnfsd (Y1) d(Ya; s, 02) +
1 Bo38(Y2) 9V pia, 03) + Brasasd (Vi — Ya) $(Y3; pur, 07) +
a1 B (Y1; pia, 03) (Vs pis, 03) +
P12z d(Ya; pir, 07) (Y1 — Yo iz, 03) +

ﬂ1a2ﬂ3¢(Y1;MlaU%)¢(Y2 —Yl;H:s’aU:)%)a (3-4)

where f; =1—a; for [ =1,2,3 and f(Yl, Y,) is the joint distribution shown in (3.2).
Due to the point mass in (3.3), (3.4) has additional isolated Gaussian components
which appear with discrete masses at locations in the (Y7,Y5) plane specified by :
{Y1 =0}, {Y2 = 0}, and {Y; = Y5}. It is obvious that identifiability can be achieved
as long as «; # 0. It might seem strange to the readers that the addition of a
point mass allows one to uniquely identify the set of parameters of the internal link
components from a single probe tree. However, one still needs multiple probe trees

to assign these parameters to specific links.

3.4.2 ML-EM Algorithm

Here we present an ML-EM algorithm for approximating the maximum likelihood
estimates of the internal link mixture model parameters from end-to-end packet pair
measurements. Let U be a finite mixture random variable with k£ components and
pdf of the form f(U) = 32F | ¢ (U) where SF oy, =1, ay, > 0. An example
of a Gaussian mixture with three components is given in Figure 3.5. The solid
line depicts the density function and the dashed line shows each component. There

are two different interpretations of finite mixture models which will be useful in the
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Figure 3.4: Example of internal link delay hybrid mixture densities (a) for links 1,2,3,
over the two-leaf tree of Figure 3.2. The non-random minimum delays for all the links
are set to 0. The end-to-end packet pair delay distribution is also a hybrid mixture
whose purely continuous components are shown in (b), and components associated
with discrete masses are in (c). All link parameters can be identified from this two-
dimensional distribution. Here B x (C - F') denotes a function of (yi,y,) which is
the convolution of the internal link components labelled B, C, and F, in the form of

[ B(x)C(y1 — 2)F(ys — x)da.
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Figure 3.5: Gaussian mixture example. fy(u) = 0.3N(u;2,2) + 0.5N(u;8,4) +
0.2N(u;17,10).

sequel. The first one is simply that f(U) is a multi-component pdf for U. The second
interpretation is that U is selected at random from a pool of simpler hidden random
variables Uy, ..., U with selection probabilities «, ..., ax, respectively. Define the
binary random selection vector Z = [Zy,..., Z;]" where Z,, = 1 if and only if the
mth variable U, is selected and assign to this event probability «,,. U can be
expressed as U = anzl ZmUp. Thus, if Uy, has pdf ¢,,(U,,) then this is identically
the conditional pdf f(U|Z, = 1). Then f(U) = Y-  @,é,(U), which is the
mixture model for U that we started out with. The second interpretation is critical
for development of the ML-EM algorithm which we address below.

Assume that we have prior knowledge of all the link mixture orders {k;}/—,. We
will relax this assumption in the next section. Let /N; be the number of packet pairs
sent from the source to the receivers of probe tree ¢ and let M; be the set of links
along that tree. Define X l(i’") the delay at link [ encountered by the nth packet pair
sent through probe i. Let Zl(i’") = Zl(f(;"), . Zl(fk’:b) be the selection vector for Xl(i’").

With these definitions, maximum likelihood (ML) estimation of the set of internal
link mixture densities can be formulated as a missing data problem. The Expectation

Maximization (EM) algorithm [63] has been extensively applied to approximate ML
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and penalized ML (PML) estimates for mixture models [45, 46, 48]. Let X = {Xl(i’n)}
and Z = {Zgi’n)} for all [,i,n. {X,Z} is called missing data or hidden data. Define
Y n) = (Yl(i’n), Y2(i’")) as the pair of end-to-end delays of the nth packet pair received
by two receivers in the ith probe tree. The observables Y = {Y®1, = are called
the incomplete data and the set {X,Z,Y} is said to be the complete data. The EM
algorithm generates a sequence of estimates of the unknown parameters ® which
have the property that the likelihood sequence £(®) = f(Y|®) is nondecreasing.

It is easily shown that the likelihood of the complete data can be factorized as

def

L(®) = [(X,Y,Z|®) = f[(Y[X)[(X, Z|®), (3.5)

and thus maximization of L£.(®) is equivalent to maximization of the likelihood

function £(©) def

f(X,Z|®). For a specific link [, X, is a mixed random variable
with density function f; given by (3.3) and therefore, up to a constant, the complete

data log-likelihood function is:

L
log L(© Z Z Z { " log o + Z Z i.n) <log aym + log qS(Xl(i’"); Hl,m))

=1 @:leM; n=1
(3.6)

The EM algorithm updates parameter estimates by applying two steps at each iter-
ation. At the tth iteration, the E-step computes conditional expectation of complete

data log-likelihood given observations Y and current parameter estimates e
Q(©,0) = E |log L(®)|Y; 01| . (3.7)

The M-step maximizes the () function computed in the E step with respect to © to
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produce

e+ — arg max QR(®,00). (3.8)

The E and M steps for the hybrid mixture model is similar to that for a pure Gaussian

mixture model [45] and is illustrated in Appendix A.

3.4.3 PML-EM Algorithm with MML Penalty

When the number of link components k;’s is unknown the ML-EM algorithm is
not guaranteed to converge. This is due to a fundamental ambiguity of unknown
model order. To illustrate, consider the estimation of a k-component mixture having
the form of (3.1) with parameters ® = {ay,...,a4,01,...,0,}. These parameters
have the same likelihood as the k& + 1 component mixture ® = {ay,..., a4_1, (1 —
By, Bag, 01, ...,0, 0} for any 0 < f < 1. One of the most effective ways to
eliminate this ambiguity is to add a penalty to the log-likelihood function which

penalizes the unecessary addition of more components to the mixture.

The Minimum Message Length Criterion

Many model order penalties have been proposed including: Akaike Information
Criterion (AIC) [64], Minimum Description Length (MDL) [65] and Minimum Mes-
sage Length (MML) [66]. Figueiredo and Jain [48] applied the MML penalty specif-
ically to finite mixture models by introducing a prior to the parameters and an
information theoretic penalty depending on quantization of parameter space. They
developed an unsupervised method for simultaneously selecting model order and es-
timating parameters and the performance of their algorithm was impressive. As
our approach in delay tomography focuses on the estimation of finite mixture mod-

els in an enlarged parameter space, a good choice is to generalize the algorithm of
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Figueiredo and Jain to fit our case. The incomplete data penalized log-likelihood is

expressed as

£(©) % 10g £(©) +10g f(Y]®) - J log [[(©)] ~ (1 +log o), (39)
where I(®) is the Fisher information matrix associated with the incomplete data Y,
|A| denotes the determinant of square matrix A, ¢ is the dimension of ®, and &, is
the so-called optimal quantizing lattice constant for R°.

To apply the MML algorithm [48] of Figueiredo and Jain to our network delay
tomography problem their method has to be extended to another layer of hidden data.
More specifically, while in [48] the realizations from the mixture model were observed
directly, in our application only sums of these realizations (along probe paths) are
observed. In other words, the end-to-end delays are themselves convolutive mixtures
of the additive mixtures describing the link delays.

The standard incomplete data Fisher Information matrix I(®) is not closed form,
even for a directly observed finite mixture [47]. Therefore, similar to [48] we replace
it by the complete data Fisher information matrix which in the network tomography

setting is
1(@) = —E [V3log f(X, Z|©®)] = block-diag {n/1,(0))},, , (3.10)

where I; (0;) is the Fisher information matrix associated with the complete data at
link [, ®,; denotes the parameter set of the [th link, and n; = Zi:leMi N; is the total
number of packet pairs passing through the [th link. I, itself has block-diagonal
structure

Il(gl) = block—diag {Al, alyllg(el,l), s ,Oél’kllg(el’kl)} y (311)
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where I5(6,,,) is the Fisher information matrix associated with the hidden mth com-
ponent delay variable X;,, on link [, and A; = diag {al’ﬂ;}zzo. If any one of the
aqm’s 1s zero, it is removed from A; and £ is decreased by 1.

The prior on the parameter set was taken as

L ki
f(®) = H {f(al,O; - '7al,kz) H f(gl,m)} ) (3'12)
=1 m=1
where f(ap,..., ) and f(6,,,) are the non-informative Jeffreys’ priors [67]:
f(Oél’g, ceey al,k[) X v/ |A| = (al,Oal,l e Ollykl)il/2 (313)

fOrm) o< \/|L2(6m)], (3.14)

for Y " _,arm =1and 0 < o, < 1. In addition, as in [48], we make the approxi-

mation k. = 1/12. This yields the MML penalized likelihood function

d L L

ky
A ki(d+1)+1 n
£(©) =log f(Y[©) = 2> logaum— % (logl—; + 1) . (3.15)
=1 m=1 =1

where d is the dimension of 0;,,, e.g., d = 2 for a Gaussian component mixture.

The Complete Algorithm

To derive the E-step of the PML-EM algorithm applied to maximizing (3.15) we
adopt the same complete data as in the previous section. With this it is easy to see
that the E step is a modification of (3.7) where Q(©,®®) now has an additional
penalty given by the second and third additive terms on the RHS of (3.15). The

modified M-step gives the updates for the mixing parameters in (3.16) (see Appendix
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d
(1) max{(ZzleM Z 1Wzm>_§70}

bm Sk i (in d N; o, (in) (3.16)
Z] 1 max { <Zi:leMi Zn:l Wy j ) 9 0} + Zi:leMi Zn:l Wio
form=1,...,k, where
Wi = B Z50 1Y 0,00], m =0,k (3.17)

The M-step for the remaining parameters depends on the specific form of the mixture

density components.

Component Annihilation The algorithm uses the following strategy to select the
number k; of components at the [th link. It starts by setting each of k;,[ =1,..., L to
some user-specified upper bound and annihilates components as follows. If al(tﬂ) =0,
component m is removed from f; and its probability mass is redistributed over the
other non-zero-probability components at the next iteration. After convergence of
the algorithm, however, the estimate is not guaranteed to be the MML estimate since
additional increase of £(©) may be achieved by further decreases of the k;’s. Conse-
quently, it is necessary to manually remove the surviving components and recompute
L(©). The effort would be exorbitant if we go through all possible combinations of
the k;’s. Therefore we propose a myopic approach as follows. We simply annihilate
the component with the least mixing parameter &y, form=1,...,k, {=1,...,L

and rerun the PML-EM algorithm until convergence. This procedure is repeated

until all the k;’s reach some pre-defined lower bound k,,;,.
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Estimation of {a;o} Although one can treat the {cy o} as parameters to be esti-
mated by the PML-EM algorithm, we find it more reliable to estimate them using
sample averages. Consider again the two-leaf tree network in Figure 3.2. The prob-

abilities of the following events have the expression

Pr = P((Y1i=m0+220)V(Yo=a10430)) = 100+ azg— azpaszg)
P2 = P (Yi =T10 + 372,0) = Q1,002 0

Py = P(Yy=1z10+x30) = a1,003,0
(3.18)

Let pi1,p2,p3 be the sample average estimates for Pp, P, P3, respectively, and let
v = P2+ p3 — Pp1. When py # 0 and p3 # 0 (hence p; # 0) we obtain the estimates
of {au 0} by

Q19 = DaDs/7y

542,0 = 7/233 : (3-19)

dzo = /D2
For a larger tree network with more nodes and links, similar estimates can be cal-
culated for each binary probe tree where &;p, i = 1,2,3 in (3.19) may be products
of link «;¢’s when the branches consist of multiple links. The «; for each link are
estimated either directly by (3.19) or by the quotient between the minimum-delay
probabilities for the two probe tree branches which differ by that link only. Sub-
sequently, we can remove {a;o}, from © and replace them with sample average
estimates {dy} in the PML-EM algorithm. The reduced parameter set is denoted
by ©,.

To explain why (3.19) is more reliable than the PML-EM estimates it is helpful

to investigate the underlying delay model. The sample average estimate in (3.19)

assumes a simple binary model for link delays in which there is only one parameter
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a0, having pmf
a0 Tr =20

p(x) = . (3.20)
1 —agp otherwise

On the other hand, the original PML-EM algorithm uses a much more complicated
model in which most of the parameters in ® are associated with the continuous
mixture model. Therefore the EM algorithm is dominated by the mixture model pa-
rameters, and consequently sacrifices the accuracy of {dy}. The improvement made
by the sample average estimates is remarkable especially when the amount of data is
sufficient for the binary delay model but not enough for the hybrid mixture model.
The M-step of the mixing parameters in (3.16) should be modified correspondingly

as

Ni ',
max { <Zi:leMi Yot wl(zr:)) - %7 0}
k N; in ’
jl:1 max { (Zi:leMi D ne Wl(zg )> - g? 0}

@(t+1) _ (1 . d[,o)

Im mzl,...,kl.

(3.21)

Initialization An initialization procedure is suggested that uses a PML-EM al-
gorithm to first estimate a mixture model for the end-to-end delays independently
of each root-to-leaf path and independently of topology. Then a minimum distance
criterion is used to select common components for each shared link. These common
components are used to initialize the proposed PML-EM algorithm for delay tomog-
raphy that accounts for topology. For example, the common components selected
for link 3 in Figure 3.1 to initialize the proposed PML-EM algorithm are obtained
from the most significant components (according to a minimum distance criterion)
in the estimated mixture models for end-to-end delays over the paths from the root
to leaf nodes 6,7,9, and 10, respectively, which share link 3 as a common link.

The end-to-end delay between the root node and one of the leaf nodes is the sum
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of the independent link delays over the path. The convolution of the link delay pdf’s
gives the end-to-end delay distribution which is also a hybrid finite mixture model.
Its continuous mixture part is contributed by the delays that are greater than the
minimum path latency. PML estimates of the continuous part can be obtained by
EM algorithms such as that of Figueiredo and Jain [48]. It is generally impossible to
resolve the link delay distributions directly from the path delay distributions without
using an iterative algorithm. However, a simple direct estimate of the link delay
distribution can provide useful information to initialize the PML-EM algorithm.
The reason to initialize our PML-EM algorithm using PML estimates from another
EM algorithm is the following. Firstly we find the computational complexity of
the PML-EM algorithm increases exponentially with respect to the model order k;
of each link delay distribution. This is because the number of components in an
end-to-end delay distribution equals the product of model orders for all the links on
the path. Remember our algorithm starts with an upper bound of k; for each link.
When the bound is loose the PML-EM algorithm converges very slowly because of
the high computational complexity for large k;’s. This situation can be mitigated
if a tight upper-bound can be estimated. Secondly the algorithms used to estimate
one-dimensional finite mixture models directly from the realizations are generally
much faster than the PML-EM algorithm for delay tomography. Therefore it is
worth to obtain a tight bound for each k; from the estimates of end-to-end delay
distributions at the expense of running another EM algorithm for every end-to-end
path. A strategy to accelerate the estimation of internal link delay distributions with
the proposed hybrid finite mixture model is illustrated in the next chapter.

Let R, be the set of descendant leaf nodes of the internal node [. Recall that
node [ is connected to its parent by link [ according to our definition. Then the set

of routes from the root to the nodes in R, includes exactly every end-to-end path
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intersecting link /. Let the continuous mixture model in the end-to-end path delay

distribution estimated from the measurements at leaf node r be

Xe(@) =D prmd(@;0,) 7€ Ry, (3.22)
m=1

where 0 < p;,, < 1 and Z”mrzl pr,m = 1. We propose an initialization scheme for
the parameters in f; which selects a subset of ®(R;) = {(6;.m, prim) }r.m as its initial
component parameters. The idea is motivated by the following obeservation. In a
lightly-loaded network the probability mass for zero queueing delays is the dominant
contribution for each link. Thus the copy of each link delay pdf, obtained from the
convolution with all other link’s point masses, constitutes a dominant part in y,(z).
Each copy is shifted by an offset equal to the sum of all other link’s minimum delays,
but the distance between a mixture component and the point mass is preserved in
Xr(x). Since the delay distribution for link [ appears in every y,(z) for r € Ry, a
simple strategy is to choose the most similar sets in ®(R;) as initialization parame-
ters. Although others may suggest more sophisticated methods for initialization, we
find this simple method works well in our simulation.

We set the initial model order of f; to be k" = max,cg, k.. Define x, as the
non-random minimum path delay from the root node to r. Let 7, ,, be the mean of
¢(x; 0, ,,) minus z,, which is the preserved relative distance between ¢(z;6,,,) and
the point mass. The initial parameters of the k™ components are selected from

O(R;) according to the distance

e = min |7, —Tsn| Ym=1,... Kk, reR. (3.23)

n=1,...,Kks

sER\{r}

dym denotes the minimum distance of ¢(x;6,,,) to a component estimated at the
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other leaf nodes in R;. The parameters (6, prm) in ©(R;) corresponding to the
smallest kf”it distances are selected for the initialization, and the p, ,,,’s are normalized
to have a sum equal to (1 —dyp). Let’s denote the initial distribution by f/"*(z). For

the links directly connected to the leaf nodes, f/""(x) = d100(x—x10)+(1—da10)x1 (7).

Component-wise Implementation We use the component-wise EM algorithm
for miztures (CEM)? [46] to accelerate the PML-EM algorithm. Similar to the SAGE
algorithm of Fessler and Hero [68], the CEM? algorithm updates the parameters se-
quentially for each mixture component. It is especially helpful for the component
annihilation algorithm because when a component is annihilated the CEM? imme-
diately distributes its probability mass to the remaining components before their
parameters are updated, hence increases their chance of survival [48]. The mono-
tonicity property of the CEM? is not affected by the order of updating. We adopted
a cyclic updating procedure as follows: update «;; and 0, ;, recompute (), update
a2 and 0, 9, recompute (), and so on, until all the parameters for link 1 are updated;
then proceed in the same way for link 2, 3, and so on, until all the link parameters
are updated.
In CEM? there are additional Lagrangian penalty terms for the constraints:

2:1 Qm =1—ady9, [ =1,...,L [46]. The penalized likelihood function becomes

Lopn(©,) = L£(©,) =) N (Z apm — (1 — am) (3.24)

with Lagrange multipliers A, ..., Az, which can be computed as follows. Lets redefine
wi) = BZE0 Y 00] m =0,k (3.25)

Q) = B |20 10g (X" 0,) Y00 | m=1,...,k, (3.26)

I,m
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for l = 1,...,L, where (1);“ denotes the estimate of ®, in the tth iteration. The

conditional expectation of Logp(©,) in the E-step is

L N; .
Q(@p;éét)) = Z Z Z{w%” logalg+z [ logalm—irle (Glm)]} —
=1

=1 i1leM; n=1
L k;
d ki(d+1)+1 n
45" tonaun = 3 S (g2 1) -
=1 m=1 =1

Z)\l (Z QO m — (1 — duo)) . (327)

We obtain, at the optimum of (3.27),

azmzzzleM Zn 1W5m m—1

i

ook, 1=1,..., L. (3.28)

Inserting a7, into (3.27) results in

N; ) ‘ lefi (Zr:)
Q(o, t Z Z Z Wzm Zz.zev[l%\:l =19,

=1 i:leM; n=1 m=1

)DIEVID DA e i
S (3 BTk g -

m=1

_EL:ZI i:leM; Zn 1 +R, (329)

=1 m=1

where the terms independent of \; are represented by the remainder R. The value

of \; maximizing (3.29) in the M-step is

i:leM 1 m=1

A= (1 —dyp)” {ZZZ dkl} I=1,...,L. (3.30)

The complete PML-CEM? algorithm is summarized in Table 3.1 below.
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Table 3.1: Summary of the complete PML-CEM? algorithm for network delay to-
mography.

Inputs: T, Y, kpin, €, {auott,, {k™}H |,
initial parameters é)(o) = {dl(ol), - dz(,ok);m“ él(?l), e éf%mt}

Outputs: {f;(z)}X, with parameters ©\*"

L

=1

t < 0, Loy  —00, Finish < 0, k; < k™" for [ =1,..., L.
while (~ Finish) do
Converge < 0
while (~ Converge) do
t—t+1
forl =1to L do
ufin) — Py <y(i’”)|Zl(i’:) - 1), n=1,...,N; i:leM,
m=0,....k,l=1,...,L
m <1
while (m < k;) do
7 D) (i Sl ).
=1,...,k
&l(le A (]' - OAQ,O) max [(ZMEM Zn lwlm ) - g’ 0] X
-1

{2?21 max [(Zi:leMi >onet wz,} ) -5 O]}
Of, < argmaxy > en, Sty Qfon (6)
if (617, > 0) then
U’l(m) — P(t) ( L |Zln) = 1)
m<—m + 1
else
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remove the mth Component from f; by
af) —af) +af," U =1), =1, m 1
o Va6l V=1, j=m, k=1

t—1 )
gl(J )<_9l(]+1) ]:m,...,kl—]_
kl<_kl_1
end if
end while
wl(m) — al(tml)uglngz)/ (al OUl 0 + Z (zj,_n)) ,
m=1,...,k
end for
N7 N L
O  {alll a0}

Lopn (O ) < log /(Y[©,) - IS SR logdyl,—
k d n
S, +2 ~ (log 7§ +1) — '
Zz 1 {Zz :eM; Zn 1 Z Z’n) - %} <(1 - CAVl,O)i1 Zfﬁ 1

if <‘£CEM(®( ) £CEM(@(t ))‘ < 6) then
Converge + 1
end if
end while

if (ECEM(G) ) > Lo,,t) then

ﬁopt — ACC’EM(é)z()t))
o) o

end if

if (Hl € {1, cee L} k; > kmm) then
Es%{l S {1,...,L}: k; > kmm}

* ok : A (1)
(l , ) Cargmin,,_q k;, l€E; al,m

remove the m*th component from f;- by
6l ol ald (ke = 1), G=1, w1

* m

o) ol el ke = 1), j=mt ke — 1

%)

6l 1)




00 00,

kl* — kl* —1
else

Finish + 1
end if

end while

j:m*,...,kl*—l

3.5 Experimental Results

3.5.1 Model Simulation: ML-EM Algorithm for Known Model

Orders

We simulated a small network with the simple virtual tree topology shown in
Figure 3.6. Throughout this first experiment the numbers of components {k;}/,
are assumed known and used in the mixture model estimator. We specialized the
EM algorithm to a Gaussian continuous component mixture plus a point mass (see
Appendix A). From two to four Gaussian components were assigned to each link in
addition to a point mass at 0. These simulations were implemented in matlab and
we generated 2000 i.i.d. end-to-end probe pair delays for each of the six probe tree
paths, i.e., Ny = 6. The ML-EM algorithm was applied to estimate the Gaussian
components, their mixing parameters and the weight of the point mass at zero.
Convergence was achieved after 955 iterations, or approximately 15 iterations per
parameter. Figure 3.7 compares the estimated Gaussian mixture components to the
true Gaussian mixture components. It also lists the number of mixture components
for each link and the true/estimated probabilities a; of the probe encountering
empty queue on link [. The convergence curve of the log-likelihood is shown in

Figure 3.7(h). These results illustrate high accuracy for the case where there is no
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4 5 6 7
Figure 3.6: The four-leaf tree network used in computer experiments.

model error and the number of components is known.

3.5.2 NS Simulation: MML for Unknown Model Order

For a more realistic simulation we used ns-2 [40] to simulate the network shown
in Figure 3.6 with a variety of cross traffic types and router configurations. The
links were assigned bandwidths and latencies listed in Table 3.2. The ns parameters
for each link were set to a Drop-Tail queue (FIFO queue with finite buffer). The
queue buffer sizes were 50 packets long. Each packet in a probe pair was defined as
a 40 byte UDP packet. Probe pairs were generated independently and sent along
each of the three probe trees in Figure 3.8 according to a Poisson process with mean
interarrival time 2ms.

Cross traffic was also generated in each link by ns and consisted of 41 Pareto On-
Off TCP flows and 25 constant-bit-rate UDP streams with random noise introduced
in the scheduled packet departure times. The design of background traffic reflects
today’s IP network environment in which the UDP traffic is mainly video/audio data
streams and TCP comprises the major fraction of the Internet traffic [69, 70]. The

backgroud traffic approximately occupied 40links. We evenly divided the bandwidth
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Figure 3.7: (a) - (g)True(solid curve) and estimated(dotted curve) Gaussian mixture
components along with the true(black bar) and estimated(white bar) empty queue
probabilities {a;} for model simulation. The horizontal axes denote link packet
delays in ms. Here the EM algorithm is used to estimate the hybrid Gaussian mixture
parameters for simulated measurements obeying a true hybrid Gaussian mixture with
known numbers of components which are listed along with the link delay pdf’s. 2000
packet pairs are generated for each of the six probe tree paths in Figure 3.6. (h)
shows the convergence curve of the log-likelihood function.
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Table 3.2: Link bandwidth and latency parameters used in ns-2 simulation.
Link 1 2 3 14|56 7
Bandwidth (Mbps) | 20 | 20 | 20 | 10 | 15| 15 | 12
Latency (ms) 100 | 100 | 100 | 30 | 50 | 50 | 40

utilization of the background traffic into each data flow. It means that the packet
admission rate in a traffic flow with a large packet size was always less than that
in a flow with a small packet size. As the link buffer sizes were fixed in number of
packets, it implies that most queueing delays encountered by the probes were caused
by small packets. Therefore we could expect concentration at small delays in the
link delay distributions.

A total of N = 1500 packet pairs for each probe tree were collected at the receiver
nodes. We estimated each probe queueing delay by subtracting the minimum probe
delay over the total samples for the same path and set the empty-queue delays z;
to 0 for { = 1,...,7. The PML-CEM? algorithm was implemented with Gaussian
continuous mixtures. To initialize the parameters we estimated the continuous mix-
ture models for delays over the four end-to-end paths using Figueiredo and Jain’s
algorithm in [48], which itself was initialized with 15 components. Figure 3.9 shows
the estimated Gaussian mixtures and the convergence curves of the penalized log-
likelihood. The results were used to obtain /" [ =1,...,7 for the PML-CEM?
algorithm to start with, as described in Section 3.4.3. These initial distributions are
shown in Figure 3.10.

We set ki = 2 as the lower bound of mixture model orders. The convergence
threshold e was set to 1072. When model error exists it is possible for a Gaussian
component to converge to some single delay value with the variance approaching
zero. When it happens the likelihood goes to infinity and the algorithm becomes

unstable. We solve this problem by adding another threshold e,2 in the algorithm
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Figure 3.8: Probe Trees used in ns simulation.

to simply kill a component whose variance goes below it. The reason is when a
component converges to a single delay it could imply a point mass at the specific
delay and the component is no longer suitable for describing the distribution. It
may be necessary to include more point delay masses in the model to avoid such
component annihilation. Here we let e, = 10~*°. Convergence was achieved after
6966 iterations and the link delay pdf estimates are shown in Figure 3.11. To obtain
ground truth the true internal link delay distributions were estimated empirically
from the ns simulated data. The mass of the atom, which is denoted as “True ;"
in the figure, is the empirically estimated probability of an empty queue at link [
calculated from sample averages. The continuous portion of the true distribution
was estimated by the histogram of non-zero link delay samples and normalized to
have mass 1 — (True «, ).

The estimated Gaussian mixtures are shown along with the normalized histogram
for comparison. Since link delays are strictly no less than zero, we redefine the

continuous portion of the estimate by distributing the mixture probability mass in
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Figure 3.9: The continuous mixture estimates in the ns simulation of non-zero end-
to-end delays for the paths from the root to leaf nodes 4,5,6, and 7, denoted by
path 1,2,3, and 4, respectively. (a),(c),(e),(g) show the estimates (solid curve) and
the empirical non-zero path delay histograms (white bars) which were normalized
to have a total probability mass equal to 1. The horizontal axes denote link packet
delays in milliseconds. The estimates were obtained using the algorithm in [48]. The
corresponding convergence curves of the penalized log-likelihood are shown to the
right of the estimates in (b),(d),(f), and (h), respectively. The solid vertical lines show
the iterations in which a mixture component is removed by component annihilation
in the algorithm. The dashed lines show the convergent iterations where the least-
probable component is removed and the algorithm is restarted with the remained
components. The asterisk indicates the iteration converging to the highest penalized
likelihood.
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Figure 3.10: Initialization of the link delay distributions (solid curve) using path
delay mixture extimates in the ns simulation. Here only the continuous mixture
components are shown for each f{™*. The horizontal axes denote link packet delays in
milliseconds. Empirical non-zero link delay histograms (white bars) were normalized
to have a total probability mass equal to (1 — d;) for comparison.
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(—00,0) to the region (0,00). The total probability mass over the positive delay
region is 1 — ¢&;9. The convergence curve of the penalized log-likelihood function
is shown in Figure 3.11(h). The vertical lines indicate the iterations when at least
one component is annihilated automatically. Note that the annihilations in iteration
159 and 3060 were due to excessively small variances in components of link 7 and 1,
respectively. Likelihood spikes can be seen at those iterations, but the correspond-
ing parameter sets were rejected as PML estimates because the algorithm did not
converge.

The hybrid delay mixture models were also empirically estimated from the inter-
nal link delays generated by ns. With the mixture components being Gaussian, they
were similarly normalized to the support region (0, 00) by distributing the probabil-
ity mass over (—00,0). The results were compared to the PML-CEM? estimates, as
shown in Figure 3.12. The L; error norms between the empirical and PML-CEM?
hybrid mixture estimates are depicted in Figure 3.12(h). L; error norm is widely
used in density estimation to assess the goodness of inference [71, 72]. In our case it
is simply the sum of the absolute difference between the minimum delay probabili-
ties and the integral of the absolute difference between the continuous mixtures over
(0, 00).

As shown in Figure 3.11 and 3.12, the Gaussian mixture components capture
the profile of the empirical continuous portion of the density for most of the links.
They also provide accurate estimates to all the queueing delay ranges. Some modal
mismatches occur in the estimates at, for example, link 1. This error is probably
due to the limitation of the k" = 6 Gaussian + 1 point mass component model.
For a better fit to the internal delay histograms it may be necessary to assign more
point masses and include other density models which are flatter or more heavy-tailed

than Gaussian. Other sources of error might include: violation of the spatial or
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temporal independence assumptions; insufficient number of probe samples to resolve
link densities; existence of local maxima in the likelihood function; and burstiness

(non-stationarity) of the traffic. These are topics worthy of additional investigation.

3.6 Conclusion and Future Work

This chapter focuses on the estimation of internal link delay distributions from
end-to-end unicast packet pair delay measurements when there is a positive probabil-
ity of zero queueing delay, i.e., lightly to moderately loaded networks. We proposed a
new hybrid discrete-continuous finite mixture model which circumvents the difficul-
ties of link delay discretization. For the case that mixture model orders are known,
we derived an EM algorithm for approximating the ML estimates. Model simulation
showed that when all model assumptions hold the EM algorithm can very accurately
estimate the delay distributions for each internal link. When the model orders are
unknown, we implemented an MML order selection penalty and derived an unsu-
pervised algorithm for estimating both the number of mixture components and the
continuous density parameters. Results of ns-2 simulation showed that reasonably
accurate estimates of internal link delay distributions are possible. The estimated
link delay distribution yield a statistic which could be used to extract information
such as mean link delay, tail probability of large link delays, and multi-modality in
link delay distribution.

Future work could include finding ways to accelerate convergence of the ML-EM
and PML-EM algorithms for real-time implementation. EM algorithms are generally
slow and the improvement made by CEM? is still limited. This makes it difficult
to perform extensive comparisons. In the ns simulation we generated traffic flows

that travelled across two or more consecutive links. These data flows contributed
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Figure 3.11: (a) - (g) Normalized ns-derived histograms for non-zero link delays
and estimated Gaussian mixture density for indicated links. The horizontal axes
denote link packet delays in milliseconds. (h) shows the convergence curve of the
MML penalized likelihood function. The solid vertical lines denote the iteration
numbers where the number of Gaussian mixture components is reduced by com-
ponent annihilation in the algorithm. The dashed vertical lines show the conver-
gent iterations where the component with the least mixture probability over all the
links is removed and the algorithm is restarted with the remained components. The
links affected by component removal in the increasing order of the iterations are
{4,5,7,3,1,2,1,2,6,4,5,3,2,1,7,3,2,6,4,7,1,4,5}. The asterisk indicates the iter-
ation which converges to the highest penalized likelihood.
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links in the ns simulation. k(empirical) and k(PML-CEM?) denote the model orders
for the two estimates, respectively. The estimated empty queue probabilities are
shown by stems left to the mixture model estimates. The horizontal axes denote link
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approximately 10% of the background traffic and introduced spatial dependenecy on
link delays over their traffic path. The experiment result showed that our algorithm
produced accurate estimates for link delay distributions in spite of the violation of
spatial independence assumption. However, it is necessary to evaluate the effect on
our algorithm when the spatial dependency on delays among different links becomes
more severe.

Another possible direction is extension of our model to include spatial dependen-
cies of link delays among different links, especially the links along the same path. To
better fit link delay distributions in a real network, one could extend our hybrid finite
mixture model to include more point masses and combinations of different families
of probability densities which are flatter or more heavy-tailed than Gaussian. For
example, exponential densities are more efficient to describe exponential tails of the
distributions which correspond to rare large delay events in a lightly or moderately
loaded network. For heavily loaded situations some heavy tailed functions, such as
Pareto densities, might be used. This could also reduce the model orders in the fi-
nite mixture models and diminish the computational complexity for the ML-EM and
PML-EM algorithm. For time-varying scenarios adaptive schemes need to be devel-
oped in order to capture possible changes in the traffic statistics and the network
environment. It could be achieved by estimating only the tail components of the
mixture models after each consecutive probing session if the change on large packet
delays is the focus. It may also be viable to apply these methods to detecting ab-
normal changes in link delay distributions, which could be helpful to early detection

of possible failures and/or malicious activities in the network.
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CHAPTER 4

Accelerated Estimation of Hybrid Mixture Delay

Models

4.1 Introduction

When hybrid mixture models are used in network delay tomography, the number
of components in a path delay distribution is the product of link delay model orders
throughout that path. The computational complexitiy of the PML-EM algorithm is
extremely high due to the exponential growth of end-to-end delay model orders with
the network size. This makes the algorithm of chapter 3 extremely slow even with
moderate-sized networks. In this chapter we propose a divide-and-conquer strategy
to sequentially estimate link delay distributions from the bottom level to the top of
the network. Although it is impossible to reduce the complexity lower than exponen-
tial rate since the number of links and probe trees increases exponentially with the
depth of the network tree, we can decrease the exponential rate of increase for the
shared paths of the probe trees. The accelerated algorithm is tested with the ns-2
data generated in Section 3.5.2 and the results are compared with those obtained

from the original algorithm. These results show that the accelerated algorithm at-
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tains close Ly error norm performance to the original while saving approximately
40% of runtime.

Our contribution in this chapter is summarized as follows: (1) We propose an
accelerated estimation algorithm for network link delay distributions based on end-
to-end delay measurements. Our algorithm divides and conquers the problem in a
bottom-up fashion which allows parallel processing of the probe trees with branch-
splitting nodes having the same depth; (2) Through ns simulation we demonstrate
the accelerated algorithm produces accurate estimates for link delay distributions and
saves approximately 40% run-time compared to the original algorithm in Chapter 3.

The chapter is organized as follows. In Section 4.2 we analyze the computational
complexity of the original algorithm and discuss the motivation to reduce its expo-
nential base. In Section 4.3 we provide notations and definitions to be used in the
accelerated algorithm. Then the algorithm is summarized step by step and illustrated
by an example. In Section 4.4 we apply the accelerated algorithm to ns-2 generated
data and compare the results with those from the original algorithm introduced in

Chapter 3. Section 4.5 concludes the chapter and discusses the future work.

4.2 Motivation

The complexity of the PML-EM algorithm in the previous chapter has an expo-
nential order of magnitude with respect to the depth of the logical network tree. In
addition to the notations and assumptions used in Chapter 3, we define the level of a
node v by its hop distance to the root node, denoted by level(v). Consider a symmet-
ric binary tree with depth D in which all leaf nodes have levels D. For example, the
network used for simulations in Chapter 3, as shown in Figure 3.6, is a symmetric bi-

nary tree with depth 3. In the network there are a total of L = 14 - -+2P71 = (2P 1)
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links and 297! level-d internal nodes for d = 1,...,D. (Remember we assume the
root node always has a single child node.) The total number of internal nodes is
1+--++2P2=(2P~1 — 1), which is also the minimum required number of probe
trees N/ in this case. Here we use only NJ*" probe trees to sufficiently cover the
network. Assume the number of mixture components in every link delay model of the

same magnitude order and that this number has an average equal to k = + Lk,

L 2ai=1
where k; is the number of components used in link 7. The average computation
needed to perform one iteration for each term of {wl(f,;:”), ng,;’j)(el,m)} (see Appendix
A) in the conditional expectation (3.7) is lower bounded by O(k+1)”~*. This bound
follows by Jensen’s inequality L 377 (k + 1)P~! > (k + 1)P~'. Let N, = N be the

number of probe pairs collected at probe tree ¢. From Eq. (3.6) an lower-bound for

the average complexity of the PML-EM algorithm is

> ET: > 2k +1)(k+1)P
— _N(;’ —1ERPT -1D)Rk+1)(k+ )P ~ O ((4k + 4)7), (4.1)

where L = (2P — 1), Npin = (2P~1 — 1), and 2k + 1 is the average number of the
terms {wl(l;:) and Ql(f;g)(ﬁl,m) to be computed for one packet pair delay sample. To
be specific, one needs to compute k + 1 {wl(lnil) and k Ql(f,’;)(ﬂl,m) for each sample (see
Appendix A for details).

From the ns-2 simulation in chapter 3 we found there was an inconsistency
between the model order of the path delay distribution obtained directly from the
end-to-end delays and the product of the model orders for individual links along
that path. Although theoretically the former should be in the order of (k + 1)?,
we observed it to be an order of k instead. Possible reasons are that we did not

collect enough data samples and/or the interprobing time sampling was too coarse
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to yield low variance estimates of the distributions. However, these are also practical
restrictions in real networks. The Internet is a highly variable environment that has
insufficient stationarity for the collection of large amount of independent identically
distributed samples. The interprobing must not be too large in order to avoid flooding
the network with probes. Under such circumstances one simply has to accommodate
moderately high variance in aggregated delays along chains of links and hope this does
not cause much loss in accuracy for the estimates of individual delay distributions.
This is possible when there are many probe paths intersecting the same links.

For each probe tree we propose to approximate the delay distribution of the
shared path with a low model order, e.g., similar to that for a single link, regardless
of the actual length of the path. Let b(¢) be the branching node of probe tree ¢. The
depth of ¢ is determined by the level of its branching node, i.e., depth(t) = level(b(t)).
In a symmetric binary tree with depth D there are 2¢~! probe trees with depth d
ford =1,...,D — 1, and they all have d links in their shared paths. The original
algorithm of Chapter 3 requires an average not less than (k + 1)¢ components to
describe the delays along these shared paths, when, as above, k is the average number
of components per link. Therefore the computational complexity of the EM iteration

over these shared paths is lower-bounded by

L NN
SN @k +1)(k + 1)e®
I=1 t=1 n=1
D—-1
= N2 -1)(@2k+1)) 2 k+1)*
d=1
2k +2)P — (2k + 2)

= N2P -1D)(2k+1)

2(2k + 1)
~ O((4k+4)7) =0 (e?), (4.2)
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where py = log(4k + 4). (4.2) is the same as the bound on average complexity over
all paths in (4.1). On the other hand, if we use only k components on the shared

paths the average per-iteration complexity becomes

L NN

SN E+1)(k+1)

=1 t=1 n=1

= N2P -1 —1DE2k+1)(k+1)

~ O04P)=0(e"P), (4.3)

where p; = log(4). Thus we have a complexity exponential rate constant which is
significantly reduced (from pg to p;) and that is independent of k. More specifically,
we have reduced dependency in k from D-depth power to quadratic.

If the model order reduction approximation is directly applied to the PML-EM
algorithm to update all the parameters simutaneously, the algorithm may not con-
verge. This is because there is no longer guaranteed monotonicity in the likelihood
sequence since the algorithm is not fully consistent with its complete data model. To
counteract this deficiency, we use a divide-and-conquer strategy instead of simuta-
neous updating. We estimate link parameters level by level, from the deepest internal
nodes to the root’s child node. For each internal node in a level of this “bottom-up
approach”, we apply the PML-EM algorithm to a subset of probe trees whose shared
path includes the route from root to that node. The purpose is that every time when
we use the PML-EM algorithm the path from root to the specific internal node is
treated as a single link, called a superlink, whose delay distribution is described by a
single hybrid mixture model in the algorithm. In this way, the algorithm corresponds
to an identical complete data model used in Chapter 3 and we maintain the property

of monotonic likelihood convergence. Details will be provided in the next section.
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4.3 Accelerated PML-EM Algorithm

4.3.1 Notations and Definitions

Consider a logical tree network 7' = (V,E). Probe pairs are generated from
the root node 0 and sent through Np(> NJ*) different binary probe trees which
satisfy the sufficient probing condition. The probe trees are labelled from t =1 to
Nr and the set of probe trees is called T, = {1,..., Np}. Let ¢(t) and cx(t) be
the left and right child node of the branching node b(¢) in probe tree ¢, respectively.
We say that probe tree t; is a descendant of ¢y if b(t1) = c¢1(t2) or b(t1) = ca(t2),
denoted by ¢, < ty, for t;,t, € T),. By convention we say ¢ < t. Denote the set
of all descendant probe trees of t by T4(t) = {t' € T,:t <t}, fort € T,. We
call a superlink any chain of links in the tree and define the superlink from the
root to b(t) of a probe tree t by [;(t). We also represent the directed links in ¢
which connect b(t) to ¢1(t) and co(t) by lo(t) and I3(t) by lo(t) = (b(t),c1(t)) and
I5(t) = (b(t),ca(t)), respectively. A pseudo two-leaf tree obtained from probe tree ¢
is defined by 7 = {\7(1&) = {0,b(t), 1 (1), e2 (1) }, E(t) = {ll(t),lg(t),lg(t)}}.

Consider the example of the logical tree network in Figure 4.1(a). A minimum
number NJ¥" = 5 of probe trees are used to send probe pairs and they are shown in
Figure 4.1(b)-(f). Here T, = {1,2,3,4,5}. For example, the branching nodes and
levels of probe tree 1,2, and 5 are b(1) = 6, b(2) = 3, b(5) = 1, and depth(1) = 3,
depth(2) = 2, depth(5) = 1, respectively. Two examples for sets of descendant trees
are Ty(2) = {1,2} and T4(5) = {2, 3,4,5}. For probe tree 2, ¢;(2) = 6 and ¢»(2) = 7,
[1(2) is the superlink from node 0 to 3, [5(2) = 6 and [3(2) = 7. It’s pseudo two-leaf

tree 2 is shown in Figure 4.1(g).
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(a) (b) (c) (@

Probe Tree 4 Probe Tree 5

(e) (f) ()

Figure 4.1: Example of a logical tree network (a) and its 5 probe trees (b) - (f).(g)
shows the pseudo two-leaf tree 2.
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4.3.2 Initialization

We form sample average estimates for the point masses in the delay distributions
as in Chapter 3. For the mixture models we adopt the same idea of initialization for a
two-leaf tree network from Section 3.4.3. Consider the pseudo two-leaf tree network
t in Figure 4.2 for one of the probe trees t. Define X;, X, and X3 the delays on
links [4(t), lo(t), and [3(t), respectively. The end-to-end delays from root to leaf of
the pseudo probe tree are Y7 = X; + X, and Y5 = X; + X3. Note that fmay be
entire probe tree t or just a portion of it. The continuous non-zero delay mixture
model of the aggregated delays Y, for example, can be obtained from the previous
level of the algorithm if node ¢ (¢) is not a leaf node of T', or is otherwise estimated
by applying the mixture EM algorithm to the end-to-end probe delays collected at
c1(t) which are greater than the minimum path transmission latency. Suppose the

mixture models for Y] and Y5 are
Ky
Xg‘t) (y) = Z pr,m¢(y, 97‘,777,) r= 17 27 (44)
m=1

respectively. Let n =3, () 21,0 be the minimum transmission delay on I1(t), and 3
be the sample average estimate of its probability point mass. Define k = maz(k1, ks).
Kk mixture components {prjymjgb(y; Hrj,m].)};zl are selected from th) (y) and th)(y) ac-
cording to the least distance criterion described in Section 3.4.3. The initialization

of delay distribution estimates hgt) (x), hét) (x), and hgt) (x) for X, X, and X3, re-

spectively, are selected as before:

B @) = B =)+ €Y prym, 03 Ory )
j=1

WM @) = dned(@ — ow0) + (1= dumo)xioi(z) i=2,3,  (4.5)
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Figure 4.2: A pseudo two-leaf tree network denoted .

where ¢ is a factor which normalizes the sum of {p,; i, }f:1 to1— B In the sequal we
will assume that the deterministic zero-queueing delays 7 and {x;,;)0}; are known.
Without loss of generality, we will assume that n = 2,0 = 7,0 = 0 for  being

pure queueing delay.

4.3.3 The Accelerated Algorithm

The accelerated algorithm proceeds as follows. It starts with the set of deepest
probe trees. For each t in the set we first form its pseudo tree ¢ and the set of
descendent probe trees Ty(t). When we apply the PML-EM algorithm to Ty(t) we
only estimate the 3 (super)links in pseude probe tree ¢. For a lower depth of probe
trees it is possible that there exist other links in Ty(¢) which do not belong to Z. In
that case those additional links are all below ¢ and their delay distribution estimates
can be obtained from previous levels. In that case the delay distributions of those
links are replaced by their estimates and remain fixed in the algorithm. If either
path delay mixture models of th) (y) and th)(y) is unknown for ¢, which occurs
when the path ends at a leaf node of the logical tree of the network, we run the

unsupervised learning algorithm of Figueiredo and Jain [48] with respect to the end-
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to-end non-zero probe delays collected for that path. Then we initialize the delay
distributions with hgt)imt(a:), i=1,2,31in (4.5). To take advantage of component-
wise implementation as in Section 3.5.2 we apply the PML-CEM? algorithm to all
the data samples collected at Ty(t). The results are passed to the next higher level
and used for initialization or as fixed parameters in the PML-CEM? algorithm for
this level. The process is repeated until all levels are explored and all the link delay
distributions are estimated. Note that this approach allows parallel processing of
all the probe trees with the same depth. The complete accelerated algorithm is
summarized in Table 4.1.

Table 4.1: Summary of the accelerated PML-CEM? algorithm for network delay
tomography.

Inputs: T, Y, kpin, €
Outputs: {f;(x)}F, in o

d <— maxycr, depth(t)
while (d > 0) do
for each {t € T, : depth(t) = d} do
form ¢
if (th) (y) or Xét)(y) is unknown) then
run unsupervised mixture learning algorithm
with respect to the unknown path(s).

end if
compute hgt)zmt(x), i=1,2,3
run PML-CEM? algorithm :
Inputs: Ty(t), {Y(i’”) (1€ Td(t)}, Kmin, €, {hgt)mit(aj), i=1,2, 3},
{fl(x) e Td(t)a [ 7& ll(t)JZ = 17273}
Outputs: hi”(x), {flim(x) = n’ (x)}
end for
d+<—d-1
end while

i=2,3
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4.3.4 An Example

Consider the network in Figure 4.1(a) and its 5 probe trees in (b)-(f). The
deepest probe tree is probe tree 1 with depth 3, so we begin the algorithm with
d = 3. Figure 4.3 shows the pseudo tree 1 in (a). (b) and (c) are the two paths
used to obtain Xgl)(y) and Xél)(y), respectively. Here Ty(1) = {1} so we run the
PML-CEM? algorithm with respect to probe tree 1 only and we get results h{" ()

for superlink 7;(1), fo(z) = hél)(x) and fio(z) = hgl)(:c).

Figure 4.3: Topologies used in the example in Section 4.3.4 for level d = 3 in the

accelerated algorithm. (a) The pseudo tree 1. (b) The path for Xgl)(y). (c) The path

for x5 ().

The level d = 2 contains three probe trees 2, 3 and 4. We process them in
parallel as follows. For probe tree 2 we form the pseudo probe tree 2 as shown in
Figure 4.4(a). The mixture model X?) (y) for 2 is hgl)(y), obtained from the previous
level, and X§2’ (y) is estimated using data collected for the path depicted in (b). The
PML-CEM? algorithm is applied to Tq(2) = {1, 2} as shown in (c), where fo(z) and

fio(z) (denoted by dashed lines) are known and fixed in the algorithm. The results
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Figure 4.4: Topologies used in the example in Section 4.3.4. for level d = 2 in the
accelerated algorithm. (a) The pseudo tree 2. (b) The path for Xg)(y). (c) Probe
trees 1 and 2, from left to right, in T4(2) used in the PML-CEM? algorithm. The
estimates for the dashed links are obtained from the previous level and fixed in the
algorithm.

are th) (z) for superlink 1;(2), fe(z) = hé2) (z) and fr(z) = hg) (x). Similarly, for
probe tree 3 the pseudo tree 3 and the two paths for Xf’) (y) and X;3)(y) are depicted
in Figure 4.5(a)-(c), respectively. T4(3) = {3} and the results of the PML-CEM?
algorithm are h{¥ (z) for superlink 11(3), f7(z) = b (x) and fs(z) = h{¥(z). Using
probe tree 4 we get h,§4) () for [,(4), fi(z) = hgl)(a:) and f5(z) = hgl)(a:). Here
T,(4) = {4} and the topologies used for probe tree 4 are shown in Figure 4.6.

In the last level d = 1 the only probe tree having depth equal to 1 is probe tree
5. Its pseudo probe tree 5 does not have any superlinks, as shown in Figure 4.7(a).
In this case Xf’)(y) = p{Y (y) and X;E’)(y) = p{? (y) or ) (y). The set of descendant
trees of probe tree 5 is Ty(5) = {2,3,4,5}. They are depicted in Figure 4.7(b) where
the links 4,5,6,7,8,10 are drawn in dashed lines because their delay distribution

estimates are known and fixed in the PML-CEM? algorithm.
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Figure 4.5: Topologies used in the example in Section 4.3.4 for level d = 2 in the
accelerated algorithm. (a) The pseudo tree 3. (b) The path for X§3) (y). (c) The path

for x5 (y).

Figure 4.6: Topologies used in the example in Section 4.3.4 for level d = 3 in the

accelerated algorithm. (a) The pseudo tree 4. (b) The path for X§4) (y). (c) The path

for x5 ().
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Figure 4.7: Topologies used in the example in Section 4.3.4 for level d = 3 in the
accelerated algorithm. (a) The pseudo tree 5. (b) Probe trees 2,3,4,5, from left to
right, in T4(5) used in the PML-CEM? algorithm. The estimates for the dashed
links are obtained from previous levels and fixed in the algorithm.

4.4 Experimental Results

We use the accelerated algorithm on the ns-2 data simulated in the previous
chapter. The network and probe tree diagrams are redisplayed in Figure 4.8 for
convenience, where (b), (c), and (d) depict probe tree 1, 2, and 3, respectively. Here
we adopt Gaussian mixture components with a single point mass as before. The
fixed empty queue delays {z;o}/_, are assumed equal to 0 and their probabilities are

estimated from sample averages. There are two levels in the accelerated algorithm.
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In the first level d = 2, probe trees 1 and 2 are used to estimate links 4 - 7 and
superlinks /1 (1) and [, (2). Figure 4.9 and 4.10 show the estimated distributions with
their mixture orders and zero-delay point masses for probe tree 1 and 2, respectively.
Normalized “ground truth” empirical delay histograms are also shown superimposed
for comparison of fitting error. These were estimated directly from ns-2 simulated
link level delays that were not available to the tomographic reconstruction algo-
rithm. The histogram for superlink /;(2) from node 0 to 2, for example, is derived
from convolution of those in link 1 and 2, and it is displayed with twice as many
number of bins. Estimated hgl)(az) and th) (x) are drawn in Figure 4.9(a) and Figure
4.10(a) with titles “Link 1 and 2” and “Link 1 and 3”7, respectively. Other estimates
give link delay distributions: fi(z) = A" (2), fs(z) = B (2), fo(z) = h{?(2), and
fr(x) = h?) (x). Note that here we also implement the component annihilation crite-
rion for excessively small variances. Such annihilations result in spikes in likelihood
curves. Figure 4.11 gives the results of the second level d = 1 in which the only
probe tree having depth equal to 1 is probe tree 3 and all the three probe trees
are included in Ty(3) Here hgl)(az) and th) (x) obtained from the previous level are
used for initialization. Since this is the shallowest level, there is no superlink in the
pseudo probe tree 3. The results 4" (x), hS) (x), and hgg) (x) are estimates for delay
distributions fi(z), fo(z), and f3(x), respectively.

The results are compared with those obtained using the original algorithm as
introduced in Chapter 3. Figure 4.12(a)-(g) show the estimates obtained from both
algorithms superimposed with empirical hybrid mixture model estimates derived
from the simulated link delays. The mixture models in the empirical estimates were
obtained by applying the algorithm of Figueiredo and Jain to non-zero link delays.
The estimates from both algorithms for link 4, 5, 6, and 7 are close to each other,

but the original algorithm achieves somewhat better modal match to the modes of
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Figure 4.8: (a) The four-leaf tree network used in ns simulation. (b)-(d) The probe
trees.

the true density for link 1 and 3. However, the L; error norms in Figure 4.12(h) show
there is not a significant difference between the two and the accelerated algorithm
even achieves slightly lower L, error for most of the links. This is probably because
the original algorithm does not have sufficient data samples to take advantage of its
finer resolution for the shared path distributions. When data collection is insufficient
for some of the links the estimation error for those links propagates through the whole
parameter space. However, in the accelerated algorithm this propagation is partially
mitigated due to its divide-and-conquer structure. In a practical situation where the
number of observations is limited, this demonstrates the advantage of the accelerated
algorithm to expedite the estimation process with little loss in accuracy. The total

run time savings obtained by the accelerated algorithm is approximately 40%.

4.5 Conclusion and Future Work

In this chapter we proposed a solution to the slow convergence problem of the

PML-EM algorithm for network delay tomography developed in Chapter 3. It adopts
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Figure 4.9: Results from the first level d = 2 of the accelerated algorithm using
probe tree 1. (a) - (¢) Normalized ns-derived histograms for non-zero link delays
and estimated Gaussian mixture density for indicated (super)links. The horizontal
axes denote link packet delays in milliseconds. (d) shows the convergence curve of
the MML penalized likelihood function. The solid vertical lines denote the iteration
numbers where the number of Gaussian mixture components is reduced automatically
by component annihilation in the EM algorithm. The dashed vertical lines show the
convergent iterations where the component with the least mixture probability over
all the links is removed and the algorithm is restarted with the remained components.
The links {/;(1)} affected by this reduction are indexed by {2,3,1,2,3,1,2,1,2,3,1} in
iterations {2,5,449,455,477,540,668,1072,1177,1214,1274}, respectively. The asterisk
indicates the iteration which converges to the highest penalized likelihood.
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Figure 4.10: Results from the first level d = 2 of the accelerated algorithm using
probe tree 2. (a) - (¢) Normalized ns-derived histograms for non-zero link delays
and estimated Gaussian mixture density for indicated (super)links. The horizon-
tal axes denote link packet delays in milliseconds. (d) shows the convergence curve
of the MML penalized likelihood function. The solid vertical lines denote the it-
eration numbers where the number of Gaussian mixture components is reduced by
component annihilation in the EM algorithm. The dashed vertical lines show the
convergent iterations where the component with the least mixture probability over
all the links is removed and the algorithm is restarted with the remained compo-
nents. The links {/;(2)} affected by this reduction are indexed by {1,3,2,3,1,2,3,1} in
iterations {81,185,364,555,656,777,830,887}, respectively. The asterisk indicates the
iteration which converges to the highest penalized likelihood.
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Figure 4.11: Results from the second level d = 1 of the accelerated algorithm using
probe tree 3. (a) - (¢) Normalized ns-derived histograms for non-zero link delays
and estimated Gaussian mixture density for indicated (super)links. The horizon-
tal axes denote link packet delays in milliseconds. (d) shows the convergence curve
of the MML penalized likelihood function. The solid vertical lines denote the it-
eration numbers where the number of Gaussian mixture components is reduced by
component annihilation in the EM algorithm. The dashed vertical lines show the
convergent iterations where the component with the least mixture probability over
all the links is removed and the algorithm is restarted with the remained compo-
nents. The links {/;(3)} affected by this reduction are indexed by {1,2,3,1,3,2,2,1}
in iterations {953,1654,1963,3349,3698,4285,4302,4358}, respectively. The asterisk
indicates the iteration which converges to the highest penalized likelihood.
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Figure 4.12: (a) - (g) Comparison of empirically estimated hybrid mixture link
delay distributions with k(empirical) components (solid) to the estimates with
k(accelerated) components obtained from the accelerated algorithm (dashed) and the
estimates with k(original) components obtained from the original algorithm (dotted).
The horizontal axes denote link packet delays in milliseconds. L; error norms be-
tween the tomographic and empirical estimates are shown in (h) for the accelerated
(solid) and original (dashed) algorithms.
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Figure 4.12 (continued)
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a bottom-up approach to divide the estimation problem into subproblems where
shared probe path delays have model sizes in the order of that for a single link.
The analysis proves that the complexity of the algorithm can be reduced to a less
exponential base with respect to the network size. The ns-2 simulation results show
that the accelerated algorithm achieves the same level of estimation accuracy as the
original algorithm and reduces by approximately 40% the runtime complexity.

A possible future direction is to reduce the delay model orders by using more
sophisticated mixtures which use combinations of different families of probability
densities. For example, exponential densities are more efficient to describe expo-
nential tails of the distributions which correspond to rare large delay events in a
lightly or moderately loaded network. For heavily loaded situations some heavy
tailed functions, such as Pareto densities, might be used. The reduction in model or-
ders directly diminish the exponential rate constant in the computational complexity
for the algorithm and further reduction would attain further acceleration at the pos-
sible expense of additional fitting error. Another issue, which we have not addressed
in either Chapter 3 or 4 is the estimation of the minimum packet delay, which has
been assumed known. This would not be difficult, indeed it is a simple modification
of the degrees of freedom of the point mass estimated via sample averages to initialize
the EM algorithm. One could include the additional unknown parameters into the
EM iterations but this unknown parameter could affect the convergence rate of the

EM algorithm.
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CHAPTER 5

Hierarchical Inference of Unicast Network

Topologies Based on End-to-End Measurements

5.1 Introduction

The infrastructure of a packet network is composed of switching devices (as nodes)
and communication channels (as links). Packet routes across the network provide
topology information. Tools such as traceroute can trace a packet route by collect-
ing responses from all the switching devices on the route. This kind of cooperation
from the network has a negative impact on network performance and security, and
such cooperation is likely to become more diffcult in the future. Due to this reason
the problem of discovering the network topology based only on end-to-end measure-
ments has been of great interest. Several method of solution have been investigated
using network tomography approaches [28, 29, 30, 31, 32, 49].

In this chapter we propose a general method for estimation of unicast network
topologies. As in [30] and [39] we focus on estimation of the logical tree structure of
the network. Unlike in previous work in which a binary tree is first estimated and then

extended to a general tree using heuristic thresholds or Monte-Carlo methods, our
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method accomplishes direct estimation of a general binary or non-binary logical tree.
The key to our approach is a formulation of the problem as a hierarchical clustering
of the leaf nodes based on a set of measured pair-wise similarities. Each internal node
specifies a unique cluster of descendant leaf nodes which share the internal node as
their common ancester. Each leaf node itself is considered as a single-node cluster.
The clusters for sibling nodes, i.e., nodes having the same parent, define a partition
into cluster of the set of leaf nodes specified by their parent. Given a partition we
call a pair of leaf nodes an intra-cluster if each node in the pair is in the same cluster,
otherwise they are an called inter-cluster.

The similarity of a pair of leaf nodes can be represented by a metric function
associated with the path from the root node to the nearest ancestor of the two leaf
nodes. Our algorithm can be applied to any probing scheme that produces accurate
estimates of a discriminating similarity metric. We apply our clustering algorithm to
three different types of similarity estimates obtained from end-to-end measurements:
delay difference using sandwich probes, delay variance using packet pairs, loss rate
also using packet pairs. We modify the likelihood model for the pair-wise similarities
proposed in [34] to include a prior distribution on the nearest common ancestor node
of each pair of the leaf nodes. This results in a finite mixture model with every
component corresponding to a distinct internal node. An unsupervised PML-EM
algorithm is developed to estimate the mixture model parameters using an MML-
type of penalty for excessively high model order selection. The PML-EM algorithm
developed here is similar to the mixture model PML-EM algorithm developed for
delay tomography in Chapter 3. However, while the algorithm of Figueiredo and Jain
was applicable to delay tomography, the MML penalty of [48] becomes degenerate
for our formulation of the topology estimation problem. Therefore a different type

of penalty, introduced by Oliver et al. in [89], is adopted here.
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Given the similarity mixture model for the set of leaf nodes specified by an in-
ternal node, the component with the smallest mean is exactly supported by the
inter-cluster pairs of leaf nodes for the partition derived from the children of the
internal node. We call this component the inter-cluster component. To define the
likelihood of a partition we express the set of leaf node pairs as the union of the set
of inter-cluster pairs and the set of intra-cluster pairs for each cluster. The partition
likelihood is then formulated as the product of individual intra-cluster likelihoods
times the inter-cluster likelihood. Each intra-cluster likelihood obeys a finite mix-
ture model and the inter-cluster likelihood is specified by the inter-cluster component.
A new topology likelihood is then hierarchically formulated as the product of each
(conditional) partition likelihood resulting from the tree topology.

Topology estimation is performed by a recursive search for the best partitions
of the leaf nodes from the top to the bottom of the logical tree. The partition
algorithm utilizes a clustering procedure based on the connectivity of a complete
graph derived from the finite mixture model of the leaf node similarities. To reduce
the complexity in the graph-based clustering we propose a pre-clustering step which
aggregates the leaf nodes into clusters based on a simple rule. For each node we use
the inter-cluster component to determine the set of the remaining nodes which are
in a different cluster from that node. Then we simply cluster the leaf nodes which
correspond to identical sets. We propose a progressive search algorithm for the
inter-cluster component, which is the key element for deriving the complete graph.
If the mixture model estimate is too coarse it is possible to merge the inter-cluster
component with other ones and produce an overly fine partition. We propose to use
a post-merging algorithm to solve this problem.

To summarize we list the major differences of our algorithm from previous al-

gorithms proposed in [30, 32]: (1) our use of hierarchical topology likelihood with
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finite mixture models and MML model order penalty; (2) our top-down recursive
partitioning of the leaf nodes using graph-based clustering and unsupervised learn-
ing of the finite mixture models; (3) our intelligent search of the partition likelihood
surface using the graph clustering procedures. Our algorithm has the advantage
of direct estimation of the general logical tree structure without the need for any
heuristic thresholds and it yields unbiased estimates of topology. It also avoids the
complexity introduced by Monte-Carlo methods as in [32]. The performance of our
algorithm is compared with the previous ones using matlab model simulation. The
results show that our algorithm generally achieves a lower error distance to the true
topology and a higher percentage of correctly estimated trees when the distance is
measured by a graph edit distance metric specialized to trees, called tree edit distance
(101, 102, 103, 104]. These results are obtained under a wide range of conditions on
the magnitudes and variances of the similarity estimates.

The three candidate probing schemes are evaluated on a ns simulated network
using our algorithm. The Monte-Carlo simulation shows the delay difference mea-
sured by the sandwich probes have the best performance when the network load is
light. For a moderate load situation the delay variance using packet pair probes
provides the most reliable estimates for the leaf node similarities. When the network
is congested with heavy traffic the loss rate measured by packet pair probes gener-
ates topology estimates with the lowest error as measured by graph edit distance.
We also use graph edit distance to define the distribution of topology estimates and
illustrate it with a network simulated in ns.

Our contribution in this chapter is summarized as follows: (1) We suggest a
finite mixture model for end-to-end similarity measurements of the leaf nodes in a
logical tree network, and develop a PML-EM estimation algorithm using MML-type

model order penalty; (2) We propose a hierarchical topology likelihood for logical
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tree networks based on finite mixture models of end-to-end measurements; (3) We
develop a general unsupervised hierarchical estimation algorithm over logical tree
network topologies using end-to-end measurements; (4) We introduce packet pair
probes in network topology discovery and suggest two types of similarity metric
measured by packet pairs. We compare the performance of the suggested packet
pair probing schemes with that using sandwich probes through ns simulation under
various network load conditions. Conclusions on the best performance scenario for
each probing scheme is provided; (5) Through model simulation we demonstrate that
our algorithm outperforms the DBT and LBT algorithms because our algorithm
adopts a less greedy approach to find the optimal topology; (6) For Monte-Carlo
experiments on network topology discovery, we define the median topology and the
distribution of topology estimates using graph edit distance.

This chapter is organized as follows. In Section 5.2 we set up the logical tree
network model. The probing methods and their associated similarity metrics are
also introduced. In Section 5.3 we derive the finite mixture model for the end-to-end
similarity measurements. Based on this model we define the partition likelihood and
the hierarchical topology likelihood that will be used in the estimation algorithm. In
Section 5.4 we formulate the PML-EM algorithm to estimate the proposed finite mix-
ture model. A hierarchical topology estimation algorithm (HTE) is then developed
and the partition schemes are illustrated. In Section 5.5 we conduct comprehensive
simulations in matlab and ns-2 to evaluate the performance of the proposed algo-
rithm with different probing methods and network environments. We also compare
our algorithm with the algorithms in [30, 34] based on binary trees. Section 5.6

provides the conclusion and discusses future work.
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5.2 Background

5.2.1 Problem Formulation

Our work focuses on the problem of estimating the logical tree network structure
given end-to-end statistics measured by probes sent from the root to the leaf nodes.
We assume the root and the leaf nodes are the only accessible nodes to the estimator.
There is no cooperation from routers or other devices on interior links of the network.
We do not exploit any prior information on the number of the internal nodes or their
interconnections.

A directed logical tree T" is defined by two sets of objects: V as the set of nodes,
and E as the set of directed links. V can be expressed as the union: V.= {0}UV,UV,,
where the root is defined as node 0, V; denotes the set of internal nodes and V, is
the collection of leaf nodes. We let the root be the only node having a single child
node, while all internal nodes have at least two children and the leaf nodes have none.
Thus in order to translate a real network into a logical tree we have to ignore all of
the internal devices which have single inbound and outbound links, and connect their
parent and child nodes by a virtual link. Such devices are not identifiable from the
end-to-end measurements. We adopt the following labelling scheme for the logical
tree. The leaf nodes are labelled from 1 to R, where R = |V,]| is the total number
of leaf nodes. The labels for the internal nodes start from R + 1 to R+ |V;|. The
links are numbered corresponding to their child end nodes, i.e., link [ connects node
[ to its parent. The topology estimation problem is illustrated in Figure 5.1, where
the right part shows an example of a logical tree.

The topology estimation problem can be formulated as hierarchical clustering
of the leaf nodes in which each group of nodes may be recursively partitioned into

subgroups [32, 49]. The corresponding tree is known as a dendrogram. Each internal
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node in a dendrogram specifies a cluster of leaf nodes which share the internal node
as their common ancester. The clusters for sibling nodes, i.e., nodes having the same
parent, define a partition of the set of leaf nodes specified by their parent node. Each
leaf node itself is also a cluster, called a trivial cluster. For example, the children of
node 7 in Figure 5.1 divide up the leaf nodes into two groups: {1,2} and {3,4,5,6},
where the second group contains subgroups {3}, {4}, and {5,6} corresponding to
node 9.

Hierarchical clustering has been widely studied in many areas such as database
classification and machine learning [73, 74, 75, 76, 77]. It relies on a measure of
pair-wise information, e.g., similarity or inter-object distance, to partition the input
objects. The objects in one (sub)cluster must be more similar to each other than to
those in other (sub)clusters. Suppose the similarity between each pair of leaf nodes
can be quantified by some quantitative measure 7, called a similarity metric. Let v; ;
be the similarity metric value associated with a specific pair of leaf nodes (i, j), i # j.
Assume that 7; ; = 7;, and ;; = 00, indicating an object is the most similar to itself.
Given a partition of leaf nodes, define the intra-cluster similarities as those between
two leaf nodes in the same cluster, and the inter-cluster similarities as those between
two leaf nodes in two different clusters. Figure 5.3 shows an example of inter-cluster
and intra-cluster pairs of leaf nodes with respect to the partition specified by internal
nodes 6 and 7 in the logical tree to the left. The intra-cluster pairs are denoted by
A’ and the inter-cluster pairs are denoted by B’ in the table to the right.

In general, if the clusters are good, the inter-cluster similarities should be smaller
than the intra-cluster similarities. Define C as a hierarchical clustering of the leaf
nodes, i.e., a set of groups of these nodes into clusters and subclusters, along with
the set of v, ; for all leaf node pairs. We propose to define a similarity clustering

tree T,(C) given a hierarchical clustering C as follows. The root node in T,(C)

101



Q
— Bl

Figure 5.1: Illustration of the topology estimation problem. The logical tree (right)
has V, ={1,2,3,4,5,6},V,; ={7,8,9,10}, and E = {1,2,3,4,5,6,7,8,9,10}, where
the links are numbered after their child end nodes.

corresponds to the top-level partition in C, and is associated with the set of all
inter-cluster similarities of that partition. Each cluster containing two or more leaf
nodes corresponds to a child node of the root and is associated with the set of all
inter-subcluster similarities. This process is repeated recursively for all the partitions
having non-trival clusters. The set of similarities associated with a node in T(C)
is called a similarity set. A similarity set is called trivial if all the inter-cluster
similarities in that set are between two trivial clusters, otherwise it is called non-
triwial. All the v;;’s in the same set are assumed to be equal, and they are always
greater valued than those associated with the parent node of 75(C). Figure 5.2
shows the hierarchical clustering C for the leaf nodes in Figure 5.1 and the similarity
clustering tree T(C). The trivial similarity sets in T5(C) are {7y,2} and {y56}. It is
easy to verify that T;(C) is a bijective mapping from a hierarchical clustering to a
tree graph, which means that finding the similarity grouping is sufficient to determine
the hierarchical clustering of the leaf nodes. This property will be the key to the
development of our algorithm.

In topology estimation, the concept of Metric-Induced Network Topology (MINT)
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Y1,3: Y1.4, Y1,5, Y1.6
Y2.3: Y2.4; Y2,5, Y2,6

D) () =

Y34, Y35, Y36,
Y45, Y46

Figure 5.2: The hierarchical clustering C of the leaf nodes in Figure 5.1 (left) and
the corresponding similarity clustering tree 7T(C) (right).

introduced by Bestavros et al. [33] provides a framework for defining the similarity
metrics. Each path in an MINT is associated with a metric function. Note that
each node in the similarity clustering tree corresponds to a unique internal node in
the topology which is the nearest common ancester shared by each pair of the leaf
nodes in the associated similarity set. It implies the following connection between
the MINT and the similarities. Define p; ; as the directed path from node 7 to j for
J being a descendant of ¢, which is expressed as the union of the links intersecting
the path. To simplify the notation we let p; = po; for i € V'\ {0}. Let a(i, j) be the
nearest common ancestor of leaf node 7 and j. We know that each p(; ;) is uniquely
mapped to a similarity set in 75(C) which includes v; ;. Hence we can define ; ; as
the metric function for pg(; ;) in the MINT framework [34, 39]. Moreover, one can
observe that a deeper node in the similarity clustering tree 75 (C) always corresponds
to a longer py ;). This means v; ; must obey a (increasing) monotonicity property
with respect to the length (number of hops) of the path py ;). The properties of v; ;

are summarized as follows [33, 39]:

P1) Monotonicity: v;; < v, if pe,;) is a proper subpath of pe ), for 4,7, k,1 €
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Figure 5.3: Illustration of inter-cluster and intra-cluster pairs of leaf nodes with
respect to the partition specified by internal node 6 and 7 in the tree to the left. The
intra-cluster pairs are denoted by A’ and the inter-cluster pairs are denoted by ’'B’
in the table to the right.

V,.and i # 75, k # 1.
P2) Consistency: v;; = v, if a(i,j) = a(k,l), for i, j,k,l € V, and i # j, k # L.

It is easy to verify that P1) and P2) are sufficient conditions for finding a unique

similarity clustering tree based on the set of v; ;’s.

5.2.2 End-to-end Unicast Probing Schemes

In this section we discuss three possible schemes of unicast probing and induced
similarity metrics that can be used for topology discovery. We assume the network
topology and the traffic routing remain unchanged during the entire probing session.

We also assume the following statistical properties on the network environment:

Al) Spatial Independence. The delays of a packet over different links of its path
are independent. The delays of any two packets on different links are also

independent.
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A2) Temporal Independence and Stationarity. The delays of different packets

on the same link are identically and independently distributed (i.i.d.).

All of the probing schemes can be implemented in a similar way to estimate «; ; and
extract the topology. Assume each probe contains multiple unicast packets which
are sent from the root node to one of the two (randomly) selected leaf nodes i and
j. All the packets share the same traffic route until they diverge toward different
destinations. To make it easy to convey the idea, we define the binary tree formed
by the union of path p; and p; from root to nodes 7 and j, respectively, as a probe
tree, denoted by ?; ;. There are a total of Ny = (12?’) probe trees in 7. Note that
Pa(i,j) i the intersection of p; and p;, and is called the shared path of probe tree t; ;.

The two branches in t; ; are pa(,j),; and py j),;- In Figure 5.4 we depict an example

1]
of a probe tree t35 for sandwich probes discussed below. The shared path psps)
includes link 6 and 8. The branch pes )5 includes link 9 and 5, and py(35),3 is link
3. An estimate of v, ; is computed from the end-to-end statistics collected by the
probe packets, denoted by fAy,(f’j) for the nth sample for v; ;. Moreover, unlike delay
tomography, the probe source and the receivers do not need to have sychronized
system clocks because a constant shift in the mean of delay measurements doesn’t

affect the estimate for any type of the similarity metric that is introduced below.

[16, 23, 24, 58].

Sandwich Probes

Sandwich probes were invented by Castro et al. in [34] for the similar purpose
of topology estimation. Each probe contains three time-stamped packets: two small
packets and one big packet sandwiched between the two small ones. The small packets

are sent to one of the two leaf nodes, while the large packet is sent to the other. In
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Figure 5.4 the small packets A and C are sent to node 5 and the large packet B is
sent to node 3. According to [34] a little space is inserted between packets A and
B to reduce the possibility of packet C catching up to packet A after it seperates
from B. The idea of sandwich probing is that the second small packet always queue
behind the large packet until they seperate from each other at node a(i,j), so the
additional queueing delay suffered by the second small packet can be considered as a
metric on p,(; ;). In the example shown in Figure 5.4, when the network is free from
any background traffic packet B causes (deterministic) queueing delays for packet C
on link 6 and 8, while packet A encounters no delay at all in any link queue. With
a non-random transmission and processing delay for each link, the end-to-end delay
difference between A and C is exactly the sum of the queueing delays of C at link 6
and 8. It is obvious that in this ideal case the delay difference satisfies P1) because
it sums positive queueing delays over the links on p,( j), and it also satisfies P2) as
long as the size of the large packet remains fixed.

When there is background traffic in the network, the queueing delays become
random. The delay difference measurement can be approximated as its determinis-
tic value in a load-free network (the signal) plus a zero mean random noise. It is
reasonable to assume the noise has zero mean because the variability in queueing
delays causes the two small packets to be further or closer to each other with ap-
proximately equal likelihood. The noise might also be assumed to be i.i.d. due to
the independence and stationarity assumptions. The performance of the topology
estimate will scale with the signal-to-noise ratio (SNR) defined as the square of the
signal over the noise variance. As the network load grows the variance of each queue
size increases and the SNR reduces accordingly. A possible failure in this situation
occurs when the second small packet in the sandwich catches up to the first small one

after it jettisoning the large packet. Although the queueing delay variance may drop
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Figure 5.4: A sandwich probe example. The small packets A and C are sent to node
5 and the large packet B is sent to node 3. The probe tree ¢35 is defined by the
routes of the probe packets, which consists of links 3, 5, 6, 8, and 9. The metric v35
is the end-to-end delay difference between A and C.

in a saturated network where the link queues remain nearly full all the time (when it
is assumed that the queue capacities are fixed in bytes), other failures could occur.
For example, the large packet could be discarded by the network before it reaches
the branching point of the probe tree. Besides, heavy packet loss may prevent us
collecting enough samples in a short period of time for which the network can be

considered stationary. Therefore, one can expect the sandwich probes to have the

best performance in a lightly-loaded environment.

Packet Pair Probes

Packet pair techniques have been previously applied to flow control and bottleneck
bandwidth estimation in networks [14, 78, 79]. Recently packet pairs were also used
to perform in network loss and delay tomography [9, 23, 24]. A packet pair probe
consists of two closely-spaced packets, generally with the same small size. They are

both sent from the root node but routed to two different leaf nodes. Figure 5.5

107



Figure 5.5: A packet pair probe example. Packet A and B are sent back-to-back
from the root node to node 5 and 3, respectively. We assume they stay together and
encounter identical delays on shared path which includes link 6 and 8.

depicts an example of packet pair probe. The main assumption justifying the use of

packet pair probes is the following:

A3) Delay Consistency: the queueing delays of the two packets in a packet pair

probe are identical with probability 1 when they travel along the shared path.

Practically speaking, even if the two packets stay close to each other until their paths
diverge, the second packet still tends to have larger queueing delays than the first
one on the shared path due to possible intervening packets from other traffic flows
(cross traffic). Such effects can be reduced by randomly ordering the two packets
[17]. Suppose the packet pair probes are sent through the probe tree t; ;. Let the sum
of the queueing delay of the packet sent from root 0 to node 7 on shared path p,
be dy; = doa(i,j) + dag,j),i, and the packet sent to node j be do; = doa(ij) + dai),j-
The random ordering of the two packets makes dy; and dy ; have approximately the
same mean, i.e., the mean of dy; —dy ; = 0. Under the stated statistical assumptions

the difference dy; — dy; can be modelled as an i.i.d noise process.
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The first type of metric that can be retrieved from the packet pairs is delay
variance. The independence assumption Al) implies that the (queueing) delay over
a path has a variance equal the sum of the delay variance for each link. This variance
is also monotonically non-decreasing with respect to the number of links in the path
since variances cannot be negative. The consistency property can be achieved if the
delay variance over pq(; ;) can be calculated from the end-to-end delays of the packet
pairs sent through ¢; ;. Let Y9 = (Yl(i,;j), Y;i;j)) be the end-to-end delays of the nth
packet pair sent along the probe tree t; ;, where Y1 ) and Y2 ) denote the delays
toward ¢ and j, respectively. We also define Xé n), X1(,;L) and Xéy;f) as the delays of the
nth packet pair over path pa ;), Paij),i> and pag,j),;, respectively. From assumptions
A1)-A3) we know x\on x D) Xéi;f) are independent for all n. So the variance

On »“*1mn »

of Xé;f) can be computed by Var(X ) = Cov(X, ) + Xl(n),Xéf;Lj) + X2(Zn])) =
Cov( s ,YQ(J; )). This relationship is depicted in Figure 5.6.
For each probe tree ¢; ; we need N, end-to-end delay measurements to obtain a

sample of the delay variance over p; ; using the unbiased covariance estimator

St (W45 = 75) (85— 55)

5(17) — 5.1
o Ncov -1 ’ ( )
where géf;{) — Nclov ZZND(Z Nt yq,nm for ¢ = 1,2. Experience has shown that

Neoy is usually around 20 or 30. This means that the number of packet pairs needed
to probe the network should be at least as large as that of the sandwich probes by an
order, provided the same number of metric samples are collected. However, this does
not necessarily imply the time length of the probing session or the overhead of the
network load is also as large or larger. The reason is that the size of a sandwich probe
is generally larger than the packet pair size. A typical packet pair probe consists of

packets containing a few tens of bytes. However, a sandwich probe normally contains
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Figure 5.6: A logical probe tree t; j is shown to illustrate the computation of the delay

variance over p,(;,j) from end-to-end delays. Due to the independence of Xéi’j), Xfi’j),

and X{"7), Var(Xéi’j)) = C’ov(}/l(i’j), YQ(i’j)).

hundreds of bytes due to the need for a large middle packet. Indeed the packet in
the middle of a sandwich probe needs to be large enough to induce distinguishable
queueing delays. Its size requirement will become higher and higher as the network
speed of communication becomes increasingly overprovisioned to accommodate larger
and larger bursts of user traffic. Furthermore, the probing rate needs to be controlled
to keep a minimal impact on the network. When the rate is held fixed for packet pair
and sandwich schemes, it takes an order magnitude longer time to send the same
number of sandwich probes as packet pair probes.

For packet pair probing the identifiability of a link in the network relies on the
relative size of the queueing delay variances in each link. Hence, one can expect
packet pair probing to be ineffective for lightly-loaded environments where there is
little background traffic to provide sufficient variation in queueing delays. On the
other hand, when a link is congested, the high packet drop rate causes a similar
problem for the sandwich probes. Therefore the best situation for packet pair probes

with delay variance metrics is a moderately-loaded network.
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The second type of metric we propose to use with the packet pair is packet loss
rate. Assumption A1)-A3) can be extended by interpreting packet losses as infinite
delays. It implies for a probe tree ¢; ; the packet pair either both survive (with finite
delays) or both get dropped (with infinite delays) on the shared path pq;j). For
simplicity we do not consider the case where their loss events are correlated (with a
correlation coefficient less than 1). Coates and Nowak [9] studied this correlated case
and our methods can be extended to this scenario once a suitable similarity metric
has been identified.

Figure 5.7 shows a probe tree ¢; ; with packet loss rates q(()i’j), qii’j), and qéi’j) over

path pui ), Pa(ij)i and pai )., respectively. Define the following probabilities:

w? = PUYS) < oo} A{Yy,) < oo})
= (1-g")1-g")(1 - )

i’ = PUYS) = oo} A {Yy,) < oo})
= (1—g")a" (1 - ¢)

u” = PYS) < oo} MYy, = oo})

= - -a")a. (5.2)

(@4) ,,(63) |, (6.)

Let ag"’j’,aﬁ"’j’,ag"’j’ be empirical estimates of wuy™’, u;™’, uy”’, respectively. Then

the packet loss rate over p; ; can be estimated by

, for 4l £ 0. (5.3)

Eqn. (5.3) implies the consistency property for the loss metric, and the monotonicity
property holds because the loss rate never decreases as the number of links in the

path increases. Similar to the covariance estimator in (5.1), one needs to collect
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Figure 5.7: A logical probe tree t; ; is shown to illustrate the estimation of the packet
loss rate over pqy(; ;) from end-to-end loss rates.

Nioss packet pairs for a single sample of déi’j ). Unlike the previously discussed two
schemes, packet loss now provides sufficient information to identify the topology for

highly congested networks.

5.3 Hierarchical Topology Likelihood Using Finite

Mixture Models

5.3.1 Finite Mixture Model for Similarity Estimation

Modelling the behavior and dynamics of today’s network has been an active
research area for decades [80, 81, 82, 83, 84|. It is a difficult task due to the large-
scale heterogeneity and non-stationarity of the network environment. Several delay
models in the network has been proposed based on theoretical analysis and/or real
network data (see, e.g., [85, 86, 87]). Most of them are theoretically justified for
an M/M/1 or other queueing system. Others are heuristically justified based on
measurements of a given type of the network. Some combined elements of both

theoretical and experimental modelling. So far there is no evidence known to us that
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any existing delay model will be applicable to all traffic conditions. An exception is
modelling packet loss in a stationary network. It is widely accepted to use Bernoulli
process as the packet loss model for packet loss in stationary environments [5, 6, 9.

To establish a simple and unified framework for both delay and packet loss met-

rics, we adopt the following strategy. Firstly observe that the metric samples %i,j )

estimated from data along probe tree ¢; ;, e.g., the sandwich delay difference, packet

pair delay covariance in (5.1), or packet loss rate in (5.3), are i.i.d according to Al)

and A2). If we average every N, o, estimates 'Ayr(f’j), n=1,..., Nyorm, the result will

be approximately Gaussian distributed when N, ., is large, according to the Cen-

tral Limit Theorem (C.L.T.). We call such sample normalized similarity samples,

denoted by 7,2"”" for the nth sample for v; ;. Note that to compute one normalized

sample it requires N, o, sandwich probes, Ny, Neow packet pairs using covariance
metric, or NpormNVoss packet pairs using loss rate metric. 77(;’” are also 1.i.d. for all

n. Secondly, we find if a(7, j) = a(k,l) = v, then 4459 and 4" have the same mean

as [ty = 7;,;. However, there is no guarantee that their variances are also the same.

As one averages %(f’j ) and f%(f’l) their variances decrease linearly by a factor of Ny orm

as does the variance of the difference between them. With N, .., being large, as
required by the C.L.T., this difference becomes negligible. We will make the large

Nyorm assumption that %f’j ) and f’yy(lk’l) have approximately identical Gaussian distri-

2

bution with mean p, and variance o;. We state this approximation formally as a

Lemma:
Lemma 5.1. Let 77 be the average of Ny,omm i.i.d. metric samples 447, As

Nuorm — 00, %9 and %) become equal in (Gaussian) distribution if a(i,j) =

a(k,l), for i, j,k,l € V, and i # j, k # L.
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A simple model can be drawn from Lemma 5.1 as follows. Let the set of nor-
malized similarity samples for 7; ; be I'; ; = (3%}, and let T = {Tij},)- Also

define N;; = |I';;| and N = >"._. N, ;. For an internal node v in the logical tree

i<j
network, we define T'(v) = {t;; : a(i,j) = v,i < j, i,j € V,} as the set of probe
trees whose branches split at node v. The set of normalized similarity samples for
T(v)is I'(v) = {I;,; : t;; € T(v)}. Let N(v) = [I'(v)]. According to Lemma 5.1

the samples in I'(v) are i.i.d. realizations of a Gaussian distribution with parameters

0, = (tty, 02). Therefore a simple model for T' can be formulated by

f5(T) = ] ¢(T(v);6,), (5.4)
vEV;

where ¢ denotes the Gaussian pdf. and ¢(I'(v); 0u) = [1(; jy.,,erw) 125 (757, 6,).
For the example in Figure 5.1, fs(T) = ¢(L(7); 67)((8): 65) $(L(9): 65) (T (10); f10),
where I'(7) = {T'1 3,14, T15,T16,Ta3, T4, a5, Tog}, T'(8) = {12}, T'(9) = {T'5.4,
[35 036,045, Tag}, and I'(10) = {T56}. (5.4) is similar to the model used in [32].
The problem in topology estimation is then to simultaneously determine the V;,
{a(i,5)}, and {6,} which maximize the likelihood. Although (5.4) is simple and
straightforward, it is not suitable for efficient estimation algorithms. One must de-
termine the topology, i.e., V; and {a(i, )}, before maximizing the likelihood with
respect to {6,} because ¢(+;0,) is only evaluated at I'(v). Therefore the global maxi-
mum likelihood (ML) estimate can only be found by either exhaustive or Monte-Carlo

search [32].
Herein we provide an alternative model which will be used later to develop an
unsupervised estimation algorithm. Suppose there is no knowledge of the common
parent node (i, j) for any pair of leaf nodes (i,7), but the number of probe trees

in T'(v) is known. Let Np(v) = |T'(v)|. A reasonable prior distribution of a(z, j) is
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a(v) = P(a(i,j) = v) = Nﬁ—(:) for v € V;. Given f(T;;la(i,j) = v) = ¢(Ti;;6,)
we have f(Li;) = > oy, a(v)9(Tij;6,), which is known as a finite mixture model
(see, e.g., [47]). A finite mixture model f(z) is generally expressed as the convex
combination of probability density functions: f(z) = anzl Qphm (), where 0 <
o, < 1, 22:1 a,, = 1, and h,, is an arbitrary pdf for m = 1,...,k. The «,,’s
are called the mizing probabilities, and the h,,’s are the mizture components. k is
the number of mixture components in the model, often referred as the model order
of f(x). If the h,’s are all Gaussian (with different parameters) then f(z) is a

Gaussian mixture. Given the mixture models for the similarities I'; ; the distribution

of T' becomes

feu@ =[] Y a)e(Ti;0,). (5.5)
i,]iEVr veEV;
i<j

Note that the model order for the similarities estimated from each probe tree t;;
equals the number of the internal nodes of the tree. Each mixture component
¢(-;0,) corresponds to a unique internal node v and T'; ; is contributed by ¢(-;6,) if
a(i,j) = v. For example, in Figure 5.1, using the mixture model gives frp (T') =
[Ljcq,. oici L150(Tig; 07) + 150(Tij; 0s)+ 56(Tij;00) + $56(Tij;610)]. The key
difference between the models in (5.4) and (5.6) is that in fzp (I') the common par-
ent node a(i, j) is distributed according to some discrete prior instead of being a
deterministic value. This relaxation leaves the prior, along with other parameters in
the model, to be determined by unsupervised estimation of the mixture model, which
can be implemented using the expectation-maximization (EM) algorithm [48, 89]. To
discover the topology, the similarity sets in the T;(C) are determined by associating

each a(7,j) with the component that the probability of IT'; ; being contributed by the

component is the maximum over all the components in fg,,.
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5.3.2 The MML Penalized Likelihood for The Mixture Model

Likelihood-based estimation of the parameter ® in the mixture model

fru@;0) = T D améd(Ti;0m), (5.6)

i,j€Vy m=1
i<j

for ® = {k,ay,...,a,01,...,0c} falls in the category of missing data problems.
To avoid the complication of optimzing the «,,’s over discrete values in the EM
algorithm, we assume a = («q, ..., ) is continuously distributed over the region
0<a, <1, anzl ., = 1. For a given model order k£ which also denotes the number
of internal nodes, the unobserved data in our case is the {a(i,7)}, which indicates
the contributing component for I'; ;. Define the unobserved indicator function zZeD
form = 1,...,k by ZED = 1 if I'; ; is contributed by the mth component, and
Z7) = 0 otherwise. Along with the observed data T', the set {T', {Z{71} is called
the complete data. The ML estimate of ® with a given k can be obtained by using the
EM algorithm [48, 63] which generates a sequence of estimates with nondecreasing
likelihoods.

However, when £ is unknown this becomes a model selection problem and the ML
criterion can cause an overfitting problem in which a higher model order k generally
results in a higher likelihood. A strategy to balance the model complexity and the
goodness of data fitting is to add model order penalties to the likelihood [91]. We
adopt a criterion called Minimum Message Length (MML) [66] to derive the penalty
function. MML has been widely used in unsupervised learning of mixture models

(24, 48, 89, 90] and was adopted in Chapter 3 of this thesis. The incomplete data
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penalized log-likelihood is generally expressed as [48]

5 def

E(v:e) % logf(®)+logf(Y|G))—%log|1(®) (1+logr),  (5.7)

c
5
for observed data Y and parameter set ®, where I(®) is the Fisher information
matrix (FIM) associated with Y, |A| denotes the determinant of square matrix A, ¢
is the dimension of ®, and k.. is the so-called optimal quantizing lattice constant for
Re.

As one may suggest the unsupervised algorithm of Figueiredo and Jain in [48]
for the estimation of finite mixture models as in Chapter 3 and 4, the MML penalty
could become degenerate in our mixture model formulation for the topology. For
a component in a finite mixture model, we define its support from the realizations
as the sum of the conditional probability for each sample being contributed by the
component given the value of the sample. Equation (17) in [48] indicates that a
component in a Gaussian mixture model survives in the M-step of the PML-EM
algorithm if and only if its support from the realizations is at least 1. Compared
with our model in (5.6) it implies that for an internal node v if there exists only one
pair of leaf nodes (i,j) such that a(i,j) = v, the mixture component corresponding
to v could be easily annihilated by the PML-EM algorithm and node v could become
unidentifiable from the mixture model estimate. Therefore we adopt a different
MML-type approach for the PML-EM algorithm introduced by Oliver et al. in [89],
which is predated to [48].

Our choice for the prior distributions of the parameters follows the approach of

[89]. The mixing probabilities in & have a uniform prior:
k
flay=(k—1)! for 0<ay <1, Vm=1,.k and Y ap=1
m=1
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The prior for oy, is uniform between 0 and o, where o, is the standard deviation of

the entire population I':
1
flom)=—for 0<o0y, <o,

We also take a uniform prior for p,, distributed within one standard deviation o, of
ftp, Where fi,, is the mean of the population I':

1
f(ﬂm)zg for p, —op < iy < pp + 0.
p

The prior for the model order £ is assumed uniform between two pre-determined
bounds k,,;, and k... It is a constant and can be ignored. With the assumption
that the parameters are independent, we have

(k —1)!
2’“(73”€ ’

f(©) = (5-8)

In general it is difficult to derive a closed form for the FIM of finite mixture models
with more than one component. The aughors of [89] suggested to replace the de-
terminant of the FIM by the product of the the determinant of the FIM for each

component times the FIM determinant for the mixing probabilities. Hence
k
Lear(©)] = [Lo(er)| x [ ] [Ln(Bin)l, (5.9)

m=1

where Iy(a) is the FIM for a and I,,,(6,,,) is the FIM for the mth component having
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associated parameters 6, = (tm, 02,). L, (0m) can be expressed as

Ln(Om) = D, L (0m). (5.10)

where I%’j)(em) is the FIM associated with I'; ; for the mth component:

amNi j 0
10 (0) = | " . (5.11)
0 200m N
o2,
Therefore
202 N?
[T (Bn) | = — "5 (5.12)

To determine the FIM for a one can view the a as being the parameters of a
multinomial distribution having N i.i.d. realizations (selecting Ny a(i, j)’s from k
internal nodes), and hence

Np

(o)) = = 5.13
L) = o (5.13)

We do not require a particular ordering on the components, so the corresponding
factorial term in the MML expression (5.7) can be removed. Since there are a total of
k! possible permutations for the components, the likelihood penalty is then decreased
by log(k!). Besides, we also approximate . by k1 = 15 as in [89]. Substituting (5.8)-
(5.13) into (5.7) we have

k—1)! 1
L,(T;0) = log fru(T;0O)+ log (2 ) + log(k!) — 3 logT — k (logﬂ—i— log N)

Fg2h
1 o i 3k
2
-3 mEI log a,, + mgl logos, — 5 (1—log12). (5.14)

The details of the maximum likelihood estimation algorithm maximizing (5.14) over
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® will be provided in the next section.

5.3.3 The Hierarchical Topology Likelihood

Eqn. (5.14) is difficult to use directly for topology estimation due to identifiability
problems even with the overmodelling MML penalties. Recall that each internal node
in the topology corresponds to a unique component in the finite mixture model.
Consider the example in Figure 5.1 once again. If 7,5 = 754, the estimates 77(11’2)
and 77(15’6) admit identical Gaussian distribution using an approximation similar to
Lemma 5.1. Hence we are not able to find the correct set of the internal nodes
because the two mixture components merge to a single component. To overcome
this problem we propose a hierarchical definition of the topology likelihood which
recursively evaluates each partition likelihood and hierarchically clusters the leaf
node pairs into groups having common similarities.

First consider a group of leaf nodes G. Let v(G) = {vi; : i < j, i,j € G}
be the set of pair-wise similarity metrics for G, and I'(G) = {I;; : i < j, i,j €

G} be the normalized samples of v(G). Let K = {Kj,...,Kp} be a partition

where K4,d = 1,...,D are disjoint subsets of G which may contain subclusters.
Without loss of generality, let K1, ..., Kpr be the clusters containing two or more leaf
nodes, and Kpiyq,...,Kp be single-node clusters. According to the monotonicity

property the inter-cluster v; ;’s share the smallest value in 7. Hence the set of all
the inter-cluster I'; ;’s, denoted by I'y(K), obey a Gaussian distribution which has
the smallest mean over I'(G). This means for the finite mixture model of I'(G) the
component with the smallest mean contributes I'y(K). We call this component the
inter-cluster component of fry(T'(G)) and let ®y(K) denote its parameter set. All

other components are contributed by the intra-cluster I'; ;’s. Let K be a cluster with
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two or more leaf nodes, [ € {1,..., D’}. The set of intra-cluster I'; ;’s in K, denoted
by I';(K), itself follows a finite mixture model. Let ©;(K) be the mixture parameter
set for fry (Ty(K)). If K has exactly two leaf nodes or all the subclusters in K, are
trivial, the finite mixture model degenerates to a single component. We define the

penalized partition likelihood as:

DI
def
Ly(T(G); K, O(K)) F L, (Ty(K); ©4(K)) + > L,(Ti(K); ©(K)),  (5.15)
1=1

where O (K) = (0y(K),...,0,(K)). For example, the partition specified by the
children of node 7 in Figure 5.1 divides up Gy = {1,2,3,4,5,6} into two clusters
K1 == {Kl,la K1:2} == {{1, 2}, {3, 4, 5, 6}} Wlth F(Gl) - F, FO(KI) - F(?), FI(KI) ==
I'(8), and I'y(K;) = I'(9) UT'(10). Hence

Liy(T(G1); K1, O(Ky)) = L,(To(Ki); ©9(Ky)) + L£,(T1(Ky); ©1(Ky)) +

L,(Ty(K1); ©5(Ky)).

Similarly, for the cluster K 5 in K; which has a subclustering Ko = {K3 1, K22, K23}
= {{5,6}, {3}, {4}} due to common parent node 9, we can also formulate its (condi-

tional) partition likelihood as
Li(T(Gy); K, O(K3) K1) = L£,(To(K2); ©9(K2)) + L,(T1(Ky); ©1(Ky)),

where G’2 = {3,4,5,6}, I‘(Gg) = I‘Q(Kl), FO(KQ) = F(g), and Fl(KQ) = F(lO)
Recall that the similarity sets associated with a similarity clustering tree T(C)
are sets of inter-(sub)cluster similarities. One can easily find that the normalized

samples for non-trival similarity sets I'g(K;), I'o(Ky) and for trivial similarity sets
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I' (K;), I'i(K2) have a one-to-one mapping from the similarity sets associated with
the T5(C) in Figure 5.2. This implies the topology of the logical tree can be obtained
by hierarchical estimation of inter-cluster similarity set using inter-cluster mixture
components.

This example also motivates the following hierarchical topology likelihood for the

logical tree in Figure 5.1:

Lr(T; T, O(T)) = Li(T(G1); K1, O(K))) + L4 (D(Gs): Ko, O(Ky) K1), (5.16)

where O(7) = {®(K,),0®(K;)}. Comparing (5.16) with the similarity clustering
tree T5(C) in Figure 5.2 we find Ly recursively sums up the partition likelihoods
corresponding to the non-trival similarity sets. For a node v in T5(C) define ~y,(vs) as
the similarity set associated with vs, Gs(vs) as the set of leaf nodes involved in v, (v;),
K, (vs) as the partition of G4 (v,) derived by vy, and I's(v,) as the corresponding set of
T, ;’s in G4(vs). Also let v1 > vy denote “v; is a child node of v,”. The construction
of the hierarchical topology likelihood L is summarized by the procedure in Table
a.1.

The construction of £ mimics exactly the construction of the similarity clus-
tering tree. It may seem that estimation using the hierarchical topology likelihood
will lose the ability to perform unsupervised learning because one needs to specify
the hierarchical clustering of the leaf nodes before evaluating L. This is not true
because the clustering itself is performed using the parameter estimates of the finite
mixture model. Note that the partition K (vy) is uniquely determined by the inter-
cluster similarity set “y,(vs), which can be inferred by the inter-clustering component
in fry(T(Gs(vs))) because that component is supported by the estimates of v, (v;).

The details of the clustering algorithm will be provided in the next section. Before
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Table 5.1: Definition procedure for the hierarchical topology likelihood.

Input: T ={V,E}, ©(T), T
Output: Lo(I;T,0(T))

C < the hierarchical clustering of V, according to T’
T,(C) < the similarity clustering tree for C
v, < the root node of T(C)
S" « {v,}
Lr(T;T,0(T)) <0
while (S # ¢)

S+ ¢

S '+ ¢

for all v, € S do

Lr(T;T,0(T)) <+ Lp(T;T,0(T))+
v

for all v, > v, do
if (|v,(3s)] > 1)
S' < S'U{vs}
end if
end for
end for
end while
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explaining the algorithm we would like to make a comment about our model. So
far the model is restricted to Gaussian components because of the approximation
using C.L.T. In fact, (5.5) also holds for non-Gaussian ¢,’s as long as 7%/ and
y®D are approximately equal in distribution when a(i, j) = a(k,[). In that case our
model may be extended accordingly, which may be useful when new probing and/or

approximation methods are proposed in the future.

5.4 Topology Estimation Algorithm

5.4.1 Estimation of The Finite Mixture Model

We first illustrate the estimation of the proposed finite mixture model fry,(T; ©)
for some set G of leaf nodes. Lets assume the model order k is known for the time
being. As discussed in the previous section the complete data is U = {T, {Z5%7)}1,

which has a log-likelihood (without model order penalties)

ZZZ &2 logam+Zlog¢ On) | - (5.17)

1,j€EG m=1
1<

The E-step in the ¢-th iteration computes the conditional expectation:
Q©;0Y) = E {LC(U; o) =g; é)“’]

= Z Z (6:9) logam+ZQ : (5.18)

i,JEG m=1
1<j
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where

Wi — g Zﬁ’j) I=g; o0

P(Zy) = 1,1, = g;;;00)
P(Ty; = gi; ©W)
A(t) Hle ( (i,j); 92(%))

(5.19)
DT Vi (5 i 0)

QU 0y) = E|Z8Dogd(31:0,) 7" = g/ 00 . (5.20)

The M-step maximizes (5.18) with respect to ©:

(4,9)

. W

ay, = Z”EG’;” (5.21)
o = argmax Z ZQ (5.22)

i,j€G [=1

1<J

When ¢ is Gaussian the M-step becomes

i Zz’,jeG,z’<y Zl 1 gz ] (ZJ)
pr, = il (5.23)
Zi,jeG,K] Nij - wm

Ni i ',' % 2 .7.
D ijeGici | 2o=1 (gz(”) - Mm) ] Wi
om = _ ) : (5.24)
Zi,jeG,Kszy W

The best model order k can be determined as follows. We assume £k,,;,, and k,,q.
are the upper and lower bounds for k, respectively, which are determined according
to some a priori information. If such information is not available, for |G| = n
the maximum value for k£ is n — 1, which corresponds to a binary (sub)tree with
dangling leaf nodes (see Figure 5.8(a)), and the minimum value for & is 1, which

corresponds to the case where all the leaf nodes are siblings (see Figure 5.8(b)). For
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(a) (b)

Figure 5.8: [llustration of the corresponding topologies to mixture models with model
order equal £k =3 (a) and £ =1 (b) when there are 4 leaf nodes in G.

each k € [kmin, kmaz] We obtain the maximum likelihood estimate of the parameters
(:)’,; using the EM algorithm, and compute the penalized log-likelihood L, (T; (:)}‘;)
by (5.14). The best model is then chosen as the one which achieves the maximum

penalized likelihood.

5.4.2 Hierarchical Topology Estimation Algorithm

We propose a greedy algorithm to estimate the logical tree topology hierarchically.
It is a top-down approach that partitions the leaf nodes recursively. First we use
frm (T) to find the most coarse partition induced by the root node’s child, then we
determine if there exists any finer subpartition within each cluster. This process
is repeated until no finer partitions are found. Figure 5.9 shows an example which
illustrates how the algorithm works. Figure 5.9(a) is the true topology of the network.
The estimator first identify 3 clusters in V,.: {1}, {2,3,4,5}, {6,7,8,9,10,11}, which
are the 3 encircled groups in Figure 5.9(b). The two shaded nodes are the internal

nodes found by this initial clustering. In the next iteration the estimator determines
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there is no partition existing in the second cluster, but the third cluster includes
4 subclusters, as depicted in Figure 5.9(c), which defines two more shaded internal
nodes in the topology. This iterative procedure is a greedy algorithm because it
doesn’t take into account any possible partition in the subsequent iterations during

the estimation at current iteration.

Figure 5.9: Illustration of the hierarchical topology estimation. (a) depicts the true
topology. (b) and (c) are the first and second steps in the estimation process, respec-
tively. The encircled groups of leaf nodes are the clusters found by the estimator,
which are used to identify the shaded internal nodes.

The key to the hierarchical topology estimation algorithm is to find the partition
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of the leaf nodes. Our algorithm is motivated by the following observation. Label
the component in fpp/(I'(G)) having the smallest mean by component 1. Assume
there is no estimation error in the mixture model. In this ideal case component 1 is
the inter-cluster component supported exactly by all the inter-cluster I'; ;’s. Then

the conditional mean w%i’j) in (5.20) is approximately 1 for any inter-cluster pair

(4,7) and wii’j) ~ 0 otherwise, because w§i’j) can be viewed as a conditional mean
estimator (CME) of the function Zfi’j) indicating whether T'; ; is contributed by the
inter-cluster component. Consider an undirected complete graph H whose vertices

are the leaf nodes in G such that there exists an edge between every pair of the

vertices. If we specify a weight
Wi,; = w(ei,j) =1- wY’j) (525)

to every edge e; j, one can easily find that a vertex in H strongly connects only to
its peers in the same cluster. This implies that the partition of the leaf nodes can be
estimated based on the connectivity of the graph H. The partition in Figure 5.9(c)
using graph connectivity is depicted in Figure 5.10.

Clustering algorithms using graph-theoretic approaches can be found in many
research areas such as the clustering of gene expression data and the information
retrieval in the WWW [50, 51, 52, 53, 54]. Basically any graph-based clustering
algorithm for weighted graphs could work for our purpose. Here we describe a simple
algorithm proposed in [52], the Highly Connected Subgraph (HCS) algorithm. It was
originally developed for unweighted graphs where all the edge weights equal to one,
but can be easily generalized for weighted graphs. Let H = (Vy, Ey) be a graph
both undirected and weighted, where Vg is the set of vertices and Ep is the set of

edges. Every edge e in Fy has a nonnegative real weight w(e). The degree of a
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Figure 5.10: The partition of leaf nodes {6,7,8,9,10,11} in Figure 5.9(c) based on
the graph connectivity. The solid edges have weights ~ 1, and the dotted edges have
weights = 0. The vertices in a circle denote a cluster found in the graph.
vertex v, deg(v), is the number of edges connected to v. A cut in a graph is defined
as a set of edges whose removal results in a disconnected graph. The total weight
of the edges in a cut S is called the cut weight of S, denoted by |S|. A minimum
cut (mincut) is a cut with a minimum weight. The weight of a mincut is called the
connectivity of the graph, denoted by conn(H). Note that the mincut of a graph
may not be unique, especially when the graph is unweighted.

The key definition for HCS is the following: A graph H with n > 1 vertices is
called highly connected if conn(H) > %. An important property of a highly con-
nected complete graph can be obtained by modification of Theorem 1 in [52], which

is provided below:

Theorem 5.1. The average weight of the edges connected to a vertex in a highly

connected complete graph H is larger than %

Proof. Let n be the number of vertices in H. Since H is a complete graph, ev-

ery vertex has a degree equal to n — 1. Suppose there exists a vertex v such that the
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Table 5.2: The HCS algorithm.

HCS(H)
begin
(S, H', H') + MINCUT(H)
if (H is highly connected)
return (H)
else
HCS(H')
HCS(H')
end if
end

1

average weight of the edges connected to v is less than or equal to 5. Denote those

edges by e1,...,e,_1. Then the cut weight of S ={ey,...,e, 1} is

n—1

n—1 n
Bl :;w(ei) <<

which contradicts the fact that H is highly connected.

The HCS algorithm requires a subroutine MINCUT(H) which, for a given graph
H, returns S, H', and H', where S is a mincut of H that divides H into two disjoint
subgraphs H' and H'. The problem of finding a mincut for a connected graph is
one of the classical subjects in graph theory. It has many applications in, for exam-
ple, circuit design and communication networks. Several algorithms for solving the
mincut problem can be found in the literature [92, 93, 94, 95, 96, 97, 98]. The HCS
algorithm is summarized in Table 5.2. [52].

Before applying the HCS algorithm to the topology estimation problem, we would
like to discuss several detailed improvements which can be made to the EM algo-

rithm. In order to make it more compatible with the HCS algorithm we define a new
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indicator function as follows. Let A; and Ay be two clusters in a partition of the
leaf nodes G. Suppose the finite mixture model estimate for I'(G) is fry (T'(G); ©F)
which has k£ components. Let B C {1,...,k} be a subset of the components. Define
FCa,a, = {Tij i € Ay,j € Ay} to be the set of i.i.d. inter-cluster similarities
between A; and A,. Let fg(-) = >, ,cp am®(+; 0;,) denote the composite component
formed by B. Then we define Zg’j’n) as an indicator function for 7,9’” € Ia, A,
where i € Ay, j € Ay, n =1,...,N,;, such that Z](;’j’n) = 1if %" is contributed
by the composite component fg, and Z 9™ = () otherwise. {Zg’j’”)}iyj,n is i.i.d. and

assumed to have mean E[Z47™] = plftA2),

5.4.3 Robust Edge Weights in the Complete Graph

The probability wii’j) in (5.20) used in the edge weights w; ; (5.25) is not a robust

estimator of Z{i’j). Indeed, a single poor estimate in the inter-cluster I'; ; could make

w\" &~ 0 because the numerator in (5.20) is af times the product of each gb(%(f’j); 07)

for f’y,(f’j ) e I'; ;. To overcome this problem we propose to replace w%i’j ) by the average

)

(6.3;m) using only one ¥, in I'; ;. As contrasted

of the conditional mean estimates of Z;
to the original definition in (5.20), this estimate is smoothed over all the samples in

I; ;. The general form of the new edge weight between two clusters of leaf nodes A,

and A, with respect to a composite inter-cluster component fg is then given by

wAl,A2(B) = NA Z Z ZE’ [ B i,7). @*

Az 1€EA] jEAL n=1

(i:7). g
- zzz&@(@g,ww

NAI’A2 €A jEAs n=1 Zm’ 1 v, ( Yn s m)
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where Na, a, = ZieAl Zj€A2 N; ;. Since the [Zg’j’”)k‘yr(f’j); G)*] are i.i.d. for all

300 e T, a,, according to the Weak Law of Large Numbers (W.L.L.N.) we have

lim P (‘wAl,M(B) (- n,(;‘“A”)‘ < 6) —1, (5.27)

NAI,A24>OO

for where € is an arbitrarily small positive number. Note that the edge weights always

fall in the region [0, 1].

5.4.4 Pre-cluster Algorithm

The MINCUT procedure in the HCS algorithm can be computationally demand-
ing when there are many vertices in the complete graph. For example, the algorithm
proposed in [97] has an overall run time complexity of O(|Vy||Ex| + [Vi|?log|V|)
for any graph H. One way to reduce the number of vertices is to pre-cluster H into
groups of leaf nodes which are obviously in the same cluster.

Let B denote the inter-cluster component for a partition of the set of leaf nodes
G. If there is no estimation error in the finite mixture model, B is the component
having the smallest mean, denoted by component 1 for simplicity. A simple way to
determine if a leaf node j resides in a different cluster from 7 is to check whether
weiy,g53 (B) is less than % Define the set of foreign leaf nodes of node i with respect

to B as

: : L. : :
Fg(i) = {j twy ) (B) < 5 € G\{z}} , VieG. (5.28)
Fg (i) contains all possible nodes which are not in the same cluster as i. Then we
simply group nodes 4; and i, in the same cluster if and only if Fg(i;) = Fg(iz).

However, when there exists significant error in the finite mixture model estimates,

it is possible that the component 1 may not be correctly estimated as the inter-

132



cluster component. Two possible situations may occur: a mixture model estimate
with too fine resolution could decompose the inter-cluster components into several
subcomponents, in which the component 1 is only one of the subcomponents, or, an
estimate with too coarse resolution could merge the inter-cluster component with
other intra-cluster components, which results in an overly fine clustering (too many

clusters) of the leaf nodes.

5.4.5 Progressive Search Algorithm

We deal with the first situation by a progressive search method. Let the estimated
components be sorted by ascending order of their means, i.e., component 1 has the
least mean and component k has the largest. The search starts with letting B, = {1}
be the inter-cluster component and forming a pre-clustering K,(B;). Then expand
the inter-cluster component to By = {1, 2} and form another pre-clustering K, (B5).
Repeat this procedure until B, = {1,...,k}. Then we select the pre-clusterings with

the least number of node clusters as the pre-clustering estimates:

~

K, = {K,(B) : [K,(B)| < [K,(B))|.i.j € {L....k}i#j}.  (5.29)

A complete graph can be drawn from each pre-clustering estimate with its vertices
representing the clusters which may contain two or more leaf nodes in one cluster.
The modification of the edge weights in (5.26) can also be applied here. Let H(K)
be the complete graph induced by the clustering K. Then the graphs H(K,(B;)) for
K,(B;) € K, are passed as the inputs of the HCS algorithm and the output with
the highest Ly is the clustering estimate of G, denoted by K(G) We also denote its

A~

corresponding inter-cluster component B; by B.
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5.4.6 Post-merge Algorithm

To address the second situation described at the end of Section 5.4.4 we propose
a post-merge algorithm to deal with overly fine clusters. Given K(G) we form the
complete graph H(K(G)) using B as the inter-cluster component. For every cluster
A represented by a vertex va in the graph we define its closest cluster ¢(A) as the

cluster represented by the strongest vertex connected to va, i.e.,

¢(A) = argmax wa A (B). (5.30)
A'€K(G)

Then for each A € K(G) we get a new partition by merging A and ¢(A) into
one cluster, and evalute the penalized partition likelihood. If the highest likelihood
obtained by merging a pair of clusters is greater than the likelihood of K(G), then
we update K(G) by the corresponding new partition and repeat the process, until
no improvement is made by any pair-wise merge. Note that some of the merges
may result in redundant partition when a pair of clusters are the closest to each
other. The number of merges needed to be tested when there are M clusters is lower

bounded by [%1 and upper bounded by M — 1.

5.5 Computer Simulations

Both matlab and ns-2 simulations were performed to test our modelling and
estimation procedures. First we describe our matlab simulations whose purpose is
to establish the ability to estimate topology from simulated similarity metrics with
additive noise. Then an ns-2 simulation is performed to test the algorithm when

similarities are estimated from probe data.
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5.5.1 MATLAB Model Simulation

First we simulated a small network with the simple non-binary virtual topology
shown in Figure 5.11. The simulations were implemented in matlab and for each pair
of leaf nodes we generated 200 similarity samples as follows. Given a pair of leaf nodes
(4,7), a similarity sample '%(f’j ) was obtained by the sum of randomly generated metric
samples over all the links in the path pq ;) using matlab. Each metric sample for a
link was generated according to a Gaussian distribution with a randomly generated
mean 7y; and a standard deviation o; proportional to the mean. Note that the true
link metric was specified by ;. v, was generated according to a uniform distribution
over a region centered at n with width equal to 3, i.e., v ~ [n — g,n + g] The
standard deviation o; was obtained by multiplying 7, with a positive factor p.

We implemented the proposed hierarchical topology estimator (HTE) with an
averaging factor Ny, = 20 to compute the normalized similarity samples, which
means for each probe tree there were 10 samples of 7%/, We also implemented to
other topology discovery algorithms: the LBT algorithm [34, 32] and the DBT algo-
rithm [29, 31]. The latter was originally designed for multicast networks, but can also
be directly applied to unicast networks. For a pair of the leaf nodes (4, j) in the DBT
algorithm we used the average of similarity samples {ﬂ%(f’j )}n as the metric. Since
here the pair-wise similarities of the leaf nodes were designed to be sums of additive
link metrics, the metric estimate for a link computed by the DBT algorithm became
the difference between the similarity metric values whose corresponding shared paths
differ by the specific link (see Figure 1 in [31] for comparison). Both algorithms es-
timated a binary tree given the similarity samples. A second stage was applied to
generalize the binary tree by pruning the links whose metric estimates were smaller

than a threshold 6. Defining i, and &y, be the empirical mean and standard
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Figure 5.11: The logical tree topology for the network used in computer simulations
in Section 5.5.1 and 5.5.2.

deviation of the estimated link metrics from the DBT or LBT over all the links,
respectively, we set 0 to be fink — Grink.

The performance of the algorithms was evaluated in terms of the graph edit dis-
tance between the estimated tree and the true topology. The problem of comparing
and matching trees has diverse applications in areas such as compiler design and pat-
tern recognition [100]. Several distance metrics between a pair of trees had been pro-
posed in the past decades, such as the edit distance [101, 102, 103, 104, 105, 106, 107],
the alignment distance [108], the isolated-subtree distance [109], the top-down dis-
tance [110] and the bottom-up distance [100]. We adopted the simple edit distance
as our performance metric. The tree edit distance is analogous to the edit distance
between two strings which is given by the least-cost sequence of elementary opera-
tions that transforms one string into the other. Let T" be a rooted tree. T is a labelled
tree if each node is given a symbol from a finite alphabet. T is called an ordered tree
if a left-to-right order among siblings is assigned. The basic editing operations for
an ordered tree are: Replacement — relabel a node v in T'. If the label remains
unchanged, it is an identical replacement, otherwise it is a non-identical replacement,

Insertion — insert a node v in T'. If v’ is the parent of v in T, v becomes the parent
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of the children of v whose consecutive subsequence is replaced by v; Deletion —
delete a non-root node v in 7. If v’ is the parent of v in T, the children of v become
a subsequence of nodes which are inserted in the place of v in the left-to-right order
of the children of v'.

A mapping from T} to T is defined as a set of operations which allows to transform
Ty to T,. If a mapping M includes R non-identical replacements, I insertions, and
D deletions, then the cost of mapping M is given by rR + il + dD, where r is the
cost of a non-identical replacement, ¢ is the cost of an insertion, d is the cost of a
deletion, and the cost of identical replacement is ususally 0. The set of costs is called
unit costif r =1 =d = 1. The graph edit distance between T} and T, is then defined
as the cost of a minimum-cost mapping between 7 and 75. Figure 5.12 illustrates a
mapping example from 7T} to T, which has 6 identical replacements, 1 non-identical
replacement, 1 insertion and 3 deletion. Under the assumption of unit cost, the cost
of the mapping is 5. Algorithms computing the edit distance between two ordered
trees can be found in [102, 103]. The graph edit distance problem for unordered trees
has been shown to be NP-complete [111].

To transform the true and estimated topology into ordered trees we applied the
following rule. Recall that we label the leaf nodes by 1,...,|V,|, where V, is the set
of leaf nodes. Define the score of a leaf node to be the number specified by the leaf
node’s label, known to the estimator. The score of an internal node was given by the
average score over the descendant leaf nodes of the internal node. Then the left-to-
right order among sibling nodes was determined by the ascending order of the node
scores. For example, in Figure 5.1 the score of node 8 is 1.5 and the score of node 9
is 4.5. So the left-to-right order is (8,9). Throughout the computer experiments we
adopted the unit cost of deletion, insertion, and non-identical replacement.

We conducted two experiments using the proposed HTE algorithm, along with
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Figure 5.12: Illustration of the editing operations between two ordered trees.

the DBT and LBT. These experiments were intended to clarify the advantages and
drawbacks of each method and should not be considered as a thorough comparison
of performance. In the first experiment we let each v, obey the same uniform dis-
tribution with a fixed width £ equal 2 and a mean 7 varied from 3 to 13. We also
fixed the noise variance scale factor p = % The result is illustrated in Figure 5.13.
Each data point was obtained from 1000 independent simulations. The magnitudes
of the link metrics determine the distance between any two different components in
the finite mixture model. The separability among different internal nodes increases
as the link metrics become large. Compared to DBT and LBT the HTE generally
achieved a lower average editing distance to the true topology and a higher per-
centage of correctly identified trees. The performances of DBT and LBT are quite
close to each other. They still provided reasonably accurate estimates as long as the

variance of the similarity estimates remain small.
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In the second experiment we fixed the range of the uniform distribution for each
link metric to [2, 6]. The proportionality factor p for sample standard deviations were
varied from 1 to 10 for link 16 and 17, and fixed at % for the others. The result is
illustrated in Figure 5.14. Each data point was averaged from the outcomes of 1000
independent simulations. As the accuracy of topology estimation decreases with the
increasing p, HTE exhibited a minor loss in its performance while DBT and LBT
both suffered from a serious degradation in the estimation capability.

The outperforming of our algorithm is mainly due to the following reason. Al-
though all the algorithms of HTE, LBT, and DBT are greedy in the sense that they
all depend on local information to construct the topology, HTE is much less greedy
than LBT and DBT. Recall that in Chapter 1 we explained the DBT and LBT both
being agglomerative algorithms which repeat the process of selecting the two most
similar leaf nodes, connecting them to a parent node, and treating the new parent
node as a leaf node which represents the selected pair of original leaf nodes. It means
that each iteration in the DBT or LBT algorithm focuses on a small region in the
topology parameter space which determines only the two most similar subclusters
of the leaf nodes to be combined into one cluster. On the other hand, our HTE
algorithm tries to find a local optimum over a larger region of the parameter space
in each level of the hierarchical topology estimation which decides the partition of
a (sub)set of the leaf nodes. This implies the estimates obtained from the HTE
algorithm are generally closer to the global optimal topology than those estimated

by the DBT or LBT algorithm.
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Figure 5.13: Average graph edit distance (a) and percentage of correctly identified
trees (b) versus the mean of uniformly distributed link metrics in model simulation.
The range of the uniform distribution was fixed at 2. The Gaussian samples of a
link metric had standard deviation equal to the link metric times % The DBT and
LBT algorithms were also implemented for comparison with the proposed HTE.
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Figure 5.14: Average graph edit distance (a) and percentage of correctly identified
trees (b) versus the proportional factor p for link 16 and 17 in model simulation. The
true link metrics were uniformly distributed in [2,6]. The DBT and LBT algorithms
were also implemented for comparison with the proposed HTE algorithm.
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5.5.2 NS Simulation

For a more pratical environment we used ns-2 [40] to simulate the network in
Figure 5.11. Two types of links were used: the links attached to the leaf nodes were
assigned with bandwidth 1Mbps and latency 1ms and the others were assigned with
bandwidth 2Mbps and latency 2ms. Each link was modelled by an FIFO queue with
buffer size being 50 packets long. Cross traffic was also generated by ns to simulate
various network condition. The cross traffic comprises 10% UDP streams and 90%
TCP flows in terms of the bandwith utilization. The UDP streams had constant bit
rates but a random noise was added to the scheduled packet departure time. The
TCP flows were bursty processes with Pareto On-Off models. We tested the three
probing schemes described in Section 5.2: delay difference using sandwich probes,
delay variance using packet pairs, the loss rate also using packet pairs. The packet
size in a packet pair probe was set to 10 bytes. The size of the large packet and the
small packets in a sandwich probe was 500 bytes and 10 bytes, respectively. The
probes were sent by UDP streams with Poisson departure. The departure interval
had a mean equal to 8 times the transmission delay of a single probe on the outgoing
link of the root node. The pair of leaf node destinations was randomly selected for
each probe. The simulation was repeated until at least N probes were sent through
every probe tree. N = N Nyorm for sandwich probes and N = Ny Ny ormNeoy or N =
N1NpormNioss for packet pair probes, where /Ny is the specified number of normalized
similarity samples expected to be collected at each probe tree. We let Ny = N, =
Nioss in the ns simulation. The parameters specifying the number of probes used
in ns simulation are listed in Table 5.3. Each column gives a set of parameters for
a simulation. Figure 5.15 shows how to collect N; normalized similarity samples

ﬁ,si’j ) for each probe tree. Each normalized sample is the average of N, .., similarity
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Table 5.3: The parameters specifying the number of probes used in ns simulation.
Ny 51719 |11 |13[15|15 1515|1515 |15 |15 15| 15|15
Noopin | D | 5|5 |5 |5 |5 | 7|9 1113|1515 |15 |15|15|15
N, 10{10|10 (10| 10|10 (10| 10|10 | 10|10 |12 14| 16| 18 |20

Ny 25 125 | 2525 125 |25|25|25 |25
Nporm | 10 | 15120 | 25| 30 | 35 | 40 | 45 | 50
Ny 20120 |1201(20|20 2020|2020

Y}’(li,j )
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Figure 5.15: Illustration of the computation of N; normalized similarity samples.
Each normalized sample is the average of N, similarity estimates. For packet

pair probes each similarity estimate is obtained using N, measurements. In this
figure it shows the delay measurement Y,(f 9 of packet pair probes.

estimates f’y,(f’j ), which are delay differences, delay covariances, or packet drop rates.
For packet pair probes each similarity estimate of delay covariance or packet drop
rate is obtained using N, measurements. If any probe was dropped for a set of
Ny packet pairs, the similarity estimate was computed with the remaining probes.
If too many probes were lost to obtain a reliable estimate, we simply discarded it
and averaged the remaining estimates to get a normalized approximately Gaussian

sample. Similar rules applied to the sandwich probes for computing the normalized

samples.
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We first compared the three probing schemes under three different network con-
ditions. The edit distance between the estimated tree and the true topology was
averaged over 30 independent simulations for each case. In each case we used the pro-
posed hierarchical topology estimator. Figure 5.16(a),(c),(e) show the performance in
a lightly-loaded, moderately-loaded, and heavily-loaded network respectively, where
the horizontal axes denote the number Ny N, .., of similarity estimates used in each
simulation. The average delay (ms), delay standard deviation (ms), and packet drop
rate for each link in each load condition is plotted in Figure 5.16(b),(d),(f). The
notation (a/b/c) in the titles of Figure 5.16(a),(c),(e) denotes the average condition
for the whole network in which a, b, and ¢ are the average delay, delay variance, and
packet drop rate over all the links, respectively. Throughout the experiments in ns
we used this notation to indicate the load condition of the network. The legends for
delay difference, delay covariance, and loss rate similarities were marked by ’Sand-
wich’, ’Cov’, and "Loss’, respectively. As predicted in Section 5.2 the sandwich probes
provided the most reliable topology estimate in a lightly-loaded network. From Fig-
ure 5.16(b) we found some of links had very small delay variances and hence could
not be identified using delay covariances. A similar situation occured for packet
drop rates for light loading since the drop packet rate was very small. The curves
for packet pair probing with delay covariance and dropped packet measurements
do not converge, as shown in Figure 5.16(a). In a moderately-loaded network each
link queue provided enough delay variation to perform topology estimation using
packet pair delay covariance. Figure 5.16(c) shows the packet pair delay covariances
achieved the best performance. The average edit distance to the true topology still
converged to zero for sandwich probes, but with a slower rate due to the noise in-
troduced by delay variations. The curve for packet pairs using loss rate similarity

did not converge to zero. This is because of identifiability problems on the links

144



which did not experience any dropped packets. For a heavily-loaded network, each
link had a substantial packet drop probability which made the loss rate similarities
contain the most reliable information about the network structure. Although the
delay variance on each link increased in the heavily-loaded case compared to the
moderate loading, the packet pair delay covariance method performed worse since
the number of successfully received probes was significantly reduced due to packet
losses. The sandwich probes suffered from both the high packet drop rate and high
delay variance. Hence, sandwich probing gave the least reliable estimates for this
heavily loaded situation. Note that some data points in the ’Sandwich’ and Cov’
curves were missing because for those cases almost every probe failed to pass through
the network, leaving insufficient samples to perform topology estimation. To assess
the influence of ambient traffic on the similarity estimates, we also plot the graph
edit distance curves for each probing scheme seperately in Figure 5.17.

The edit distance provides us a metric to describe the distribution of the topology
estimates. To illustrate, we simulated a larger network in ns, whose topology is shown
as the top tree in Figure 5.18. The bandwidth and latency for the internal links which
are not attached to the leaf nodes were assigned 5Mbps and 5ms, respectively. The
edge links at the leaf nodes had bandwidth equal to 1Mbps or 2Mbps, and latency
equal to 1ms or 2ms. Similar cross traffic as before was generated to establish a
light load condition. Here we used sandwich probes to collect similarity estimates
via delay differences. For each probe tree 200 similarity estimates were collected and
we set Nporm = 10 to obtain 20 normalized samples for the HTE algorithm.

For a total of M independent simulations we defined the median topology as the
topology estimate obtained from the median of the similarity samples over all the M
simulations. For example, given a probe tree the first normalized similarity sample

used for the estimation of the median topology equals the median of the first normal-
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Figure 5.16: (a),(c),(e) The average graph edit distance between the estimated tree
and the true topology versus the number of normalized similarity samples N1 N, omm
in a lightly, moderately, and heavily loaded network simulated in ns, respectively,
for the three probing schemes introduced in Section 5.2. (b),(d),(e) The average
condition for each link queue in the lightly, moderately, and heavily loaded network,
respectively. The units for delay and delay standard deviation (Delay Std) are both
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Figure 5.16 (continued)
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Heavily Loaded Net (18.28 / 10.63 / 18.25%)

12 —— Sandwich ||
el —— Cov
V4 —o— Loss

Average Edit Distance

I Yay M:;\‘ — & —
100 200 300 40|\Cl) 500 600 700 800 900 1000

1 X Nnorm

()

Heavily Loaded Network

N
o

Delay (ms)
N
o o

123 456 7 8 9101112131415161718

o

Delay Std
(ms)

123 456 7 8 9101112131415161718

123456 7 8 9101112131415161718
link

o
~

Drop Rate
o
N

(f)

Figure 5.16 (continued)
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Figure 5.17: The performance of HTE using delay difference measured by sandwich
probes (a), delay covariance measured by packet pairs (b) and loss rate measured by
packet pairs (¢) under various network conditions. The vertical axes show the average
graph edit distance between the estimated tree and the true topology over 30 inde-
pendent simulations. The horizontal axes are the number of normalized similarity
samples Ny N,y used in each simulation.
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Figure 5.17 (continued)

ized samples for the probe tree over the M simulations. Then the distribution of the
topology estimates can be described by the one-sided pmf of the graph edit distance
between the estimate and the median topology. The median topology obtained from
30 independent simulations on the top tree network in Figure 5.18 is shown in the
bottom of the same figure, and the corresponding distribution of the topology esti-
mates is shown in Figure 5.19 as pmf of the edit distance to the median topology.
For these simulations the median topology was equal to the true topology. We will
say that the topology estimate is median unbiased. The edit distances corresponding
to the 50th and 90th percentiles are also indicated. Some examples of the estimated
topology along with their distances to the median topology are depicted in Figure
5.20. The top tree shows one of the closest estimates to the median topology. The
tree in the middle corresponds to the 50th percentile of the edit distance, and the tree

in the bottom has the largest distance to the median topology over all the estimates.
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One can observe that the error distances came mainly from the failure to estimate

fine subclusters of the leaf nodes at the bottom of the tree.

5.6 Conclusion and Future Work

The estimation of the logical tree topology from end-to-end unicast measurements
of the network was investigated. We established a general framework for this problem
that requires no assumptions on the logical tree structure. The topology estimation
problem was transformed into a hierarchical clustering problem for grouping the leaf
nodes based on pair-wise similarities. We proposed to use a similarity clustering
tree to describe the hierarchical clustering for the leaf nodes in terms of that for the
pair-wise similarities, and we established a one-to-one mapping between the similar-
ity clutsering tree and the network topology. We described three possible similarity
metrics along with the probing schemes used to estimate these metrics: sandwich
probes measuring the delay difference; packet pair probes measuring the delay vari-
ance; and packet pair probes measuring the loss rate. A new finite mixture modelling
approach was proposed for clustering the similarity estimates using a prior pmf on
the nearest common ancester of each pair of leaf nodes. The penalized likelihood
approach using MML-type penalty was also derived for model selection, which was
used in an unsupervised EM algorithm for the estimation of the finite mixture model.
The key to the use of the mixture model is the association of mixture components
attached to the similarity {v;;} of leaf node pairs belong to different clusters, called
inter-cluster components. Based on the observation that the component having the
smallest mean contains information important for splitting the leaf node clusters,
we defined a new recursive partition likelihood as a clustering metric. The hierar-

chical topology likelihood was then formulated as the product of all the conditional
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(a)
Figure 5.18: The true topology (upper) used in ns simulation to illustrate the distri-
bution of the topology estimates. The median topology over 30 independent simu-

lations is also shown in the bottom which is identical to the true topology, and thus
our topology estimator is median unbiased.
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Figure 5.19: The pmf of the graph edit distance with respect to the median topology
for the estimates from the ns simulation using the network in Figure 5.18. The
locations of the 50th and 90th percentiles are also indicated.

partition likelihoods.

Topology estimation was achieved by recursively finding the best partitions of
the leaf nodes to expose internal node structure. We derived from the finite mixture
estimate a complete graph with the vertices being the leaf nodes to be partitioned.
A robust estimator was proposed for the indicator function showing whether a pair
of leaf nodes belong to two different clusters, based on the inter-cluster component
of the finite mixture model. The estimator was used to compute the edge weights
indicating the pair-wise similarities. A simple clustering algorithm based on the
graph connectivity was then applied to partition the leaf nodes. To reduce the
complexity of the graph-based clustering when the number of leaf nodes is large we
proposed a pre-clustering algorithm to reduce the vertices in the graph. When there
is estimation error in the finite mixture model, the inter-cluster component could

be decomposed into several small components or be merged with other components.
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An Estimate at Dist. = 3 from The Median Topology

An Estimate at Dist. = 10 from The Median Topology

Figure 5.20: Examples of the estimated topology along with their tree edit distance
to the median topology for the ns simulated network in Figure 5.18.
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The pre-clustering algorithm progressively includes components, starting with the
one having the smallest mean. The post-merging algorithm tests various ways to
merge pairs of closely similar clusters.

We used matlab model simulations on a small network to demonstrate the pro-
posed algorithm and compared it with the DBT and LBT algorithms. The proposed
algorithm achieved a lower error edit distance to the true topology and higher per-
centage of correctly estimated trees than the DBT and LBT, under various conditions
on the magnitudes and variances of the similarity estimates. Our algorithm outper-
formed the DBT and LBT algorithms because we adopted a less greedy approach
in finding the optimal topology based on end-to-end observations. For a more prac-
tical situation we simulated the same network in ns and tested the performance of
the three similarity metrics along with the corresponding probing schemes using the
proposed algorithm. The Monte-Carlo simulation results showed the delay difference
measured by the sandwich probes had the best performance when the network load
is light. For a moderate load situation the delay variance using packet pair probes
provided the most reliable estimates for the leaf node similarities. When there was
a good chance for packets to be discarded by a congested network the loss rate mea-
sured by packet pair probes generated the topology estimates with the lowest error
distance. We also defined the median topology of topology estimates obtained from
Monte-Carlo experiments. Median topology was used to describe the distribution of
topology estimates by the pmf of its graph edit distance to every topology estimate.
The idea was illustrated by Monte-Carlo ns simulations on a large network using
sandwich probes.

Future work could focus on the use of hybrid probing schemes, which might better
adapt to all the possible conditions in a network. The similarity samples would be a

multi-dimensional vector including the measurements from different types of probes.
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This work could also be extended to better estimate topology of the network by
sending the probes from multiple sources, as in [36, 37, 38]. Extensive real network
experiments should be implemented in the future to compare to ground truth real

network topologies.
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CHAPTER 6

Conclusion and Future Work

In this thesis we have studied the inference problems for packet switched networks
such as the Internet. The focus was the estimation of internal link characteristics
using unicast end-to-end delay measurements, supported by almost every network
currently in operation. Specifically speaking we focused on network delay tomogra-
phy and topology discovery.

We started with the estimation of link delay cumulant generating functions (CGF)
which specify a linear system of equations for the internal link delay distribution
given the end-to-end delay distributions. Under the assumption that link delays are
spatially and temporally independent in a stationary network, we proposed a bias
corrected estimator for the internal link delay CGF. Through simulation we showed
that the proposed estimator attains a level of mean squared error comparable to link
delay CGF estimates obtained from directly measured link delay statistics. These
CGF estimates were used to estimate level exceedance probabilities of delays for each
link and identify the bottleneck in the network.

Subsequently we presented a new method for estimation of internal link delay

distributions using end-to-end packet pair delay statistics gathered by back-to-back
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packet-pair unicast probes. The network was modelled by a logical tree with packet-
pair probes sent from the root node to pairs to pairs of leaf nodes. We proposed a
hybrid mixture delay model in which a point mass is used to represent the occurrence
of an empty link queue and a continuous finite mixture density is included to describe
the multi-modal non-empty queueing delay distribution. For the case that the model
orders are known exactly, we used a maximum likelihood expectation-maximization
(ML-EM) algorithm applied to the hybrid mixture model for the link delay proba-
bility density functions. Since the density model orders are generally unknown in
practice, we suggested a method based on a variant of the penalized ML-EM (PML-
EM) algorithm. We used a minimum message length (MML) penalty for selection
of model orders. We presented results of matlab and ns-2 simulations to illustrate
the premise of our delay tomography algorithm for moderate cross-traffic scenarios.

The hybrid mixture model based algorithm has an exponential complexity with
respect to the network size. Although it is impossible to reduce the complexity below
exponential rate because the number of links and probe trees increases exponentially
with the depth of the network tree, we proposed a bottom-up divide-and-conquer
strategy to estimate link delay distributions. The key approximation is to replace
the delay distributions for shared probe tree paths by those with model orders for
single links. Analysis showed that the exponential rate of the runtime complexity
is reduced significantly. The ns-2 simulation results showed that the accelerated
algorithm achieved the same level of estimation accuracy as the original algorithm
and reduced by approximately 40% the runtime complexity.

The estimation of the logical tree topology from end-to-end unicast measurements
of the network was also investigated here. We established a general framework for
this problem in which no assumptions on the logical tree structure need is required.

The topology estimation problem was represented as a hierarchical clustering prob-
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lem for grouping the leaf nodes based on pair-wise similarities. We proposed to use
a similarity clustering tree to describe the hierarchical clustering for the leaf nodes
in terms of that for the pair-wise similarities, and we established a one-to-one map-
ping between the similarity clutsering tree and the network topology. We described
three possible similarity metrics along with the probing schemes used to estimate
these metrics: sandwich probes measuring the delay difference; packet pair probes
measuring the delay variance; and packet pair probes measuring the loss rate. A
new finite mixture modelling approach was proposed for clustering the similarity es-
timates using a prior pmf on the nearest common ancester of each pair of leaf nodes.
The penalized likelihood using MML-type penality was also derived for model se-
lection, which was used in an unsupervised EM algorithm for the estimation of the
finite mixture model. The key to the use of the mixture model is the association
of mixture components attached to the similarity {;;} of leaf node pairs belong to
different clusters, called inter-cluster components. Based on the observation that the
component having the smallest mean contains information important for splitting
the leaf node clusters, we defined a new recursive partition likelihood as a clustering
metric. The hierarchical topology likelihood was then formulated as the product of
all the conditional partition likelihoods.

Topology estimation was achieved by recursively finding the best partitions of
the leaf nodes to expose internal node structure. We derived from the finite mixture
estimate a complete graph with the vertices being the leaf nodes to be partitioned.
A robust estimator was proposed for the indicator function showing whether a pair
of leaf nodes belong to two different clusters, based on the inter-cluster component
of the finite mixture model. The estimator was used to compute the edge weights
indicating the pair-wise similarities. A simple clustering algorithm based on the

graph connectivity was then applied to partition the leaf nodes. To reduce the
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complexity of the graph-based clustering when the number of leaf nodes is large we
proposed a pre-clustering algorithm to reduce the vertices in the graph. When there
is estimation error in the finite mixture model, the inter-cluster component could
be decomposed into several small components or be merged with other components.
The pre-clustering algorithm progressively includes components, starting with the
one having the smallest mean. The post-merging algorithm tests various ways to
merge pairs of closely similar clusters.

We used matlab model simulations on a small network to demonstrate the pro-
posed algorithm and compared it with the DBT and LBT algorithms. The proposed
algorithm achieved a lower error edit distance to the true topology and higher per-
centage of correctly estimated trees than the DBT and LBT, under various conditions
on the magnitudes and variances of the similarity estimates. Our algorithm outper-
formed the DBT and LBT algorithms because we adopted a less greedy approach
in finding the optimal topology based on end-to-end observations. For a more prac-
tical situation we simulated the same network in ns and tested the performance of
the three similarity metrics along with the corresponding probing schemes using the
proposed algorithm. The Monte-Carlo simulation results showed the delay difference
measured by the sandwich probes had the best performance when the network load
is light. For a moderate load situation the delay variance using packet pair probes
provided the most reliable estimates for the leaf node similarities. When there was
a good chance for packets to be discarded by a congested network the loss rate mea-
sured by packet pair probes generated the topology estimates with the lowest error
distance. We also defined the median topology of topology estimates obtained from
Monte-Carlo experiments. Median topology was used to describe the distribution of
topology estimates by the pmf of its graph edit distance to every topology estimate.

The idea was illustrated by Monte-Carlo ns simulations on a large network using
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sandwich probes.

Future research directions are numerous. For network delay tomography future
work includes extension of our CGF and hybrid finite mixture model to include
spatial dependencies of link delays among different links, especially the links along
the same path. For time-varying scenarios adaptive schemes need to be developed
in order to capture possible changes in traffic statistics and network environment.
The proposed ML-EM and PML-EM algorithms could be extended to include the
additional unknown minimum packet delay into the EM iterations but this unknown
parameter could affect the convergence rate of the EM algorithm. To better fit link
delay distributions in a real network, one could extend our hybrid finite mixture
model to include more point masses and combinations of different families of proba-
bility densities which are flatter or more heavy-tailed than Gaussian. For example,
exponential densities are more efficient to describe exponential tails of the distribu-
tions which correspond to rare large delay events in a lightly or moderately loaded
network. For heavily loaded situations some heavy tailed functions, such as Pareto
densities, might be used. This could also reduce the model orders in the finite mix-
ture models and directly diminish the exponential rate constant in the computational
complexity for the ML-EM and PML-EM algorithm. Another possible direction is
finding ways to further accelerate convergence of the ML-EM and PML-EM algo-
rithms for real-time implementation. EM algorithms are generally slow and the
improvement made by CEM? is still limited. It may also be viable to apply these
methods to detecting abnormal changes in link delay distributions, which is helpful
to early detection of possible failures and/or malicious activities in the network. It
could be achieved by estimating only the tail components of the mixture models after
each consecutive probing session if the change on large packet delays is the focus.

Future work in topology discovery could focus on the use of hybrid probing

161



schemes, which could better adapt to all the possible conditions in a network. The
similarity samples would be a multi-dimensional vector including the measurements
from different types of probes. This work could also be extended to better estimate
topology of the network by sending the probes from multiple sources, as in [36, 37, 38].
Extensive real network experiments should be implemented in the future to compare

to ground truth real network topologies.
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APPENDIX A

EM Algorithm for Network Delay Tomography

Using Finite Mixture Models

A.1 General Formulation

Here we sketch the derivation of the E step and M step quantities required for
ML, PML, and CEM? algorithms in Chapter 3 and 4. We assume the point mass is

located at zero delay for all the links. Define the following notation:

1. gi(y®™:®) denotes the joint p.d.f. of the nth end-to-end packet pair delay
vector y(n) = {ygi’”),yy’")} for the ith probe tree, parameterized by ©. It
admits a hybrid mixture model which is the convolution of all the f;(x)’s along

the tree path, according to the spatial independence assumption.

2. giq.m) (y®™; ©) is defined similarly to g;(y; ©), except in the convolution fi(x)
is replaced by its mth component, which is a;p when m = 0 or oy ,,¢(z;6;.m)
when m # 0. This is the likelihood of y*™ given the delay at link I is con-

tributed by the mth hidden component.

3. hiy(y®™; ©) is defined similarly to g;(y; ©), except the [th link is excluded in
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the convolution.

E-step: E-Step computes the conditional expectation of the complete data log-
likelihood in (3.7). Let

wl(ﬁ;:) — E Z(i’n)|Y:y;(:')(t)

) lym

ity (Y ©0)) (A1)
iy 60 |

for m = 0,...,k; and [ = 1,..., L, where ©® denotes the parameter estimates

obtained from the tth iteration. Define
Qi Om) = B[ 207108 6(X™;0,)[Y = y; OO (A.2)

form=1,...,kyand I =1,...,L. nggj)(el,m) = 0 in the following two cases: (a)

yii’") =0 or yéi’") = 0 when link [ is shared by the unicast paths of probe tree i, and

(b) ym) — 0 or M = yéi’n) # 0 when [ is in the splitting branch of the path for

y&™  where a € {1,2} and b € {1,2}\{a}. It is because in these cases Zl(f,;f) =0 for
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m=1,..., k. Otherwise,

Q) = B [log o(X["; 00,) B | 25| X[, Y 00 =y, 9] |

Y m) = y(in). @(t)]

~

= B [log 6(X"": 01,0) E | 20501 O] [Y ) = (i 9]

~

- E _log ¢(Xll,” O ) P (Zl(,ivf) _ 1|Xl(i:"); @?)) |Y(i,n) - y(i,n); (:)(t)]
_ A (t) (im). ()
, «a X0 . A
= E |log (X" 01,m) l’m¢((i e (tl)’m) [YE =yt 0
X5 6,7)
N(t A . A
A ®(; 95,31) Al Oy — %) 0)

= log ¢(x; 0, m, - dx
/ (30um) fi(z; ©) gi(ytm; ©1)
& (e éf,ii)hi,z((y - x) );©) log 6 fi,m)
gi( )
where (y — x)@™ = (3™ — 2, 48" _ 2) if link  is shared by the unicast paths of
probe tree i, or (y —x)®®) = (ygi’”) —x, yéi’")), for example, if [ is in the splitting

(in)

branch of the path for y;"’. The integral limits in (A.3) depends on the support

region of function ¢. The conditional expectation in (3.7) becomes

i

D DD P SRETHIS olF TN ST

=1 ©:leM; n=1

M-step: M-Step updates the parameter estimates by maximizing Q(®, (:)(t)) over

O:
Ni 2,T
A(t"‘l) _ Zi:lEMi Zn:l wl(m)
Oy = 0,....k (A.5)
ZilEM N
91(,?11) = argax Z ZQl =1,...,k. (A.6)
ileM; n=1
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Note that in this general EM formulation ¢ can be an arbitrary probability density

function.

A.2 EM algorithm Using Gaussian Mixture Com-

ponents

A.2.1 End-to-End Delay Likelihoods

Here we present the mathematical details of g;, g; (,m), and h;; using Gaussian
mixture components. The framework also holds for other choices of densities with
support region (—oo, c0). To simplify the notations we drop the superscript ** from

the measurements y and ~® from the parameters.

Figure A.1: Binary probe tree ¢ with internal delays Xy, X, Xy for branches 0, 1,
2, respectively, and end-to-end delays Y; = Xy + X; and Y, = Xy + Xo.

L gi(y1,92)

Consider the binary probe tree 7 in Fig. A.1. Y; and Y5 represent end-to-end

delays from node 0 to receiver Rx; and Rxs, respectively. Xy, X, and X, denote
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the internal delays on the three branches 0, 1, and 2, respectively. Note that each
branch in the probe tree may be a chain of links in the network. X; has a hybrid

mixture distribution as a result of convolution,

Fy(a) = B;8(x) + GMy(x), j=0,1,2, (A7)

where GMj is the pure Gaussian mixture part of F;. Let Ax(B-C') denote a function
of (y1,y2) which is the convolution of A, B, and C, in the form of [* A(z)B(y; —

z)C(yy — x)dx. Then the end-to-end delay distribution g; is
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9i(y1,y2) = Fox(F1- F)
= BoBB6(y1)0(y2) + BoBr1GMa(y2)d(y1) + PofoGMi(y1)d(y2) +
B1B2G Mo (y1)0(y1 — y2) + BoGMi(y1) G Ma(y2) +
BrGMo(y1)GMa(y2 — y1) + B2GMo(y2) GMi (y1 — yo) +

GMO * (GM1 : GMQ), (AS)

where GMy x (GM; - GM,) is a linear combination of joing p.d.f.’s in the form of
(3.2).

II. gi,(l,m)(yla yz)

Assume [ is a link in probe tree i. g; ) includes only the mth component of f;

in the convolution. We define the likelihood function

Fj m) (@) = Bja,m)0(x) + GMjq,m) (2) (A.9)

for X; if [ is on branch j € {0, 1,2}, given that the delay at [ is contributed by the
mth component. Consider the following cases:
Case 1. [ is on branch 0.

a)m=20
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1. [ is the only link on the branch. In this case G M 0)(x) = 0 and Sy 1,0y = .

9i,0.0) (W1, y2) = Fouo * (F1 - Fy)

;

0 =% #0
Qaq0 (B1826(y1)0(y2)+
= B1G My (y2)0(y1)+ ) (A.10)
otherwise
BoG My (y1)0(y2)+
G M, (y1)G Mz(y2))

2. [ is not the only link on the branch.

3i,(1,0) (yla 112)

Fo,,0) * (Fy - Fy)

Bo,1,0)81820 (1) (y2) + Bo,1,0)51G Ma(y2)d (y1) +
Bo,(1,0)32G M1 (y1)d (y2) + B182G Mo 1,0y (1) (11 — y2) +
Bo,1,00G M1 (y1)G Ma(y2) + B1G Mo 1,0y (y1) G Ma(y2 — y1) +

BaG My 1,0y (y2) G M (y1 — y2) + G Mo 10y % (GM, - GMs)

b) m # 0. In this case £y m) = 0.

Gi,am) (Y1, Y2) =

(A.11)
Foimy * (Fi - F>)
( 0 y1=0 or gy =0
B182G Mo (1,my (y1)0(y1 — o)+
 BLG Mo, 1) (y1) G Mo (y2 — y1)+ (A.12)

otherwise
BaG Mo (1m) (y2) G My (y1 — y2)+

GMO,(l,m) * (GM1 . GMQ)
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Case 2. [ is on branch a € {1,2}. Let b be the branch connected to the other
receiver node, i.e., (a,b) = (1,2) or (2,1).

a)ym=0

1. [ is the only link on the branch. In this case GM, ) (z) = 0 and B4 1,0y = 0.

Gi(1,0) (yla y2) = Fyx (Fa,(l,O) : Fb)

.

0 ya%oa and y, =0
a0 (ﬂ05b5(y1)5(y2)+
=y BoGMy(yb)0(ya)+ herwise (A.13)

BoGMo(Ya)0(Ya — y)+
[ GMo(Ya) GMy(yo — Ya))

2. [ is not the only link on the branch.

9i(1,0) (y1,92) = Fox (Fa,(l,O) - Fy)
= B0Ba,1,0)860(Ya) S (Ys) + BoBa,1,00G My ()0 (ya) +
Bo oG Ma1,0)(Ya)d(Y5) + Ba,1,0)B6G Mo (Ya)0 (Yo — yb) +
BoG M, (1,0) (a) G My (yp) + 5a,(l,0)GM0(ya)GMb(yb — Ya) +
BoG Mo (yo) G Mo 1,0)(Ya — Ys) + G My * (GMy 0 - GM,)

(A.14)
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b) m # 0. In this case [, m) = 0.

Gi,(1,m) (1/1, y2) = Fpx (Fa,(l,m) : Fb)

;

0 Yo =0 or y, =1y, #0
BoByG M, (1,m) (Ya )0 (ys)+
= 50GMa,(l,m)(ya)GMb(yb)+ . (A15)
otherwise

5bGM0 (yb)GMa,(l,m)(ya - yb)+
GMO * (GMa,(l,m) . GM(;)

ITI. hi,l (yla y2)

Similarly, since h;; doesn’t include link / in the convolution we define

ijl(a:) = ﬁj,lé(a:) + GMjJ(iU) (A16)

for X if [ is on branch j € {0,1, 2}, given that the delay at [ is zero with probability
1. Note that if / is the only link on branch j, Fj,;(x) = §(x). Because h;; is used
only in (A.3) we formulate h;;(y — x) instead.

Case 1. [ is on branch 0.

1. [ is the only link on the branch.

hi,l(y—X) = [Fo,l*(Fl'F2)] (h —z,y2 — @)
= [1B20(y1 — 2)d(yr — y2) + B10(y1 — )G My (y2 — 1)
+320(y2 — 2)GM1(y1 — y2) + GMi(y1 — )G Ms(y2 — )

(A.17)
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2. [ is not the only link on the branch.

hily —x) =

[Fog = (F1 - F2)] (1 — @, 92 — @)

B1B20(y1 = y2) (Bogd(yr — x) + GMoy(yr — )
+BGMa(y2 — y1) (Bogd(y1 — x) + GMoy(y1 — )
+B2G M (y1 — y2) (Bogd(y2 — x) + GMo(y — )
+B80,GMy (yy — )G My (y2 — x)

+GM0J * (GM1 : GMQ)(yl — T, Y2 — 11,') (A18)

Case 2. [ is on branch a € {1,2}. Let b be the branch connected to the other

receiver, i.e., (a,b) = (1,2)

or (2,1).

1. [ is the only link on the branch.

hi(y — x)

= [Fox (Fog- )] (Yo — 7, 9p)
= BoBed(Ya — )5(ys) + Bod(ya — )G My (ys)
+B50 (Yo — yp — )G Mo (ys)

+GM0(ya - x)GMb(yb — Ya + ZL‘) (Alg)
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2. [ is not the only link on the branch.

hig(y —=x) = [Fox (Fag- Fy)] (Y — 2, 1)
= Bo (B0(ys) + GMy(ys)) (Batd(ya — ) + GMay(yo — )
+ByG Mo () (Bat6 (Yo — Yo — ) + GMai(ya — yo — @)
+Ba1GMo(ya — 2)G My (yo — Yo + )

+GM0 * (GMa,l . GMb)(ya — T, yb) (AQO)

A.2.2 The EM Algorithm

The E-Step

(i

It is straight forward to obtain w;’ ™) using (A.8) for g;(y®™; ©®) and (A.10) -

(A.15) for g; (1,m)(y®@™); (:)(t)).
Let N%ym = {j e{l,...,N;}: ng:f)(@l,m) #* 0} be the subset of support indices

for probe tree ¢ with respect to the mth component at link /. When ¢ is Gaussian,

(A.3) becomes

Q(z,n) (0 ) (é,n) IOg 27 + 1 + Ml2,m 1
= —W 02 O1.m — — " = °
b b 2 Bt 20527771 20 l2,mgi(} (z,n); @(t))

/ (22 = 2p1,m) 64, S5 010 it ((y — %) 03 ©W)d. (A.21)

o0

for n € Nj,,. The constant term 1°g227r can be ignored since it does not affect the M
step. Define
A = / © - {03 00 hig ((y — )07 O da (A.22)
B = [ aew 0kl - X 00) s (423)
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for n € Nj,,. From (A.17) - (A.20) the integrals Am) and Bl(f;:) are sums of basic

terms

a= / T Gy (5 O )Wy — X)dz = p- B - (A.24)

o0

and

b= /00 22 Ay (3 01 )Ry — X)dz = p- @ - (” +€), (A.25)

o
respectively. Let f(y1,42) be the joint density function in (3.2) with parameters
{[LZ',O'?}Z':LZ?, and ¢, ¢, co be constant coefficients. We list close forms of p, ®, n,

and ¢ for the following 5 types of functions A which are used in h;;:

Type 1. h(y —x) = co(y — z; 1,0%).
Let v = 0* 4 67,,. Then

o = emp (_(y - <u+m,m>>2>

2y
0 flm + 07 (y — 1)
’]’] _=
5
026l2,m
§ -
Y

Type 2. h(y — x) = c1d(y1 — z; 1, 0%) - c2(y2 — ; o, 03).

175



Let v = ofo3 + 0767,, + 0567, Then

C1C20
21\

1 R R
@=em{3;M@—mﬁwWW+ﬁ@—wﬁme+

ﬁa@—mrwm—mwQ

0703 [l m + US@QM(% — p1) + U%&im(yz — fi2)

v

2,242
01020 m

v

Type 3. h(y —x) = cf(yl — T,y — T).
Let y1 = 0703 + 0303 + ofo; and v, = (07 + 67,,)05 + 0303 + (0 + 67,,)03.

Then

1 . N
b= e {_E [a§(y1 — (p1 + pi2 + fum))? + 05 (y2 — (1 + ps + Ml,m))Z]

2
o2 + 67
—% ((y1 - y2) - (M2 - Ma))2}
- Y1fm + U§6i‘z,m(y1 — (1 + p2)) + U%6l2,m(y2 — (1 + p3))
V2
71612
,m
§ = :
V2

Type 4. h(y — x) = c1d(y1 — z; pu, 0%) - 29 (y2 + 3 i, 03).
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Let v = ofo3 + 0767,, + 0567, Then

C1C20 m,

21\
1

& = exp {—% (021 — (s + ) + 0212 — (1 — frm))*+

G (Y1 + y2) = (g1 + p2))?] }

O—%Ugﬂl,m + Uga—im(yl - ,Uq) + U%a—l%m(/ua - y?)

v

2 2.9
01020 m

Type 5. h(y —x) = cf (y1 — ,12).

Let y1 = 0703 + 0503 + oio3 and v, = oi(03 + 67,,) + (03 + 67,,)03 + 0703

Then
Cdl,m
p _=
2m\/ Y2
1 .
0 = cop{ oo [Pl — G+t i)+
2
2 ~2
. oy + 0y,
o7 ((y1 — y2) — (2 + fium — 113))°] — Tm (yo — (1 + u3))2}

Y1fm + O—ga—l%m(yl — (p1 + p2)) + 0%622,771((?/1 — ) — (2 — p3))
Y2

~2
MO m

Y2
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The M-Step

(t+1)

The estimate updates for mixing probabilities a; ,

from (A.5). The updates for means and variances are

(1) 1
I,m -
Zi:lEMi ZneNf l,m i:lEM; ngNl
2 (t41) 1
Tim - (i,n) '
Zi'lEM' ZnENi Wi m

5 u(t“) 1)

I,m

n; @)

2. 2

A lEMz nENl

{ zn)_
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+ (i

can be obtained directly

(Z n)

e (A.26)

( ~ (t+1))2

l,m

wff;;)} . (A27)
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